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Abstract

We prove a functional central limit theorem for the volume of the excursion sets
generated by a stationary and associated random field with smooth realizations.
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1. Introduction

Associated random fields form an important class of dependent systems and
were first introduced in Esary et al. (1967). Their main advantage compared
to mixing systems is that the conditions of limit theorems are easier to ver-
ify. A finite collection X = (X1, . . . , Xn) of real-valued random variables Xk,
k = 1, . . . , n, is called associated if Cov (f (X) , g (X)) ≥ 0 for any coordinate-
wise non-decreasing functions f, g : Rn → R, whenever the covariance exists.
An infinite family of random variables is associated if this is valid for every
finite sub-family. In statistical physics, this property is known as the FKG-
inequalities, see Fortuin et al. (1971). Associated systems are also encountered
in mathematical statistics, reliability theory, random measures and so forth.
Starting with Newman (1980), many limit theorems like CLTs, invariance prin-
ciples, etc. have been proven for associated and related random fields, see
Bulinski and Shashkin (2007) and references therein.

The excursion set of a random field X at the level a ∈ R is the random set{
t ∈ Rd : Xt ≥ a

}
. Excursion sets of stationary random fields attract growing

attention because of their applications to the modeling of various random struc-
tures, see Azäıs and Wschebor (2009), Bulinski et al. (2011). It is natural to
consider the volume of excursion sets determined by levels a ∈ R in a bounded
observation window as a random process and to study its limit behaviour as
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the window size grows. The aim of the present paper is to provide a functional
central limit theorem for the volume of excursion sets generated by stationary
associated random fields.

First, we introduce some notation. Let X be a real-valued, strictly sta-
tionary, square-integrable, associated random field in Rd with a.s. continuous
trajectories such that the components Xt have density bounded by M < ∞.
Further, assume that for some c0 > 0 and some λ > 9d it holds that

|Cov (X0, Xt)| ≤ c0 (1 + ‖t‖∞)−λ
, (1)

where ‖·‖∞ denotes the maximum norm. The latter condition concerning the
decay of the covariance function is rather technical. For n ∈ N and a ∈ R,
denote by

Yn (a) =
1

nd/2

(
ν
({

t ∈ [0, n]d : Xt ≥ a
})

− ndP (X0 ≥ a)
)

the centered and normalized volume of the excursion set of the field X in the
set [0, n]d at the level a, where ν (·) denotes the Lebesgue measure in Rd.

2. Main Result and Proof

Theorem 1. Under the assumptions above, the distributions of the random
processes {Yn}n∈N converge in the Skorokhod space D (R) , as n → ∞, to the
distribution of the centered Gaussian process Y with covariance function

Cov (Y (a) , Y (b)) =
∫

Rd

(P (X0 > a, Xt > b)− P (X0 > a) P (X0 > b)) dt.

Remark 1. A Gaussian random field is associated whenever its covariance
function is nonnegative (Bulinski and Shashkin, 2007, Theorem 1.2.1). So, the
theorem holds for stationary Gaussian fields with exponentially decreasing cor-
relations. Another important example is an autoregression field with positive
dependence, i.e. it has a density, though the innovations can be discrete random
variables.

Remark 2. In general it is possible that the conditions on the field X are
satisfied but the trajectories of Y are not continuous. Consider for example
a strictly stationary associated sequence Z = (Zn, n ∈ Z) such that Z0 has
bounded density and the covariance function decreases exponentially, for ex-
ample Z could be Gaussian. For t ∈ [n− 1/3, n + 1/3] \ {n}, define Zt = Zn

and on [n + 1/3, n + 2/3], define Zt by linear interpolation, here n ∈ Z. Then
let U ∼ U (0, 1) be independent of Z. The random process Xt = Zt+U then
satisfies the conditions of the theorem but the corresponding trajectories of Y
have jumps.

For any a, b ∈ R we have E (Y (a)− Y (b))2 ≤ K |b− a|1−3d/λ, where the
constant K depends on d, c0, λ, and M . Hence we get the following Large
Deviation Principle from Theorem 1 and (Piterbarg, 1996, Theorem 2.8.1).
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Corollary 1. Let T ⊂ R with ν (T ) > 0 and let X be such that Y is a.s.
continuous. Then there exists a constant C (depending only on d, c0, λ, and
M) such that for any S ⊂ T

P
(

max
a∈S

|Y (a)| > u

)
≤ Cν (T )u2dλ/(λ−3d)Ψ

(
u/ sup

a∈S

√
Var (Y (a))

)
,

as u → ∞, where Ψ denotes the tail probability function of the standard Gaus-
sian distribution.

If the random field X is Gaussian, even the exact asymptotic behavior of
the probability of high excursions of Y can be given due to Theorem 1 and
Talagrand (1988).

Corollary 2. Let T ⊂ R with 0 ∈ T and, additionally to the conditions above,
let X be Gaussian. Then

lim
u→∞

P (supa∈T Y (a) ≥ u)

Ψ
(
u/
√

EY 2 (0)
) = 1.

Note that the second moment of Y (0) is given by

EY 2 (0) =
1
2π

∫
Rd

arcsin (Corr (X0, Xt)) dt,

where Corr (X0, Xt) denotes the correlation coefficient of X0 and Xt.

To prove Theorem 1, we start with two auxiliary lemmas. To formulate
the first one, let a, b ∈ R with a < b. Define the function ϕa,b : R → R by
ϕa,b (x) = 1 (a < x ≤ b) − P (a < X0 ≤ b) where 1 : R → {0, 1} denotes the
indicator function. For ε > 0, let ϕa,b,ε : R → R be a continuous approximation
of ϕa,b which is linear on the intervals [a− ε, a] and [b, b + ε] and coincides with
ϕa,b outside these intervals. Clearly, ϕa,b,ε has Lipschitz constant 1/ε.

Lemma 1. Let T = {t1, . . . , tk} be a set of distinct points in Rd and let T1∪T2 =
T be a partition of T , i.e. T1 6= ∅, T2 6= ∅ and T1 ∩ T2 = ∅. Then it holds that

Cov

(∏
t∈T1

ϕa,b (Xt) ,
∏

s∈T2

ϕa,b (Xs)

)
≤
(

k2

4
+ 8Mk

)
c
1/3
0 (1 + r)−λ/3

where r := min {‖t− s‖∞ , t ∈ T1, s ∈ T2} is the distance between T1 and T2.

3
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Proof. One has

Cov

(∏
t∈T1

ϕa,b (Xt) ,
∏

s∈T2

ϕa,b (Xs)

)
= Cov

(∏
t∈T1

ϕa,b,ε (Xt) ,
∏

s∈T2

ϕa,b,ε (Xs)

)

+ E

(∏
t∈T1

ϕa,b (Xt)

(∏
s∈T2

ϕa,b (Xs)−
∏

s∈T2

ϕa,b,ε (Xs)

))

+ E

((∏
t∈T1

ϕa,b (Xt)−
∏
t∈T1

ϕa,b,ε (Xt)

) ∏
s∈T2

ϕa,b,ε (Xs)

)
(2)

+ E
∏
t∈T1

ϕa,b (Xt)

(
E
∏

s∈T2

ϕa,b,ε (Xs)− E
∏

s∈T2

ϕa,b (Xs)

)

+

(
E
∏
t∈T1

ϕa,b,ε (Xt)− E
∏
t∈T1

ϕa,b (Xt)

)
E
∏

s∈T2

ϕa,b,ε (Xs) .

By the quasi-association inequality (Bulinski and Shashkin, 2007, p. 89) and
the covariance condition (1), we have

Cov

(∏
t∈T1

ϕa,b,ε (Xt) ,
∏

s∈T2

ϕa,b,ε (Xs)

)

≤ 1
ε2

∑
t∈T1

∑
s∈T2

Cov (Xt, Xs) ≤ k2c0

4ε2
(1 + r)−λ

.

Each of the other four summands in (2) is bounded by 2Mkε, since the density of
Xt does not exceed M . Hence, the Lemma follows with ε = c

1/3
0 (1 + r)−λ/3.

In what follows, K is a positive number which depends on d, c0, λ, and M
only and also may change from line to line.

Lemma 2. For any a, b ∈ R with 0 < a < b < 1, it holds that

E (Yn (a)− Yn (b))4 ≤ K

(
(b− a)1−9d/λ

nd
+ (b− a)2−6d/λ

)
.

Proof. To shorten the notation, denote t = (t1, t2, t3, t4) ∈ [0, n]4d. By Fubini’s
theorem, it holds that

E (Yn (a)− Yn (b))4 =
1

n2d

∫
[0,n]4d

E
4∏

i=1

ϕa,b (Xti) dt.

This integral is split into three parts and each one is estimated separately. For
that, define the function h : [0, n]4d → R by

h (t) = max
Q⊂{1,2,3,4}

min
i∈Q
j /∈Q

‖ti − tj‖∞ .

4
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The distance between two sets Q and Q̃ (in the supremum norm) is denoted by
d∞(Q, Q̃) where we put d∞ (Q, ∅) = 0. Let c > 1 be a number to be specified
later. The sets

A1 =
{
t ∈ [0, n]4d : h (t) ≤ c

}
, A2 =

{
t ∈ [0, n]4d : h (t) ≥ c and |Q∗

t | = 1
}

,

and A3 = [0, n]4d \ (A1 ∪ A2) form a partition of [0, n]4d, where

Q∗
t = argmax

Q⊂{1,2,3,4}
min
i∈Q
j /∈Q

‖ti − tj‖∞ .

We define

Ij =
1

n2d

∫
Aj

E
4∏

i=1

ϕa,b (Xti) dt.

For A1, it holds that ν (A1) ≤ nd (3c)3d. Hence, by the Cauchy-Schwarz in-
equality we get I1 ≤ K (b− a) c3d/nd.

For I2, w.l.o.g. let Q∗
t1,t2,t3,t4 = {t1} in the definition of the set A2. Then,

by Lemma 1, it holds that

I2 ≤ K

n2d

∫
A2

(1 + d∞ ({t1} , {t2, t3, t4}))−λ/3
dt.

We can assume in the following that not all distances between pairs of points
are equal. Further, w.l.o.g., we assume that

d∞ ({t1} , {t2, t3, t4}) = ‖t1 − t2‖∞ ≤ min {‖t1 − t3‖∞ , ‖t1 − t4‖∞} .

One of the points t3, t4 belongs to the ball (in supremum norm) with radius
‖t1 − t2‖∞ centered at t2. Say, it is t3, then t4 in turn belongs to the union of
balls of radius ‖t1 − t2‖∞ centered at the points t2 and t3. Thus

I2 ≤ K

n2d

∫ ∫
(t1,t2)∈[0,n]2d

‖t1−t2‖∞≥c

(1 + ‖t1 − t2‖∞)−λ/3 ‖t1 − t2‖2d
∞ dt1dt2

≤ K

nd

∫ ∞

c

(1 + r)−λ/3 r2drd−1dr ≤ K

nd
c3d−λ/3.

For I3 we consider only points for which Q∗
t1,t2,t3,t4 = {t1, t2} in the definition

of A3. Then it holds that

I3 =
1

n2d

∫
A3

Cov

(
2∏

i=1

ϕa,b (Xti) ,

4∏
i=3

ϕa,b (Xti)

)
dt

+
1

n2d

∫
A3

E
2∏

i=1

ϕa,b (Xti) E
4∏

i=3

ϕa,b (Xti) dt = J1 + J2.

5
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The integral J1 is estimated in the same way as I2 yielding J1 ≤ Kc3d−λ/3/nd.
J2 is estimated with the help of Lemma 1. By the Cauchy-Schwarz inequality
we get

J2 ≤ K

n2d

 ∫ ∫
(t1,t2)∈[0,n]2d

(b− a) ∧ (1 + ‖t1 − t2‖∞)−λ/3 dt1dt2


2

,

where x ∧ y = min {x, y} The double integral can be bounded by∫ ∫
(t1,t2)∈[0,n]2d

(b− a)∧(1 + ‖t1 − t2‖∞)−λ/3 dt1dt2 ≤ (b− a) (2nγ)d+ndκd
γd−λ/3

λ/3− d
,

with some γ > 1. Choosing γ = (b − a)−3/λ yields J2 ≤ K (b − a)2−6/λ. The
lemma follows by minimization in c.

Finally, we turn to the proof of Theorem 1.

Proof of Theorem 1. The convergence of the finite-dimensional distributions fol-
lows from the CLT for associated random fields by standard arguments. It is
proved in a recent paper (Bulinski et al., 2011, Theorem 2). As for the tightness,
is is enough to prove it for the restriction of the processes Yn onto an arbitrary
segment. W.l.o.g. we use the segment [0, 1]. Note that for a1, a2 ∈ R with a1 <
a2, b ∈ (a1, a2) and n ∈ N one has estimates Yn (b) ≤ Yn (a1) + Mnd/2 (a2 − a1)
and Yn (b) ≥ Yn (a2)−Mnd/2 (a2 − a1) because Xt has density bounded by M .
This bound allows to replace the supremum with a maximum over a finite set of
points, plus some additional non-random summand. Namely, for any a ∈ [0, 1],
k ∈ N and δ > 0, we have

sup
b∈[a,a+δ]

|Yn (b)− Yn (a)| ≤ max
i=1,...,⌈δk⌉

sup
b∈[a+(i−1)/k,a+i/k]

|Yn (b)− Yn (a)|

≤ max
i=1,...,⌈δk⌉

∣∣∣∣Yn

(
a +

i

k

)
− Yn (a)

∣∣∣∣+ M

k
nd/2.

Then, for any ε > 0, it holds that

P

(
sup

b∈[a,a+δ]

|Yn (b)− Yn (a)| > ε

)

≤ 23

ε4
E max

i=1,...,⌈δk⌉

(
Yn

(
a +

i

k

)
− Yn (a)

)4

+
23

ε4

M4

k4
n2d,

where we used Chebyshev’s inequality.
In the following, let ζ > 0 be a small number and select nd/2+ζ < k =

k (n) < nλd/(3d+λ). With i1, i2 ∈ N, i1 < i2 ≤ δk, from Lemma 2 it follows that

E
(

Yn

(
a +

i1
k

)
− Yn

(
a +

i2
k

))4

< K

(
i2 − i1

k

)2−6d/λ

6
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By the Móricz theorem (Móricz, 1983, Theorem 2), it holds that

E max
j=1,...,⌈δk⌉

(Yn (a + j/k)− Yn (a))4 ≤ K
⌊δk⌋2−6d/λ

k2−6d/λ
≤ Kδ2−6d/λ.

By dividing the unit interval into smaller subintervals of length δ, we get

lim
δ→0

lim sup
n→∞

P

 sup
a,b∈[0,1]
|a−b|<δ

|Yn (a)− Yn (b)| > 2ε


= lim

δ→0
lim sup

n→∞
P

 max
1≤m≤⌊1/δ⌋

sup
a,b∈[(m−1)δ,(m+1)δ∧1]

|a−b|<δ

|Yn (a)− Yn (b)| > 2ε


≤ lim

δ→0
lim sup

n→∞
2δ−1

(
Kδ2−6d/λ +

8
ε4

M4

k4
n2d

)
= 0,

which is the tightness condition in Billingsley (1968, Theorem 15.5).
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