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We propose an algebraic method for proving estimates on moments of stochastic integrals. The method uses qualitative properties of roots of algebraic polynomials from certain general classes. As an application, we give a new proof of a variation of the Burkholder-Davis-Gundy inequality for the case of stochastic integrals with respect to real locally square integrable martingales. Further possible applications and extensions of the method are outlined.

Introduction

Connections between special algebraic polynomials and stochastic integrals have a long history (see Wiener [1938], [START_REF] Itô | Multiple Wiener integral[END_REF]), and received considerable attention in stochastic analysis [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF], [START_REF] Carlen | L p estimates on iterated stochastic integrals[END_REF], [START_REF] A C C E P T E D M A N U S C R I P T Accepted Manuscript M ; Andrei | Handbook of Brownian motion-facts and formulae[END_REF], [START_REF] Nualart | Chaotic and predictable representations for Lévy processes[END_REF]). Fruitful applications of special polynomials have been found in the theory of Markov processes [START_REF] Kendall | Unitary dilations of one-parameter semigroups of markov transition operators, and the corresponding integral representations for markov processes with a countable infinity of states[END_REF], [START_REF] Karlin | The differential equations of birth-and-death processes, and the Stieltjes moment problem[END_REF]), financial mathematics (Schoutens [2000]), statistics [START_REF] Diaconis | Closed form summation for classical distributions: variations on a theme of de Moivre[END_REF]). The book Schoutens [2000] contains an extensive overview of this field of stochastic analysis and its applications.

In this paper, we study a different type of application of polynomials to stochastic integration. We show that not only properties of special systems of orthogonal polynomials can be used in stochastic analysis, but also that elementary properties of certain general classes of polynomials can be effectively utilized. In particular, we give a new proof of the Burkholder-Davis-Gundy inequality in Section 2 as an illustration of our approach. Some possible extensions and further applications of our results are described in Section 3, were we also prove the B-D-G inequality for the case of stochastic integrals with respect to locally square integrable martingales.

The main idea

We propose an algebraic proof for the following classic variation of the B-D-G inequality.

Theorem 1. Let b(s), s ∈ [0, t], be a progressively measurable process, b ∈ L 2 [0, T ], t ≤ T . Then for every n ≥ 2 there exists constants

C 1 > 0, C 2 > 0 such that C 1 E t 0 b 2 (s) ds n ≤ E t 0 b(s) dW (s) 2n ≤ C 2 E t 0 b 2 (s) ds n .
(1)

The constants C 1 and C 2 depend on n, but not on the process b.

The key feature of our approach is that we use general qualitative properties of roots of algebraic polynomials. n and, moreover, can be extended to give estimates for more general types of stochastic integrals.

The following two algebraic lemmas are in the core of our method.

Lemma 1. Consider real polynomials

P 1 (z) = 2m k=0 b k z 2k and P 2 (z) = z 2m1 i=0 c i z 2i , (2) 
where

m 1 < m is integer and nonnegative, b k ≥ 0 for all k, b 0 > 0, b m > 0, c i ≥ 0 for all i. Then there exists 0 < d 1 < d 2 such that only for z ∈ [d 1 , d 2 ] one can have P 1 (z) ≤ P 2 (z), but for z / ∈ [d 1 , d 2 ] one has P 1 (z) > P 2 (z). Proof. (Lemma 1) Note first that P 1 (z) is symmetric, P 1 (z) ≥ b 0 for all z ∈ R,
and

P 1 (z) ∼ b m z 2m as z → ∞. Furthermore, P 2 (-z) = -P 2 (z)
, and for z ≥ 0 one has P 2 (z) ≥ 0, P 2 (0) = 0, and deg P 1 (z) < deg P 2 (z), where deg P i denotes the degree of the polynomial P i .

This implies that for z < 0 one has P 1 (z) > 0 > P 2 (z). At z = 0 it holds that

P 1 (0) = b 0 > 0 = P 2 (z).
This shows that all possible solutions of the inequality P 1 (z) ≤ P 2 (z) are positive, i.e. bounded from below by a positive number d 1 .

Since P 1 (z)/P 2 (z) → ∞ as z → ∞, it follows that for sufficiently large z ≥ z 0 always P 1 (z) > P 2 (z). Therefore, all possible solutions of the inequality

P 1 (z) ≤ P 2 (z) lays in some interval [d 1 , d 2 ] with d 1 > 0 and d 2 > 0.
Lemma 2. Consider real polynomials

P 1 (z) = b 0 z 2m+1 and P 2 (z) = z m1 i=0 c i z 2i , (3) 
where m 1 < m is integer and nonnegative, b 0 > 0, c i ≥ 0 for all i, c 0 > 0, c m1 > 0. Then there exists d 2 > 0 such that only for z ∈ [-∞, d 2 ] one can have

P 1 (z) ≤ P 2 (z), but for z > d 2 one always has P 1 (z) > P 2 (z).
Proof. (Lemma 2) The proof is analogous to the one of Lemma 1.

Now we are able to prove the main theorem. Proof. (Theorem 1). In the proof below we can assume that b is bounded, since the general case follows by the usual truncation argument.

We denote for brevity

t 0 b 2 (s) ds = b 2 ds , t 0 b(s) dW (s) = b dW .
Let us write for n ≥ 1

ρ 2n (t) = H 2n b 2 ds , b dW = 0≤k≤n (-1) k a k b dW 2n-2k b 2 ds k , (4) 
where H 2n stands for the 2n-th Hermitian polynomial defined as

H 2n (x, y) := (-x) n n! e y 2 /2x d n dy n e -y 2 /2x = 0≤k≤n (-1) k a k x k y 2n-2k ,
and it is known that

a k = 1 2 k k!(2n -2k)! .
Taking in (4) the expectation of both sides and noting that E ρ 2n = 0 (see [START_REF] Mckean | Stochastic integrals[END_REF], pp. 37-38 or [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF], pp. 150-152), we get 0≤k≤n for all k, after throwing out from (5) all the summands with even k, except for k = 0 and k = n, we get

(-1) k a k E b dW 2n-2k b 2 ds k = 0 . ( 5 
a 0 E b dW 2n - 0≤2l+1≤n a 2l+1 E b dW 2n-2k(l) b 2 ds k(l) + a n E b 2 ds n ≤ 0 , (7) 
where for integer l ≥ 0 we denoted k(l) = 2l + 1.

Applying inequality ( 6) to ( 7), we get

a 0 E b dW 2n - 0≤2l+1≤n a 2l+1 E n-k(l) n b dW 2n E k(l) n b 2 ds n + a n E b 2 ds n ≤ 0 . (8) 
Divide both parts of ( 8) by E b 2 ds n and put

z := E 1/n b dW 2n E 1/n b 2 ds n , (9) 
then we obtain

a 0 z n - 0≤2l+1≤n a 2l+1 z n-k(l) + a n ≤ 0 ,
or equivalently

a 0 z n + a n ≤ 0≤2l+1≤n a 2l+1 z n-k(l) . ( 10 
)
Let us now put in (10) P 1 (z) = a 0 z n + a n , P 2 (z) = 0≤2l+1≤n a 2l+1 z n-k(l) .

By Lemma 1, there exists positive constants Part II. Consider now the case of odd n, and let n = 2m + 1 in (1). Throwing away from (5) all the summands with even k, except for k = 0, we get

C 1 , C 2 such that 0 < C 1 ≤ z ≤ C 2 , i.e. C n 1 ≤ z n ≤ C n 2 ,
a 0 E b dW 2n - 0≤2l+1≤n a 2l+1 E b dW 2n-2k(l) b 2 ds k(l) ≤ 0 , (11) 
and analogously to (10) we derive

a 0 z n ≤ 0≤2l+1≤n a 2l+1 z n-k(l) , ( 12 
)
where z is defined by ( 9).

After applying Lemma 2 to P 1 (z) = a 0 z n and P 2 (z) = 0≤2l+1≤n a 2l+1 z n-k(l) in ( 12), we obtain from ( 12) that z ≤ d 2 for some positive d 2 . Since n is odd, this implies z n ≤ d n 2 and the upper bound in (1) follows. It remains only to prove the lower bound in (1) for n = 2m + 1. In this case, we leave in (5) only the summands with even k and k = n, thus getting

0≤2k<n a 2k E b dW 2n-4k b 2 ds 2k -a n E b 2 ds n ≥ 0 . (13) 
Analogously to our previous derivations, this implies the inequality 0≤2k<n a 2k z n-2k -a n ≥ 0 , i.e.

P (z) := 0≤2k<n a 2k z n-2k ≥ a n , (14) 
where z is again as in (9). Since P (z) is a polynomial of the form

m i=1 b i z 2i+1 , it easily follows that (14) is equivalent to z ≥ C 1 for some constant C 1 = C 1 (n) > 0. Therefore, z n ≥ C n
1 , and the lower bound in (1) is proved for n = 2m + 1.
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Possible extensions

As an immediate extension of the above result, we prove the following more general theorem. This will not be the most general framework where the B-D-G inequality holds or where our approach could work; we decided to stick to the stochastic integrals version for uniformity of presentation.

Theorem 2. Let a real process (M (s)) s≥0 be a locally square integrable martingale and M be its quadratic variation process. Let b(s), s ∈ [0, t], be a bounded progressively measurable process, b ∈ L loc 2 [0, T ], t ≤ T . Then for every n ≥ 2 there exists constants

C 1 > 0, C 2 > 0 such that C 1 E t 0 b 2 (s) d M (s) n ≤ E t 0 b(s) dM (s) 2n ≤ C 2 E t 0 b 2 (s) d M (s) n . (15) 
The constants C 1 and C 2 depend on n, but not on the processes b and M .

Proof. (Theorem 2). Let us write again

ρ 2n (t) = H 2n t 0 b 2 (s) d M (s) , t 0 b(s) dM (s) = 0≤k≤n (-1) k a k b dM 2n-2k b 2 d M k , (16) 
where H 2n is the 2n-th Hermitian polynomial. By Theorem 29, pp. 75-76 of [START_REF] Protter | Stochastic integration and differential equations[END_REF], we have

b dM = b 2 d M .
From Theorem 5.1 on p. 152 of [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF], we again see that E ρ 2n = 0. Therefore, the proof of Theorem 1 can be directly transferred to the present situation. In the above proof we have used only some elementary and entirely qualitative facts about certain general types of polynomials, together with such a crude technique as simple throwing out every second term in the martingale identity (5). Nontheless, we were able to prove a rather general Burkholder-Davis-Gundy theorem. This suggests that our approach can lead to substantially stronger results in estimation of stochastic integrals with respect to Brownian motion, if we could incorporate in our method the existing quantitative estimates for roots of Hermitian polynomials. Indeed, as was shown in [START_REF] Davis | On the L p norms of stochastic integrals and other martingales[END_REF], for p = 2n,

where n is an integer, the best values for C 1 and C 2 in Theorem 1 are l 2n 2n and r 2n 2n respectively, where l 2n 2n and r 2n 2n are the smallest and the largest positive roots of the Hermite polynomial H 2n .

Moreover, equation (4) represents only one of the many polynomial-type martingales that can be composed from stochastic integrals. Other important examples are given by the connection between integrals with respect to the Poisson process and Charlier polynomials (see [START_REF] Bertoin | Lévy processes[END_REF]), the connection between integrals with respect to the Gamma process and Laguerre polynomials, and the link between Sheffer polynomials and several classes of Lévy processes. Many examples of such martingales can be found in Schoutens [2000]. It seems plausible that one could modify the method of the present paper and prove estimates for more general stochastic integrals.
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