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Abstract

Two preferential attachment type graph models which allow for dynamic addition/deletion of
edges/vertices are considered. The focus of this paper is on the limiting expected degree of a fixed
vertex. For both models a phase transition is seen to occur, i.e. if the probability with which edges
are deleted is below a model specific threshold value, the limiting expected degree is infinite, but if
the probability is higher than the threshold value, the limiting expected degree is finite. In the regime
above the critical threshold probability, however, the behaviour of the two models may differ. For
one of the models a non-zero (as well as zero) limiting expected degree can be obtained whilst the
other only has a zero limit. Furthermore, this phase transition is seen to occur for the same critical
threshold probability of removing edges as the one which determines whether the degree sequence is
of power-law type or if the tails decays exponentially fast.

1 Introduction

During the last decade there has been much interest in the study of large-scale networks. Real
world networks such as the Internet and citation networks have been shown to exhibit power law degree
sequences meaning that the proportion of vertices with degree k decays as k−γ for some γ > 0. The most
famous and maybe the most studied model of real world networks is the preferential attachment model
proposed by Barabási and Albert (Barabási and Albert, 1999) which later was defined and analysed
rigourously by Bollobás et al. (2001). In this model, at each time step, a new vertex is introduced
together with an edge attaching the new vertex to a previous one with a probability proportional to the
degree. This mechanism can be shown to generate a power-law degree sequence with exponent γ = 3,
see Bollobás et al. (2001). For robustness of the model under deletion of vertices/edges, see Bollobás and
Riordan (2003).

In the present paper we analyse two generalisations of the preferential attachment model. The first
model is introduced in Deijfen and Lindholm (2009), a model where edges can be added/deleted dy-
namically over time and the second is introduced in Cooper et al. (2004) where vertices as well as edges
can be added/deleted dynamically. For these models we derive results concerning the evolution of the
expected degree of a single fixed vertex, and in particular, both models reveal a phase transition which
is dependent on the probability of removing edges. That is, if the probability of removing edges is below
a model specific threshold the limiting expected degree is infinite, and if the probability is above the
critical threshold the limiting expected degree is finite (always zero for the model introduced in Cooper
et al. (2004)). For the model of Deijfen and Lindholm (2009), this phase transition occurs at the same
critical edge probability as for the phase transition for the degree sequence, i.e. where the degree sequence
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changes from power-law to exponential decay. Under a certain parametrisation a sub-model of the model
of Cooper et al. (2004) coincides with a certain sub-model of the one treated in Deijfen and Lindholm
(2009) which hence, partially, establishes the same type of phase transition of the degree sequence in
the model of Cooper et al. (2004). Moreover, for the general model of Cooper et al. (2004), under the
restriction of not deleting vertices, the critical edge probability of removing edges which determines the
phase transition of the expected limiting degree of a fixed vertex is obtained. Eventhough the phase
transition of the degree sequence is not treated in Cooper et al. (2004) the results obtained there indicate
that such a phase transition may occur and that the behaviour of the degree sequence is determined by
the same critical edge probability which determines the phase transition of the expected limiting degree
of a fixed vertex.

2 The model of Deijfen and Lindholm

We consider a graph process (G(t))t≥1 consisting of graphs
(
V (t), E(t)

)
. Let vt = |V (t)| and et =

|E(t)|. We will throughout denote the degree of vertex u, born at s ≤ t, at time t by dst (u). Occasionally
we will make use of the notation d•t (u) when we only need to know that a particular vertex u is born
before t.

To initialise the process, we start with G(1) consisting of an isolated vertex with a loop attached to
it. The graph is constructed recursively and at time t+ 1 the possible steps are the following:

1. With probability π1 > 0 a vertex u is introduced with an edge attached to it. The edge is connected
to an existing vertex w with probability proportional to its degree.

2. With probability π2 an edge is added between a vertex chosen proportionally to its degree and
another vertex chosen uniformly at random.

3. With probability π3 = 1− π1 − π2 an edge chosen uniformly is deleted.

If et = 0 two things can occur, either a new vertex with a loop is introduced with probability π1 or with
probability 1− π1 an edge attached to two uniformly chosen vertices is added.

In the following the expected degree of a fixed vertex is studied and it is shown that a phase transition
occurs at πcr3 = 1

3 where the expected degree changes from being infinite to being finite. As mentioned
above, it is shown in Deijfen and Lindholm (2009) that the phase transition in the degree sequence occurs
at the same critical edge probability.

Before we proceed with the computation of the expected degree of a single vertex some auxiliary
results are needed.

2.1 Number of vertices in the graph at time t

Consider the following random variables:

Ii =
{

1, with probability π1,
0, with probability 1− π1.

Hence Ii = 1 corresponds to the addition of a vertex and Ii ∼ Be(π1). Thus, N(t) =
∑t
i=1 Ii ∼ Bin(t, π1)

since all Ii are i.i.d. It is also worth noting that vt =d N(t). Due to the construction of N(t) it also holds
that 1

tN(t) converges a.s. (almost surely) to π1 as t→∞ according to the strong law of large numbers.
Moreover, by using Markov’s inequality together with V ar

(
N(t)

)
= π1(1− π1)t we get that

P{|N(t)− π1t| > t1/2+ε} → 0 as t→∞,

that is, vt = N(t) = π1t(1 + Θ(t−1/2+ε)) a.a.s. (asymptotically almost surely) for any 0 < ε < 1/2.
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2.2 Number of edges in the graph at time t

In order to obtain results on the number of edges in the graph at t it is convenient to make use of
that the edge process can be described as a simple random walk with reflecting barrier at 0. Denote this
process by X0(t) defined by the following transition probabilities

X0(t+ 1) =
{
X0(t) + 1, with probability 1− π3,
X0(t)− 1, with probability π3

(2.1)

if X0(t) ≥ 1 and
X0(t+ 1) = 1, (2.2)

if X0(t) = 0. If the rate of deletion, π3, is greater or equal to 1
2 it holds that

P{et = 0 i.o.} = 1. (2.3)

The case when the rate of deletion, π3, is smaller than 1
2 , corresponds a random walk with reflecting

barrier where all the states are transient with a drift towards +∞. But, due to transience we shall see
that one can use a coupling argument to show that the random walk with reflecting barrier can be well
approximated by a simple random walk, defined below, for large t. To start with, it follows that the
return time to zero at time 2s given that the process is started at zero is given by

p2s
0 := P(X0(2s) = 0|X0(0) = 0) ∼ (4π3(1− π3))s√

πs
,

see e.g. Shiryaev (1996) p. 588. Using this fact it follows that
∑
s≥s0 p

2s
0 ≤ 1√

πs0

∑
s≥s0

(
4π(1 − π3)

)s ≤
C√
s0

(
4π(1−π3)

)s0 ≤
(
4π(1−π3)

)s0 for s0 large. Thus the probability of hitting 0 after time− 2
log(4π3(1−π3))

log n
is

P
{
∃ t ≥ − 2

log (4π3 (1− π3))
log n, et = 0

}
= O

(
1
n2

)
. (2.4)

Thus, combining (2.4) together with the transience of X0 implies that X0 with a high probability will
be in Z+ for large t. Introducing the simple random walk X(t) defined by the transition probabilities in
(2.1) then X0(t) is bounded from below by X(t). This fact together with (2.4) implies that

P
{
|X0(t)−X(t)| ≥ − 2

log (4π3 (1− π3))
log n

}
= O

(
1
n2

)
. (2.5)

Hence, for large t the process X0 will with a high probability be well approximated by X in the sense
defined in (2.5). Moreover, X(t) =

∑t
i=1 Ji where all Ji are i.i.d with

Ji =
{

1, with probability 1− π3,
−1, with probability π3.

Thus E[X(t)] = (1 − 2π3)t which together with the strong law of large numbers yields that X(t)
t →

(1− 2π3) a.s. as t→∞. Then, by using Markov’s inequality together with that V arX(t) = 4π3(1− π3)t
it follows that

P{|X(t)− (1− 2π3)t| > t1/2+ε} → 0 as t→∞, (2.6)

that is, X(t) = (1 − 2π3)t(1 + Θ(t−1/2+ε)) a.a.s. for any 0 < ε < 1/2. Notice that for large t and large
enough values of n the concentration result of (2.5) can be made sharper than the bound in (2.6) and it
hence still holds that

2et = 2(1− 2π3)t
(

1 + Θ
(
t−1/2+ε

))

a.a.s. An important observation is that 2et =
∑
u∈V (t) d

•
t (u). Knowing this together with that vt =

π1t
(
1 + Θ

(
t−1/2+ε

))
holds a.a.s., we can focus on the expected degree of a vertex.
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2.3 Expected degree of a vertex

We first consider the case π3 <
1
2 . When analysing the evolution of the degree of a single vertex it is

important to know when a particular vertex is added to the graph. For s 6= t+ 1 it holds that

E [dst+1(u)− dst (u)|G(t)] = π1
dst (u)∑

w∈V (t) d
•
t (w)

+ π2

(
dst (u)∑

w∈V (t) d
•
t (w)

+
1

vt − 1

(
1− dst (u)∑

w∈V (t) d
•
t (w)

))

− π3
dst (u)
et

(2.7)

and E [dss(u)] := 1. In (2.7) the expression following π1 corresponds to the probability that a new edge
is added to vertex u and the expression following π2 corresponds to the probability that a new edge is
added to u by either choosing u as start or end vertex. The expression following π3 corresponds to the
probability that an edge is deleted from vertex u.

Using the concentration of the sum of the degrees and of the number of vertices combined with (2.7),
we after some simplifications find that

E [dst+1(u)− dst (u)|G(t)] =
1− 3π3

2(1− 2π3)t(1 + Θ(t−1/2+ε))
dst (u)

+
π2

π1t(1 + Θ(t−1/2+ε))

− π2

2π1(1− 2π3)t2(1 + Θ(t−1/2+ε))
dst (u)

holds a.a.s. Averaging over all possible graphs and collecting the Θ(·) terms finally yields

E [dst+1 − dst ] = Kt

(
1− 3π3

2(1− 2π3)t
E [dst ] +

π2

π1t
− π2

2π1(1− 2π3)t2
E [dst ]

)
(2.8)

where we have omitted the dependence on u for notational convenience and where Kt is a constant which
can be made arbitrarily close to 1 by increasing t. By inspecting (2.8) one sees that this expression
essentially is of the form

E [dst+1] =
(

1 +
a

t
− b

t2

)
E [dst ] +

c

t
.

By using this observation the solution to the recursion (2.8) is seen to be given by

E [dst+1] = Ks,t




t∏

i=s

(
1 +

1− 3π3

2(1− 2π3)i

)
+

t∑

i=s

π2

π1i

t∏

j=i+1

(
1 +

1− 3π3

2(1− 2π3)j

)
 (2.9)

where Ks,t is a constant which can be made arbitrarily close to 1 for large enough values of s and t such
that s� t. An asymptotic analysis of (2.9) then yields that

E [dst+1] ∼
(

1 +
2π2(1− 2π3)
π1(1− 3π3)

)(
t

s

) 1−3π3
2(1−2π3)

− 2π2(1− 2π3)
π1(1− 3π3)

(2.10)

holds for large s and t such that s � t, given that π3 6= 1/3 (otherwise E [dst+1] ∼ 1). From (2.10) it is
now straightforward to deduce that
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• if π3 <
1
3 then

lim
t→+∞

E[dst ] = +∞,

regardless of the value of π2.

• if 1
2 > π3 >

1
3 and π2 = 0 then

lim
t→+∞

E[dst ] = 0

and the graph in a way evolves since the set of vertices is renewed.

• if 1
2 > π3 >

1
3 and π2 > 0 then

lim
t→+∞

E[dst ] =
2π2(1− 2π3)
π1(3π3 − 1)

.

It is worth noting that the phase transition in the limiting expected degree is, as expected, observed at
the same critical value as the phase transition for the degree sequence, see Deijfen and Lindholm (2009).

In the case when π3 ≥ 1
2 we start by setting π3 = 1

2 and π1 + π2 = 1
2 , since the other cases follow by

the same principle. From (2.3) we know that for any vertex v born at some time s there exists a time
ti > s with eti = 0 and thus dsti(v) = 0. From time ti it then holds that dst (v), where s < ti ≤ t, is
stochastically dominated by the corresponding degree from the graph process defined by the following
probabilities: 




π∗1 = π1 + δ1,

π∗2 = π2 + δ2,

π∗3 = 1
2 − δ1 − δ2.

For any ε > 0 it hence exists t large and δ1 and δ2 small enough such that

E[dst ] <
2π∗2(1− 2π∗3)
π∗1(3π∗3 − 1)

< ε

and consequently
lim

t→+∞
E[dst ] = 0. (2.11)

3 The model of Cooper, Frieze and Vera

As for the previous model G(1) is the graph consisting of a single vertex together with a loop. The
graph is then constructed recursively and at time t+ 1 the possible steps are:

• With probability π1 a new vertex with an edge attached to it is introduced. This edge is then
attached to an existing vertex with a probability proportional to its degree.

• With probability π2 a new edge is added between two existing vertices where both ends vertices are
chosen with a probability proportional to their degrees.

• With probability π3 an edge chosen uniformly at random is deleted.

• With probability π4 = 1− π1 − π2 − π3, a vertex chosen uniformly at random is deleted.

In the following we only consider the sub case π4 = 0 since every single vertex eventually will be removed
a.a.s. for any positive value of π4. It is also worth noting that if π2 = π4 = 0 the model is identical with
the model of Deijfen and Lindholm with π2 = 0. This together with the results obtained below implies a
possible phase transition in the degree sequence for the model of Cooper et al., i.e. the degree sequence
may change from being of power-law type to having exponentially decaying tails. In what follows the
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critical probability of removing edges which determines the phase tranisition for the expected degree of
a fixed vertex is obtained for the general model. Using the same technique as before we find for π3 <

1
2

that
N(t) = π1t(1 + Θ(t−1/2+ε)) and

∑

w∈V (t)

d•t (w) = 2(1− π3)t(1 + Θ(t−1/2+ε))

a.a.s. for any 0 < ε < 1/2. Focusing on the expected degree of a vertex u born at s we find

E[dst+1(u)− dst (u)|G(t)] = (π1 + 2π2 − 2π3)
dst (u)∑

w∈V (t) d
•
t (w)

=
1− 3π3 + π2

2(1− 2π3)t(1 + Θ(t−1/2+ε))
dst (u)

holds a.a.s. Averaging over all possible graphs and taking care of the Θ(·) terms, we obtain

E[dst+1 − dst ] = K̃t
1− 3π3 + π2

2(1− 2π3)t
E[dst ], (3.12)

where K̃t is a constant which can be made arbitrarily close to 1 by increasing t. For large values of s and
t such that s� t the solution to (3.12) is given by

E[dst+1] ∼
(
t

s

) 1
2

1+π2−3π3
1−2π3

which indicates a phase transition at πcr3 = 1
3 + π2

3 . That is

• if π3 >
1
3 + π2

3 then
lim
t→∞

E[dst ] = 0,

regardless of the value of π2.

• if π3 <
1
3 + π2

3 then
lim
t→∞

E[dst ] = +∞

and the graph in a way evolves, since vertices with no edges will remain edgeless forever.

It is also worth noting that if π3 > 1/3 + π2/3 the expected limiting degree always is zero whilst in
the corresponding situation for the model from Deijfen and Lindholm (2009) it can also attain a finite
non-zero limit depending on the value of π2.
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