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Abstract. Typical cohorts in brain imaging studies are not large enough
for systematic testing of all the information contained in the images. To
build testable working hypotheses, investigators thus rely on analysis
of previous work, sometimes formalized in a so-called meta-analysis. In
brain imaging, this approach underlies the specification of regions of in-
terest (ROIs) that are usually selected on the basis of the coordinates of
previously detected effects. In this paper, we propose to use a database
of images, rather than coordinates, and frame the problem as transfer
learning: learning a discriminant model on a reference task to apply it
to a different but related new task. To facilitate statistical analysis of
small cohorts, we use a sparse discriminant model that selects predictive
voxels on the reference task and thus provides a principled procedure to
define ROIs. The benefits of our approach are twofold. First it uses the
reference database for prediction, i.e. to provide potential biomarkers in
a clinical setting. Second it increases statistical power on the new task.
We demonstrate on a set of 18 pairs of functional MRI experimental
conditions that our approach gives good prediction. In addition, on a
specific transfer situation involving different scanners at different loca-
tions, we show that voxel selection based on transfer learning leads to
higher detection power on small cohorts.

Keywords: Meta-analysis, fMRI, multiple comparison, machine learn-
ing

1 Introduction

Multi-subject or multi-condition experiments are the workhorse of bio-medical
imaging research, whether it be drug development or basic research. Imaging
provides a wealth of information on the biomedical problem at hand. However the
typical sample size is too small to fully exploit this information. For this reason,
investigators often turn to previous studies in order to formulate hypotheses and
restrict the search space, i.e. select a subset of anatomical or functional structures
of interest to the current study. A typical case is that of early-stage clinical
trials, for which the group size is very small, but that are most often based on



previous results concerning the pathology under study. However, understanding
the literature is increasingly difficult and requires a systematic approach, that
takes the form of a meta-analysis, pooling results from multiple experiments that
address a set of related research hypotheses [1].

In particular, brain imaging studies heavily rely on such meta-analyses [2],
as the brain is still an ill-understood and complex organ. In functional Mag-
netic Resonance Imaging (fMRI) studies, typical group sizes range from 10 to 20
subjects, which is not always enough to warrant the reliability of brain-wide anal-
ysis [3]. More importantly, the time that can be spent in the scanner by subjects
is limited, and not all interesting experimental conditions will be acquired.For
this reason, it is common practice to reduce the study to a set of regions of
interest (ROIs) extracted from the literature. Investigators define these ROIs
by extracting locations of peak activations from the literature [4], or from coor-
dinate databases such as BrainMap [5]. While most of these meta-analyses are
conducted on activation coordinates, the increase of data sharing opens the door
to meta-analysis on full brain images which results in higher statistical power [6].
Previous statistical and modeling work on meta-analysis for fMRI has focused
on better modeling of the reference database [2].

In this work, we are interested in the generalization power of meta-analyses on
new data. We introduce a new meta-analysis method using a reference database
of images to guide statistical analysis of a new dataset. In particular we rely on
predictive models, useful to learn biomarkers, and use them to select relevant
voxels in order to increase the statistical power of a new study.

2 Methods

Problem setting We start from a reference database made of | experiments, each
comprising n! contrasts possibly acquired over multiple subjects. We denote
the brain images by X' € R"™P with associated experimental condition y' €
R™. Given a new experiment, denoted target, (X*,y*) € (R""?,R™"), we are
interested in two problems: i) (biomarkers) can we predict y* from X*7 ii)
(inference) can we test hypotheses on the links between y* and X*, for instance
in a linear model? These are ill-posed problems from the statistics standpoint,
as n* < p. The root of the problem is the dimensionality of the data: medical
images are composed of many voxels, typically p ~ 50000 with fMRI. This large
number of descriptors limits statistical inference power due to multiple testing;
a problem that appears in predictive approaches as the curse of dimensionality.
Here, we use our reference database to better condition this statistical problem.

Transfer learning The gist of our approach is to learn on some experiments of our
database (X', y') discriminative models that contain predictive information for
the target experiment (X*,y*). In machine learning, this problem is known as
transfer learning [7]. The underlying assumption of transfer learning is the same
as that for meta-analysis: the reference database should contain some common
information with the target experiment. Here we use a simple form of transfer



learning: we train a linear classifier on an experiment in the database that is
similar from the neuroscientific point of view to the new data, and use it to
predict the labels of the new data.

Selecting predictive features We use a sparse linear classifier, specifically an ¢;-
penalized logistic regression. The motivation behind this choice of classifier is
that it produces a sparse set of weights that can be used to select relevant
voxels. In particular, under certain conditions, the classifier can recover with
high probability the complete set of k features in X that are predictive of y for
a sample size of Ny, = (’)(klog p) [8]. The logarithmic dependence in p is an
appealing property in view of the dimensionality of medical imaging datasets.

In practical situations, it can be hard to control the errors on this feature
selection, in particular as it depends on the choice of the amount of ¢ penalty.
For this reason, Meinshausen and Bithlmann [9] introduce randomized variants
of sparse estimators, that can be seen as sampling the posterior probability of
selection and keeping only features that are selected frequently. In particular,
they establish non-asymptotic recovery results for the randomized lasso, which
consists in applying the Lasso on random subsamples of the data and rescaling
of the regressors. Here, we adapt this strategy to classification as the logistic
regression is locally equivalent to a weighted least square and recovery results
can carry from square-loss regression to logistic regression [8].

We want to use transfer learning to perform screening of the voxels, i.e.
eliminate many voxels that are not related to our target experiment. For this
purpose, we need a low probability of rejecting relevant variables. Each iteration
of the sparse logistic regression in the randomized logistic can select reliably
only kmax = n/logp variables. In the worst case situation, we have k heavily-
correlated variables and one of them is selected at random by the sparse logistic
regression at each iteration. For each of these variables, the probability of select-
ing it less than s times during m iterations of the randomized logistic is given
by the cumulative distribution function of a binomial with per trial success ra-
tio 1/k. If s < m/k, by Hoeffding’s inequality, this probability goes to zero in
o(exp m). In other words, if we impose a threshold 7 = s/m on the selection
frequency, we can recover a group of k correlated variables for 7 < 1/k.

Brain parcellations Although randomization relaxes the conditions on recovery,
a remaining necessary condition is that the regressors of interest, i.e. the values
x; across the subjects of the k predictive voxels, must be weakly correlated?.
Because of the large amount of smoothness present in medical images, in partic-
ular in group-level fMRI contrasts, these conditions cannot be satisfied. Indeed,
values taken by a voxel are very similar to values taken by its neighbors. In
addition, the numbers of subjects used in fMRI are often below the sample size

4 Specifically, the condition for recovery with randomized lasso it is a lower bound on
the conditioning of the sparse eigenvalues of the design matrix [9, theorem 2] and
for sparse logistic regression the corresponding condition is a lower bound on the
eigenvalues of the regressors of interest’s covariance matrix [8, theorem 4].



required for good recovery. For these reasons we resort to feature agglomeration:
using hierarchical clustering to merge neighboring voxels carrying similar infor-
mation into parcels [10]. This strategy brings the double benefit of reducing the
problem size, and thus the required sample size, and mitigating local correlation,
at the expense of spatial resolution.

3 Experiments and Results

3.1 FRMI datasets

We use 3 studies for this meta-analysis. The first study (E1) [11] is composed
of 322 subjects and was designed to assess the inter-subject variability in some
language, calculation, and sensorimotor tasks. The second study (E£2) is similar
to the first one in terms of stimuli, but its data was acquired on 35 pairs of twin-
subjects. The last study (E3) [12] characterizes brain regions in charge of the
syntactic and the semantic processing for the language. It was performed with
40 subjects, 20 of which were stimulated by pseudowords (jabberwocky stimuli)
instead of actual meaningful sentences. All the studies were pre-processed and
analyzed with the standard fMRI analysis software SPM5. The data used for this
work are the statistical images resulting from the intra-subject analyses across
the 3 studies. E1 has 34 contrasts images available, F2 56, and E3 28. The raw
images were not always acquired on the same scanner. E1 has data from a 3T
SIEMENS Trio, and a 3T Brucker scanner; E2 data were acquired on a 1.5T
GE Signa; and F8 images come from the same 3T SIEMENS Trio.

3.2 Experimental results for prediction

Here we are interested in the prediction problem: using transfer learning to dis-
criminate a pair of constrasts with an estimator trained on two other contrasts.

We used 4 different approaches to learn the discriminative models. The first
approach relies on the activation likelihood estimate (ALE) method [13], as this
is a commonly published method for coordinate-based meta-analyses. We extract
the activation positions from the contrasts maps, and then apply a Gaussian ker-
nel. We use the preferred FWHM of 10mm [14]. The other approaches directly
use the contrast images. We name raw contrasts the method based on the con-
trasts voxels values; contrast-specific parcels the method that uses parcels from
the training set: and meta-analystic parcels the method that learns parcels from
the full database. We evaluate on our base of contrasts the ability to do transfer
learning, i.e to learn decision rules that carry over from one situation to another.
Since we must make the assumption that the reference contrasts hold common
information with the contrasts of interest, we do not try out all the possible com-
binations, but rather manually select pairs of contrasts from a single experiment
that form a meaningful classification task (e.g., computation versus reading,
or Korean language versus French language). Out of all the possible combina-
tions, we select 35 pairs of classification task, and subsequently combine them



into 18 transfer pairs, on which it is reasonable to think that the transfer could
occur (e.g., computation and reading in visual instructions, transfer on com-
putation and reading in auditory instructions). We first train a linear classifier
within 6-fold cross validation test on a first set of pairs, setting the penalization
amount by nested cross-validation, we call this step inline learning. We then
re-use the discriminative model on a different pair of contrasts to perform the
transfer learning. The 3 studies containing language related tasks, we can trans-
fer between pairs within an experiment, and across experiments. Among the 18
selected transfer pairs, we find that 9 can give rise to such a transfer. Since a
transfer is directed, we perform it both ways, which yields once again 18 transfer
pairs to test upon. The associated prediction scores from the different methods
are reported in Table 1. The general observation is that ALE yields a poorer pre-
diction performance than any other method. This is true both for the transfer
and inline predictions. We also find that brain parcellations scores similar to the
raw contrasts images, and closer to the inline predictions. We find that while the
contrast-specific parcels and meta-analytic parcels methods do not return the
same parcels, they produce very close results. We can thus use the full database
to learn a single reference parcellation to perform meta-analysis.

3.3 Experimental results for inference

Here we are interested in the inference problem: using transfer learning to help
hypothesis testing on a target dataset. In the following, we only consider a spe-
cific transfer, namely the last line in Table 1: we learn a model discriminating
French native speakers reading French or Korean, and apply it on another exper-
iment in which French subjects had to read French or jabberwocky. This transfer
is interesting as it involves two different experiments acquired on different scan-
ners, and cognitive paradigms that share a similar expression, incomprehension
of visual language stimuli. As can be seen in Table 1, the prediction scores of
transfer learning as well as inline learning on this pair are acceptable although
not excellent: French language and jabberwocky are difficult to separate.

Figure 2 gives the stability scores of the randomized logistic discriminating
reading Korean from reading French for the different set of features —activation
peaks, raw contrasts, parcels learned on the training contrasts or on the full
database. We can see that while learning at the voxel level or at the parcel
level gives similar prediction performance (Table 1), the stability score maps
are very different. At the voxel-level, with 70 subjects (p = 40000, n = 70)
the recovery is limited to approximately 7 voxels without randomization: the
recovery conditions are violated. As a result, the randomized logistic selects only
the most predictive voxels. On the parcels, contrast-specific or meta-analytic
(i.e., learned on the full database), the selection frequency highlights regions of
the brain that are known to be relevant for language comprehension, including
the left anterior superior temporal sulcus and the part of the temporal parietal
junction (Wernicke’s area).

We threshold the stability selection scores of the first experiment (Korean
vs French) to select candidate voxels for the target experiment (jabberwocky vs



French). As we want to perform a rough screening and would rather err on the
side of false detections than false rejections, we take a very low threshold 7 = .01.
Following our analysis above, the size of the largest group of correlated features
that we can detect with such a threshold is on the order of 1/7 ~ 100. With
2000 parcels, this number corresponds to 5% of the brain, i.e. 8000 voxels, and
we can safely consider that no fMRI contrasts is composed of groups of heavily
correlated features larger than this fraction.

On the target experiment, we perform a standard group-level analysis with
the voxels selected, testing for the difference between the two conditions, jabber-
wocky or French reading. We report results with p-values corrected for multiple
comparisons at a given family-wise error rate (FWER) using Bonferroni correc-
tion, and for a given false discovery rate (FDR) using the Benjamini-Hochberg
procedure. On table 2, we compare the number of detections and the detection
rate, i.e. the fraction of voxels detected as significantly different, for a full brain
analysis and for an analysis limited to the voxel selection. We compare our voxel
selection method to a one-way ANOVA, and find that transfer learning outper-
forms the ANOVA for all the cohort sizes. Figure 3 shows the Q-Q plots on
which the Benjamini-Hochberg procedure is applied. We find that voxel selec-
tion by transfer learning improves both the absolute number of detections and
the detection rate for FWER and FDR correction.

4 Conclusion

In this paper, we propose to improve the conditioning and power of statistical
analyses in imaging studies, using a large meta-analytic database.

In a transfer learning scheme, we train on the database sparse discriminative
models that are suited to the target experiment. Not only can the predictive
power of these models can be useful to establish biomarkers, but also they per-
form feature selection that can increase the statistical power of a standard group
analysis on new experiments, provided enough predictive features (voxels) can
be recovered. Using brain parcellations, the discriminative model acts to screen
parcels unlikely to be relevant in the target experiment, thus defining automat-
ically ROIs.

Using a set of 3 fMRI studies related to language, we confirm experimentally
that our transfer learning scheme is able to: i) perform accurate predictions
on experiments acquired on a different scanner and with varying paradigm, ii)
outperform the standard meta-analysis procedures based activation peaks, iii)
increase the statistical power in the target experiment by using the ROIs defined
by the discriminative model.

In this work we manually select the contrast pairs since it is delicate to
interpret a transfer learning score without good knowledge of the cognitive or
clinical conditions under study. Future work will study automatic contrast pairs
selection, e.g. by mining the descriptions of the experiments [4], to address the
problem of synthesizing the ever-growing literature and data in medical research.



Names Peaks Contrasts Parcels Meta parcels

trans. in. |trans. in. [trans. in. |[trans. in.
E1, comp./sent. — E2, comp./sent. 0.75 0.85 0.88 0.97] 0.83 0.96/ 0.83 0.96
E2, comp./sent. — E1, comp./sent. 0.66 0.83] 0.88 0.96| 0.85 0.95( 0.85 0.96
E3, jabb./French (L) — E3, jabb./French (S)| 0.46 0.48 0.65 0.67| 0.62 0.60 0.67 0.62
E3, jabb./French (S) — E3, jabb./French (L) 0.52 0.71| 0.67 0.85 0.71 0.85 0.65 0.79
E3, jabb./French (L) — E2, Korean/French | 0.65 0.46| 0.73 0.79| 0.65 0.81| 0.76 0.85
E2, Korean/French — E3, jabb./French (L) | 0.73 0.81| 0.79 0.85 0.75 0.81| 0.75 0.75

Table 1. Prediction scores for inline and transfer learning. trans.= transfer; in.= inline;
comp.= computation, sent.= sentences (reading), jabb.= jabberwocky; S= sentence
with one word constituents, L= one constituent long sentence.

Fig.1. Prediction performance 0.1— ="
. . o oOk--_-______ é ,,,,,,, I |
relative to the best performing ap- § 9 - T .1 ! I 2 "f
- o . T 0L g =3e-01 1
proach: inline prediction with raw £ § —_0.2-F4 E:l P= ! p=se-01 i
. T @ 1 [
contrasts images: the p-values indi- &g ~93[[]* +. - p= Je'03 p= 69 03]
. o 5 —04F T« p=3e-04 p=6e-03 +
cate whether the associated meth- 2€ —osfp=te0s |
. . ©
ods are significantly poorer than g=-06 @ Transfer ||
. -0.7t == Inli
the best performing method. s ‘ ‘ e
"“Activation  Contrast-specific Meta-analytic Raw
Peaks Parcels Parcels contrasts

Activation peaks Raw contrasts

Fig. 2. Stability scores of the randomized logistic on the Korean versus French predic-
tion of E2 for the different set of features: the colormap represents the frequency at
which a feature, parcel or voxel, was selected. The maps are thresholded at 1%.
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FWER corrected FDR corrected
n*|All voxels [Selection [ANOVA All voxels [Selection ANOVA
10|0 (0%) 0 (0%) [0 (0%) 0 (0%) 0 (0%) 0 (0%)
20(0 (0%) 3 (0.02%) (0 (0%) 0 (0%) 4 (0.027%)| 0 (0%)
40|5 (0.0084%) |33 (0.22%) |2 (0.0014%)[143 (0.97%) (1339 (9%) (201 (1.4%)
Table 2. Number of detections at p < 0.05 for difference cohort size, for transfer
learning and ANOVA. The percentage of detection is indicated in parenthesis.
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