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A BIJECTION PROVING THE AZTEC DIAMOND THEOREM

BY COMBING LATTICE PATHS

FRÉDÉRIC BOSIO AND MARC VAN LEEUWEN

Abstract. We give a bijective proof of the Aztec diamond theorem, stating
that there are 2

n(n+1)/2 domino tilings of the Aztec diamond of order n. The
proof in fact establishes a similar result for non-intersecting families of n+1

Schröder paths, with horizontal, diagonal or vertical steps, linking the grid
points of two adjacent sides of an n× n square grid; these families are well
known to be in bijection with tilings of the Aztec diamond. Our bijection
is produced by an invertible “combing” algorithm, operating on families of
paths without non-intersection condition, but instead with the requirement
that any vertical steps come at the end of a path, and which are clearly
2
n(n+1)/2 in number; it transforms them into non-intersecting families.

1. Introduction

The term “Aztec diamond”, introduced by Elkies, Kuperberg, Larsen and
Propp [EKLP92], refers to a diamond-shaped set of squares in the plane, ob-
tained by taking a triangular array of squares aligned against two perpendicular
axes, and completing it with its mirror images in those two axes; the order of
the diamond is the number of squares along each of the sides of the triangular
array. Their main result concerns counting the number of domino tilings (i.e.,
partitions into subsets of two adjacent squares) of the Aztec diamond.

Theorem 1 (Aztec diamond theorem). There are exactly 2(
n+1
2 ) domino tilings

of the Aztec diamond of order n.

This result has been proved in various manners; the original article alone
gives four different proofs, all closely related to a correspondence that it estab-
lishes between the domino tilings and certain pairs of alternating sign matrices.
Domino tilings of an order n Aztec diamond can be brought into a straight-
forward bijection with non-intersecting families of n + 1 lattice paths between
two adjacent sides of an n × n square grid, using horizontal, diagonal or verti-
cal steps, as is illustrated in figure 1. Using this bijection the Aztec diamond
theorem was proved by Eu and Fu [EuFu05], by translating the enumeration of
non-intersecting families of lattice paths into the evaluation of certain Hankel
matrices of Schröder numbers, which can be shown to give the proper power
of 2 through a clever interplay between algebraic and combinatorial viewpoints.

In this paper we propose another proof of the Aztec diamond theorem in
terms of non-intersecting families of lattice paths. We start by expressing the
number of such families (using the Lindström-Gessel-Viennot method) as a de-
terminant (slightly different from the one of [EuFu05]), which can be evaluated
by purely algebraic manipulations. However we then also give a bijective proof
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Figure 1. A domino tiling of the Aztec diamond of order 20,
and (in green) the corresponding family of 21 disjoint paths

of this enumeration, by giving a reversible procedure that constructs such non-
intersecting families from an array of n(n+1)/2 independent values taken from
{0, 1} (bits). Indeed we use these value to first construct a family of n + 1
(possibly intersecting) paths Pi with 0 ≤ i ≤ n, where there are 2i possibilities
for Pi; then we modify the family by a succession of operations that may inter-
change steps among its paths, so as to ensure they all become disjoint. These
modifications are invertible step-by-step; to make this precise we specify at each
intermediate point of the transformation precise conditions on the family that
ensure that continuing both in the forward direction and in the backward direc-
tion can be completed successfully. As a consequence we obtain the descriptions
of a number of collections of intermediate families of paths, all equinumerous.

Ours is not strictly speaking the first bijective proof of the Aztec diamond
theorem. Indeed the fourth proof of the original paper, though not formulated
as a bijective proof, does give a “domino-shuffling” procedure (which is more
explicitly described in [JPS98, section 2]), with the aid of which one can build
domino tilings of Aztec diamonds of increasing order, in a manner that uses a
net influx of n(n+1)/2 bits of external information (each passage from a tiling
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Figure 2. A random disjoint family of 196 paths

of order i−1 to order i uses i bits), and such that all these bits can be recovered
from the final tiling produced. However, in spite of some superficial similarities,
the procedure we present is quite different in nature. The main differences are
that our procedure operates not on tilings but on families of (possibly inter-
secting) paths, that it proceeds in a regular forward progression rather than
alternating deconstruction, shuffling, and construction steps, and that this pro-
gression involves parts of the final configuration successively attaining their final
state rather than a passage through complete configurations of increasing order.
A more detailed comparison will be given towards the end of our paper. Like
domino shuffling, our algorithm provides a simple and efficient means to produce
large “random” examples of disjoint families of lattice paths as in figure 2 (or of
domino tilings), which illustrate the “arctic circle” phenomenon of [JPS98].

The domino tiling point of view in fact plays no role at all in our construction;
indeed we discovered the known connection with tilings of Aztec diamonds only
after the first author found the bijective proof as one of an enumeration formula
for families of lattice paths. In this paper we shall more or less follow the route by
which we approached the problem, leaving the connection with Aztec diamonds
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aside until the final section. Henceforth n will be the number of paths in a
family, which is one more than the order of the corresponding Aztec diamond.

We give some definitions in section 2, and in section 3 enumerate disjoint
families of lattice paths using a determinant evaluation. In section 4 we give
some illustrations and considerations leading to an informal approach to our
algorithm, followed by a more formal statement and proof in section 5. Finally
we detail in section 6 the bijection between disjoint families of paths and tilings
of the Aztec diamond (a statement other than by pictorial example does not
seem to appear in the literature), and discuss some complementary matters.

2. Definitions

We shall consider paths through points in a square lattice whose basic steps
are either by a unit vector in one of two directions along the axes, or a diagonal
step by the sum of those two vectors. We shall call these Schröder-type paths.
Concretely, since we shall want out paths to connect points on the two borders
of the positive quadrant N×N ⊂ Z×Z, we take our basic steps to be by one of
the vectors (0,+1), (−1,+1) and (−1, 0), and the step will then respectively be
called horizontal, diagonal or vertical. This terminology implies that we think
the first index (or coordinate) varying vertically and the second index varying
horizontally, like in matrices. We shall frequently refer to a set of vertically
aligned points as a “column”; in column k the constant second index is equal
to k. However for visualisation it will be slightly more convenient to have
the first index increase upwards rather than (as in matrices) downwards, so
this is what we shall do. This amounts to using the convention of Cartesian
coordinates, but with the order of these coordinates interchanged.

Definition 2.1. A Schröder-type path from p to q, for points p, q ∈ Z × Z, is
a sequence P = (p0, p1, . . . , pk) with k ∈ N, pi ∈ Z × Z for 0 ≤ i ≤ k, p0 = p,
pk = q, and pi+1 − pi ∈ {(0,+1), (−1,+1), (−1, 0)} for 0 ≤ i < k. The support
of P is supp(P ) = {p0, p1, . . . , pk}.

We denote by ai,j be the number of Schröder-type paths from (i, 0) to (0, j)
(a number also known as the Delannoy number D(i, j)). Then

ai,0 = 1 = a0,j and ai+1,j+1 = ai,j+1 + ai+1,j + ai,j for all i, j ∈N. (1)

Definition 2.2. The infinite matrix of these numbers is A = (ai,j)i,j∈N; its
upper-left n× n sub-matrix is A[n] = (ai,j)0≤i,j<n, for any n ∈ N.

Applying the Lindström-Gessel-Viennot method to the determinant of A[n]

leads to the following kind of families of n Schröder-type paths.

Definition 2.3. If π ∈ Sn is a permutation of [n] = {0, 1, . . . , n − 1}, then we
shall call “π-family” any n-tuple (P0, P1, . . . , Pn−1) where Pi is a Schröder-type
path form (i, 0) to (0, πi) for i ∈ [n]. If π is the identity permutation of [n]
we shall call a π-family simply an “n-family”. A π-family is called disjoint if
supp(P0), supp(P1), . . . and supp(Pn−1) are all disjoint.

A π-family cannot be disjoint unless π is the identity permutation. We shall
use general π-families only in the initial interpretation of det(A[n]): after reduc-
ing its evaluation to counting disjoint families, we shall only deal with n-families.
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Definition 2.4. A Schröder n-family is an n-family (P0, . . . , Pn−1) with the
property that for each i the path Pi does not pass to the side of the origin of the
anti-diagonal line joining its initial and final points: in formula, for each point
(k, l) ∈ supp(Pi) one has k + l ≥ i.

Paths in a Schröder n-family are (similar to) actual Schröder paths. A simple
induction argument shows that any disjoint n-family is a Schröder n-family. In
formulating our bijective proof for the enumeration of disjoint n-families, we
shall employ only Schröder n-families, but which are not necessarily disjoint.
One particular kind of Schröder paths of interest is the following.

Definition 2.5. A Schröder-type path (p0, p1, . . . , pk) from (i, 0) to (0, i) is
called cliff-shaped if pi = (k − i, i), in other words if its first i steps are either
horizontal or diagonal, and any remaining steps are vertical. A cliff-shaped
Schröder n-family is an n-family whose paths are cliff-shaped Schröder paths.

Clearly any cliff-shaped Schröder-type path is a Schröder path; therefore
the qualification “Schröder” in the final clause is automatic. For a cliff-shaped
Schröder path from (i, 0) to (0, i) the first i steps can be chosen independently to
be horizontal or diagonal, after which the remainder of the path is determined;

therefore there are 2i such paths, and 2(
n
2) cliff-shaped Schröder n-families.

3. Enumeration of disjoint Schröder n-families

If we denote the set of π-families by F (π) then we have #F (π) =
∏

i∈[n] ai,πiby

definition of the numbers ai,j, and we can therefore evaluate

det(A[n]) =
∑

π∈Sn

sg(π)
∏

i∈[n]

ai,πi =
∑

π∈Sn

sg(π)#F (π). (2)

Now the Lindström-Gessel-Viennot method says we can replace the latter sum-
mation by its contribution from disjoint families only, since all other contribu-
tions cancel out. Indeed if a π-family (P0, . . . , Pn−1) has any pair of distinct
paths Pi, Pj whose supports have non-empty intersection, one can modify Pi and
Pj by interchanging their parts beyond (in the obvious sense) some point of that
intersection to obtain a π′-family, with π′ = π◦(i j) and hence sg(π′) = − sg(π),
which therefore gives an opposite contribution to the summation. It remains
to make this cancellation systematic, which can be done by fixing a rule that
chooses for every non-disjoint family a pair {i, j} and a point of intersection of
the supports of Pi and Pj , in such a way that the same choices will be produced
for the family obtained after modifying Pi and Pj by the ensuing interchange;
this will ensure one obtains a sign-reversing involution of the set of non-disjoint
families. This rule can be chosen in a multitude of ways (although it is not
entirely trivial to do so, since the modification may change the set of candidate
pairs {i, j} of indices), and leave it to the reader to choose one.

Since a π-family can only be disjoint if π is the identity permutation, we find
that det(A[n]) is equal to the number of disjoint Schröder n-families. On the
other hand this determinant can be easily evaluated recursively using algebraic
manipulations. If n > 0 and E[n] = (δi,j−δi+1,j)i,j∈[n] is the upper unitriangular
n × n matrix with entries −1 directly above the diagonal and zeroes elsewhere
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above the diagonal, then the product A′
[n] = E⊤

[n]A[n]E[n] = (a′i,j)i,j∈[n] has

entries a′i,j that are δi,j if i = 0 or j = 0, and are otherwise given by

a′i,j = ai,j − ai,j−1 − ai−1,j + ai−1,j−1 = 2ai−1,j−1 if i, j > 0, (3)

where the latter equality is a consequence of the recursion relation (1). This
means that A′

[n] can be written in (1, n − 1)× (1, n − 1) block matrix form

E⊤
[n]A[n]E[n] =

(

1 0
0 2A[n−1]

)

if n > 0, (4)

from which, since det(E[n]) = 1, it follows that det(A[n]) = 2n−1 det(A[n−1])
when n > 0, so

det(A[n]) = 2(
n
2) for all n ∈ N. (5)

This proves

Theorem 2. For n ∈ N, the number of disjoint Schröder n-families is 2(
n
2). �

4. Some illustrations, and informal approach to a bijection

In this section we give some illustrations of the problem at hand, and some
considerations and examples that might help appreciate the bijective proof of
theorem 2 that we shall give. Impatient readers may skip to the next section
where this proof is given, and which is independent of the current one. There
the bijection will be formalised in the form of pseudo-code; a computer program
that implements this algorithm, and which was used to prepare the illustrations
in this paper, is available from the website [prog] of the second author.

We shall start by listing all 2(
4
2) = 64 disjoint Schröder 4-families, to give an

impression of the variety these present. They are displayed in figure 3, ordered
by increasing number of non-diagonal steps from bottom(-left) to top(-right).

A first fact that is apparent in this figure is that the number of horizontal
steps (which always equals the number of vertical steps), or by complementa-
tion the number of diagonal steps, follows a (symmetric) binomial distribution

for m = 6 =
(4
2

)

independent trials, as the frequencies are 1, 6, 15, 20, 15, 6, 1
respectively for 0, 1, . . . , 6 such steps. Even more remarkably (if less obviously),
the joint distribution of the number of vertical steps in each of the four columns
(vertical lines of the grid), which we shall call the column counts, is the prod-
uct of independent binomial distributions for m = 0, 1, 2, 3 respectively. The
corresponding statements remain true for the collection of all disjoint Schröder
n-families for any n ∈ N (this will be obtained as a corollary of our bijective
proof). By an obvious symmetry one also has the corresponding statement
for the joint distribution of the number of horizontal steps on each of the four
horizontal lines of the grid (row counts), with m increasing from bottom to top.

One also has a similar statement for joint distribution of what we shall call
inter-column counts, the number of horizontal steps connecting each pair of
successive columns; now m decreases, from n − 1 between the leftmost pair of
columns to 1 between the rightmost pair. This statement can be seen to be
equivalent to the one about column counts, if one uses the duality illustrated in
figure 4; this is a bijection between the set of disjoint Schröder n-families and
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Figure 3. The collection of all disjoint Schröder 4-families

the set of such families transformed by a central reflection sending the origin to
(n− 1

2 , n−
1
2 ) (grid points are mapped to centres of squares of the original grid).

This correspondence is such that halfway on each horizontal or vertical step of
a disjoint n family, the step crosses a vertical respectively horizontal step of the
dual family. By contrast to these facts, the joint distribution of the number of
horizontal (or equivalently vertical) steps in each of the individual paths that
make up a disjoint family does not satisfy any such independence.

Given these observations, one may hope to find a bijection between disjoint
Schröder n-families and triangular arrays of

(

n
2

)

“bits” (values in {0, 1}) in such
a way that, for a certain arrangement of the triangle into columns of length i for
i = 0, 1, . . . , n − 1, the sum of the bits in column j will give the column count
for column j of the corresponding disjoint n-family.

Looking at just the 6 paths with a single horizontal and vertical step, in
the bottom line of figure 3, one sees that the point of intersection of the lines
contining these steps are all different, and form the triangle of all grid points
that are not visited by the paths of the unique 4-family with diagonal steps only
(at the bottom left). This might suggest placing the triangular array of bits on
those grid points, in the hope to find a bijection with disjoint n-families such that
in addition the row sums of these bits give the row counts of the corresponding
n-family. This is easily seen to be impossible though, since the joint distribution
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Figure 4. A disjoint 8-family and (in red) its dual family

of the column counts and row counts of disjoint n-families is different from the
joint distribution of column sums and row sums in such triangular array of bits.
For instance for any c ≤ n there exist disjoint n-families with c horizontal and
c vertical steps, all of them contributing to the same column count respectively
row count; when c ≥ 2 the corresponding situation cannot occur for the column
and row sums of a triangular array of bits. On the other hand it may be checked
in the example that the joint distribution of column counts and inter-column
counts over all disjoint 4-families is precisely that of column sums and row sums
in such triangular array of

(4
2

)

= 6 bits. This suggests that in formulating a
bijection one should prefer to abandon the transposition symmetry, and instead
focus on (say) vertical alignment only. Indeed our bijection will be such that
column counts (of vertical steps) and inter-column counts (of horizontal steps)
can be immediately read off from the triangular bit-array. However, the way
these steps are distributed within their column respectively inter-column space
will not be so easy to read off.

The starting point of our bijection will then be to translate a triangular array
of

(

n
2

)

bits into a cliff-shaped n-family, where line i of the triangle (viewed
in some appropriate direction) determines the cliff-shaped path Pi. For such
families of paths column counts and inter-column counts are defined, just like
for disjoint families; this time one has the particular circumstance that only path
Pi contributes to the column count for column i. So each bit has two associated
indices: that of a path Pi (which also gives the column to which it may contribute
a vertical step), and that of a an inter-column space, from column j to j + 1,
to which it may contribute a horizontal step; the triangle runs through values
0 ≤ j < i < n. There does not seem to be a particularly suggestive way to
view our triangle as positioned in some specific way relative to the n-family; a
somewhat suggestive choice would be to take the set of (midpoints of) horizontal
steps in the “no diagonal steps” n-family (at the top right of figure 3).
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Our main task will then be to find a systematic and reversible way to take any
cliff-shaped n-family and redistribute its horizontal and vertical steps among the
different paths, keeping each of these steps within its inter-column space respec-
tively within its column, so as to obtain a disjoint family. We can give some
heuristic arguments to explain the form that our algorithm will take. For the
redistribution of steps, the vertical steps will play a passive role, since the fact
that within column k they are originally all concentrated in the path Pk makes
that they initially carry very little information. So we shall operate primarily
on the initial parts of cliff-shaped paths, which contain a mix of horizontal and
diagonal steps; whenever we move a horizontal step from one path to another
(exchanging it with a diagonal step), a corresponding vertical step will also be
moved between the paths so as to keep the ending point of that path unchanged.

An important aspect of our “untangling” procedure will be that it operates
essentially on parts of the paths that contain only horizontal and diagonal steps.
Since redistributing vertical steps in column k may move them from path Pk into
paths Pi with i > k, it is practical to so treat columns sequentially by decreasing
value of k, and to leave column k as it is once the vertical steps it contains are
redistributed. In this way we avoid having “polluted” paths with vertical steps
in the columns under consideration, and their parts beyond the column k where
redistribution currently takes place can be ignored by the procedure.

One more property of our procedure may be mentioned here, namely that if
the initial cliff-shaped n-family happens to be disjoint as well, we just leave it as
it is. Although this will involve a vanishingly small fraction of the families as n
increases (notwithstanding the 26 such cases out of 64 for n = 4), the principle
of acting only when clearly needed is an important guide to understanding the
procedure. This brings us to the following setting where action may be required:
we have two successive paths Pi, Pi+1 with i ≥ k, whose parts up to the point
where they enter column k do not contain any vertical steps, but which parts
may intersect. At the point in time where we start considering column k (vertical
steps having been redistributed in all columns beyond it), this situation occurs
for i = k: since Pk cannot have been involved in any of the previous operations,
it is in its initial state, and could be any cliff-shaped path. In particular there
no reason to suppose anything about its position relative to Pk+1. And even
though Pk+1 can have been operated upon, and therefore may be more likely
to have certain forms than others, it certainly can also involve any sequence of
horizontal and diagonal steps before entering column k. Indeed Pk+1 could also
be in its initial state, as would happen if no action at all was required before
considering column k, and as is certainly the case at the very beginning, when
for k = n − 2 we consider the paths Pn−2, Pn−1. So apart from the absence of
vertical steps we cannot assume anything about the first k steps of Pi and Pi+1.
On the other hand we shall assume that in column k only Pi may have vertical
steps initially, and also that beyond column k the paths are already disjoint.

A typical situation is depicted in figure 5; the red path is Pi and the black
one Pi+1. The paths have been truncated to their initial parts relevant to the
task of untangling: path Pi+1 has no vertical steps in column k = 23 and passes
to column k+1, while path Pi does have at least the vertical steps in column k
shown. It may be that Pi continues further downwards (as it will when i = k,
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Figure 5. Initial parts of a pair of paths in need of untangling

since then Pi is cliff-shaped), or it may pass to column k + 1 as well; but if it
does, it must do while staying below Pi+1.

Since the paths depicted first meet in column 4, the principle to act only when
needed suggests leaving everything up to column 3 intact. We might then avoid
the collision in column 4 either by taking a diagonal step in Pi or by taking a
horizontal step in Pi+1, but if we want to keep the number of horizontal steps
unchanged, and more precisely the number of horizontal steps from column 3 to
column 4, the only (easy) way to achieve this is by making both these changes.
As this transfers a horizontal step from Pi to Pi+1, we shall also need to transfer
a vertical step, in column k. As we shall see below, the latter transfer combined
with the initial absence of vertical steps in Pi+1 is a key point in being able to
reverse the modification(s) made, as it serves as witness for the effort that was
required to make the pair of paths disjoint.

Having “switched step directions” between columns 3 and 4, the remainders of
Pi and Pi+1 are shifted down respectively up by one unit. It might seem that the
next (and only) remaining problem that needs resolving occurs in the passage
to column 15, where the original path Pi rises two units above Pi+1 for the first
time, so that the mentioned remainders meet in spite of the shifts. However,
while switching step directions in the passages to columns 4 and 15 only (and
moving two vertical steps to Pi+1) would succeed in making the paths disjoint,
the result leaves insufficient information to reconstruct the set of steps that were
adjusted, and hence the initial paths. The modified steps cause the new paths
to move apart at a point where they are as close together as they may, but
so do the passages to columns 8 and 12 (in the modified paths), with nothing
to distinguish these cases. Therefore, we shall instead switch directions every
time that the height of Pi above Pi+1 first reaches a new nonnegative value,
which in the example happens for the values 0, 1, 2, 3 when passing respectively
to columns 4, 6, 15 and 23. The result of those four interchanges, and of moving
4 vertical steps from Pi to Pi+1 in column 23, is shown in figure 6.
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Figure 6. Initial parts of the pair of paths untangled

One can view this transformation in terms of a single path ∆ of a new kind,
defined by the “difference” of Pi+1 and Pi: one that makes a down-step whenever
between two columns Pi+1 has a diagonal step and Pi a horizontal one, an up-
step when Pi+1 has a horizontal step and Pi a diagonal one, and a neutral step
when Pi+1 and Pi have the same type of step (in ∆ the two kinds of neutral steps
are distinguished, so that no information is lost). Then Pi and Pi+1 are disjoint
if and only if the maximal depth d beneath its starting level to which ∆ descends
is 0, and we have described a procedure to transform any ∆ into a path with
d = 0, by reversing all down-steps that lead to a new left-to-right minimum.
The procedure is well known in this setting, and in various equivalent guises;
see for instance [vLee10] and references therein. The mapping it defines has the
important property of becoming injective when restricted to paths with a given
initial value of d. This can be seen by viewing the transformation as obtained by
iterating as long as possible the operation of reversing the first down-step that
leads to the globally minimal level (which is initially d); this iteration produces
the reversals from right to left. Each such operation is invertible by reversing
the last up-step starting at the globally minimal level, so given d one can undo
the entire transformation by repeating this inverse operation d times.

The procedure described allows making a pair of successive paths Pi, Pi+1

disjoint up to column k, and is reversible provided that Pi+1 initially had no
vertical steps in that column. Assuming that the paths Pk+1, . . . , Pn−1 have
previously been made disjoint, we can use this procedure to make Pk disjoint
from Pk+1. But since this in general involves moving parts of both paths away
from each other, it may cause Pk+1 to intersect Pk+2 even though they were
disjoint before. In fact one could not expect being able to make Pk, . . . , Pn−1

disjoint so easily: one needs to potentially introduce vertical steps in column k
for all these paths. After all, once this disjointness is obtained, further trans-
formations will no longer change column k, and for each i ≥ k there certainly
exist disjoint n-families in which Pi has one or more vertical steps in column k.
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An obvious idea is then to continue applying the untangling procedure as
long as there are pairs of adjacent paths that intersect. But unless this process
proceeds in a very orderly fashion, it will be problematic to invert, and could
even fail to terminate. Fortunately it turns out that the process is indeed very
orderly: if after untangling Pi and Pi+1 we need to untangle Pi+1 and Pi+2,
then this may cause Pi+1 to “bounce back” towards Pi, but when this happens
the extra space that their initial untangling had produced between Pi and Pi+1

is always sufficient to absorb the displacement of Pi+1, thus avoiding any new
intersection between them. Given this state of affairs, which we shall prove in
the next section, a single sweep of untangling of paths by increasing value of i,
starting at i = k, will suffice. The sweep will end when no new intersections are
produced, which at the very last is bound to happen after untangling the final
paths Pn−2 and Pn−1, if one ever gets to that point.

The succession of intermediate paths families during such a sweep of exe-
cutions of the untangling procedure for increasing values of i is illustrated in
figure 7, with the path Pi for the next such execution in red. In the very last such
execution, the paths are found to be disjoint already and nothing is changed.

Figure 7. One sweep of untangling until disjointness is obtained

To put everything together, it remains to start with a cliff-shaped n-family
determined by a triangular array of

(

n
2

)

bits, and apply the above “sweeps”
distributing vertical steps in column k among the paths, for k = n− 2, . . . , 2, 1.
This process is illustrated in figure 8, showing the transformation of a cliff-
shaped 49-family into a disjoint 49-family in several stages, including the initial
and final ones. To avoid distraction, not yet treated cliff-shaped paths, which
intersect each other and the already “combed” ones, are in light blue.
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Figure 8. Several intermediate phases of combing 49 paths

5. A bijective proof

We shall now formulate a bijective proof of theorem 2, by giving an algo-
rithmically defined bijection between the set of disjoint Schröder n-families and
the set of cliff-shaped Schröder n-families, the latter set having the number of
elements mentioned in the theorem. We shall focus first on the direction from
cliff-shaped to disjoint n-families, where the goal is to remove intersections be-
tween pairs of paths (this is what “combing” in our title refers to). However our
claim that the map so defined is a bijection depends the existence of an inverse
transformation defined for any disjoint n-families, and which defines an inverse
mapping; in this direction the “goal” is to move, for all k, all vertical steps in
column k towards path Pk, where they will appear at the end, so that the paths
become cliff-shaped. Whenever one algorithm transforms a family of one type
into another, the other algorithm applied to the family produced will realise a
step-by-step inverse of the initial transformation.
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Our basic operations, forward and backward, operate on a pair of successive
paths (Pi, Pi+1) in a Schröder n-family (the others are ignored), and depend on
an additional parameter k ≤ i. These paths should have no vertical steps in
columns j < k; the operations will not introduce such steps either. Moreover
they leave each of the paths unchanged beyond column k, so the only way
vertical steps play a role is by a possible transfer between the paths of vertical
steps in column k. The forward operation defines a bijection from the pairs of
such paths for which Pi+1 does not have any vertical steps in column k while Pi

has enough of such steps in a sense to be made precise, to the pairs of such paths
with disjoint supports. In the context where we shall apply the operations, these
conditions will be satisfied, and Pi, Pi+1 will also be disjoint beyond column k.

In what follows the following assumptions are tacitly made: all paths will be
assumed to without vertical steps in columns j < k, the paths Pi and P ′

i are
Schröder paths from (i, 0) to (0, i), and the paths Pi+1 and P ′

i+1 are Schröder
paths from (i+1, 0) to (0, i+1). The absence of vertical steps allows the parts
of such paths up to column k to be viewed as graphs of functions: for δ ∈ {0, 1}
and 0 ≤ j ≤ k, let hδ(j) be the greatest (and unique, unless j = k) value v with
(v, j) ∈ supp(Pi+δ). These functions h0 and h1 are weakly decreasing, and their
value decreases by at most 1 at each step.

For defining the forward operation (and so with the mentioned assumptions
on Pi, Pi+1), put

dj = max{h0(j
′) + 1− h1(j

′) | 0 ≤ j′ ≤ j } for 0 ≤ j ≤ k. (6)

The sequence (d0, d1, . . . , dk) is weakly increasing, and by at most 1 at each
step; it starts with d0 = 0. One will (still) have dk = 0 if and only if the paths
Pi and Pi+1 have disjoint supports up to column k. Now define h′0, h

′
1 by

h′0(j) = h0(j) − dj and h′1(j) = h1(j) + dj for 0 ≤ j ≤ k. (7)

There is at most one pair of paths (P ′
i , P

′
i+1), unchanged from their final points

in column k on with respect to (Pi, Pi+1), that gives rise to (h′0, h
′
1) in the same

way as (Pi, Pi+1) gives rise to (h0, h1). Our operation is defined only when such
(P ′

i , P
′
i+1) exists, and then replaces Pi by P ′

i and Pi+1 by P ′
i+1.

For any j < k, the steps in P ′
i , P

′
i+1 from column j to column j+1 will be of the

same type as the corresponding steps in Pi, Pi+1 respectively, unless dj < dj+1.
By (6), the latter case occurs only in situations where h0(j) = h0(j + 1) and
h1(j) > h1(j+1), in other words when the step from column j to column j+1 is
horizontal in Pi and diagonal in Pi+1. When indeed dj < dj+1, these directions
are interchanged in P ′

i , P
′
i+1: the step from column j to column j+1 is diagonal

in P ′
i and horizontal in P ′

i+1. This situation arises dk times in all. As a result,
P ′
i+1 has (h1(k)+ dk, k) as first point in column k, after which it has dk vertical

steps to reach the point (h1(k), k) where the original path Pi+1 enters column k.
The path P ′

i on the other hand will have dk vertical steps less in column k
than Pi has. The (unique) condition for the existence of (P ′

i , P
′
i+1) then is that Pi

has at least that many such steps to begin with. So we can detail the requirement
alluded to above that Pi have enough vertical steps in column k: we must assume
that it has at least dk such steps, as defined in (6). An equivalent, maybe
more natural, way of stating this requirement is that if we would modify Pi by
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removing all its vertical steps from column k and insert them into column 0
instead (shifting all intermediate steps), then the resulting (Schröder-type but
maybe not Schröder) path would have its support disjoint from that of Pi+1.

It is clear that h′0(j) < h′1(j) for all 0 ≤ j ≤ k, since

h′1(j)− h′0(j) − 1 = h1(j) − h0(j) − 1 + 2dj ≥ dj , (8)

and dj ≥ 0; moreover for j = k one gets that h′0(k) < h′1(k)−dk = h1(k), which
is the first coordinate of the point where Pi+1 enters into column k, and by the
assumption that Pi+1 has no vertical steps in column k, this point is also the
last one of P ′

i+1 in that column. This shows that the supports of P ′
i and P ′

i+1 are
disjoint up to column k inclusive. In fact this inequality shows that these paths
leave at least dj empty places between them in any column j < k, so whenever
dj increases with j, the modified paths are forced to remain further and further
apart. Thus an increase dj < dj+1 not only implies one has a diagonal step
in P ′

i and a horizontal step in P ′
i+1 between columns j and j + 1, but also that

the paths then continue to leave this increased number dj+1 of spaces (or more)
between them, until they enter column k.

The backward operation uses this property to detect the points of increase
of dj from the shape of the paths P ′

i , P
′
i+1 alone (so that it can then reconstruct

(d0, . . . , dk)), but needs to distinguish this situation from one where the original
difference h1(j)−h0(j) increases at j+1 without ever falling back subsequently.
But in the latter case one has dk = dj < h′1(j)−h′0(j) (the equality follows from
“not falling back”, and the inequality from (8)), whereas in the case dj < dj+1

one has instead dk ≥ dj+1 = dj + 1 = h′1(j) − h′0(j) (the final equality holds
because the maximum in (6) must be attained for j′ = j). Therefore one can tell
the two cases apart provided that dk is known. But that is the case: Pi+1 has
no vertical steps in column k, so one can read off dk as the number of vertical
steps of P ′

i+1 in column k.

So we can now formulate the backward operation, which can be applied to
a pair of paths (P ′

i , P
′
i+1) with supports disjoint up to column k inclusive. We

start by defining functions h′0, h
′
1 in terms of respectively P ′

i , P
′
i+1, as before,

and in addition let d be the number of vertical steps of P ′
i+1 in column k; then

define the sequence (d0, d1, . . . , dk) by

dj = min({d} ∪ {h′1(j
′)− h′0(j

′)− 1 | j ≤ j′ ≤ k }) for 0 ≤ j ≤ k. (9)

We then find h0, h1 by using equation (7) in the opposite direction:

h0(j) = h′0(j) + dj and h1(j) = h′1(j)− dj for 0 ≤ j ≤ k, (10)

and finally take (Pi, Pi+1) to be the unique pair of paths, unchanged with respect
to (P ′

i , P
′
i+1) from their final points in column k onwards, giving rise to (h0, h1).

Several easy verifications suffice to see that this backward operation is well
defined. The sequence (d0, d1, . . . , dk) is weakly increasing by at most one at
each step, and satisfies dk = d (since the supports of P ′

i and P ′
i+1 are disjoint

in column k) and d0 = 0 (since the disjointness of the supports of P ′
i and P ′

i+1

in column j gives h′1(j) − h′0(j) − 1 ≥ 0, while h′1(0) − h′0(0) − 1 = 0). All d
vertical steps in column k of P ′

i+1 are absent from Pi+1 but transferred to Pi,
and the steps in Pi and Pi+1 from column j to j + 1 stay of the same kind
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as respectively in Pi and Pi+1 when dj = dj+1, while the steps interchange
directions when dj < dj+1; this establishes the existence of (Pi, Pi+1).

When the pair (P ′
i , P

′
i+1) to which the backward operation is applied was

itself obtained by the forward operation from (Pi, Pi+1), it can be checked that
in the backward operation d = dk, and that the sequence (d0, . . . , dk) is the
same as it was in the forward operation (the condition causing dj < dj+1 in
the backward operation is equivalent to the one for which we argued that it it
characterises dj < dj+1 in the forward operation); in this case the pair obtained
in the backward operation is therefore the original pair (Pi, Pi+1). Conversely,
if the backward operation is applied to any applicable pair (P ′

i , P
′
i+1), then

the forward operation can be applied to the resulting pair (Pi, Pi+1), and it
will reconstruct (P ′

i , P
′
i+1). Again this follows by showing that the forward

operation reproduces the same sequence (d0, . . . , dk) as the backward operation,
as follows. For a maximal interval of consecutive indices j for which during
the backward operation dj has a constant value, say c, one has the relation
h0(j) + 1 − h1(j) = 2c − (h′1(j) − h′0(j) − 1) throughout. Also the maximal
value of this expression is attained for the minimum such j (as well as for the
maximum such j, provided it is less than k). Therefore during the forward
operation, the value of dj from (6) will be constant on such intervals as well.
On the other hand, when dj < dj+1 during the backward operation, one has
h0(j)+1−h1(j) = h0(j+1)−h1(j+1), and together with the constancy result
we just gave this shows that dj < dj+1 during the forward operation as well,
and therefore that (d0, . . . , dk) is reconstructed identically.

Let us resume the description of these basic operations as somewhat more
formalised computational procedures. To that end we need a concrete represen-
tation of the n-families of paths operated upon. We choose a representation that
facilitates handling paths with a varying number of steps, and allows making
evident the simple structure of our operations. An n-family of paths is encoded
by a pair of lower triangular matrices (B,D) indexed by [n] × [n] (recall that
[n] = {0, 1, . . . , n − 1}). The matrix B is strictly lower triangular with entries
in {0, 1}, while D is weakly lower triangular with entries in N. the entry Bi,j

indicates the direction of the step in Pi between column j and j + 1 (a value 0
for horizontal, or 1 for diagonal), and the entry Di,j counts the number of ver-
tical steps of Pi in column j. A cliff-shaped n-family is determined by B alone,
and the forward “combing” algorithm will gradually compute D for the corre-
sponding disjoint n-family from it while updating B to match it. The reverse
“uncombing” algorithm takes a disjoint n-family encoded by B,D and computes
B for the corresponding cliff-shaped n-family from it.

The forward basic operation, which will make paths Pi, Pi+1 disjoint up to
column k ≤ i inclusive, assumes Di,k is already determined, and at the end of
its execution transfers part of its value to Di+1,k (taken to be 0 initially). Its
description in procedure 1 uses local variables cur ∈ Z recording the current
value of h0(j) + 1− h1(j), and d ∈ N recording the maximum of cur so far. In
this pseudo-code ‘←’ denotes assignment of a new value, and we write indices
in square brackets to remind that this describes individually assignable entries.
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untangle(i, k) :
cur← 0, d← 0
for j from 0 to k − 1 do

cur← cur +B[i+ 1, j] −B[i, j]
if cur > d then

d← cur
B[i, j]← 1, B[i+ 1, j]← 0 {interchange directions of steps}

D[i, k]← D[i, k]− d, D[i+ 1, k]← d {transfer d vertical steps to Pi+1}

Procedure 1: Forward operation on paths i, i+ 1 up to column k inclusive

The backward operation in procedure 2 retraces the steps of procedure 1 using
the same local variables cur and d. While the sequence of values of d retraces
those in procedure 1 in reverse order, the values of cur are different: they record
the current value of h′1(j) − h′0(j) − 1 for the functions h′0, h

′
1 corresponding to

the disjoint paths described by the initial values for procedure 2; in particular
cur ≥ 0 throughout the execution. In order to set cur correctly, it assumes
that the values h′0(k) and h′1(k), where paths Pi and Pi+1 respectively enter
column k (which values are not available directly in our encoding), have been
stored beforehand as elements hi, hi+1 of an auxiliary array; these values are
updated to reflect the effect of the operation.

cliffify(i, k) :
d← D[i+ 1, k], cur← h[i+ 1]− h[i]− 1 {0 ≤ d ≤ cur}
D[i+ 1, k]← 0, D[i, k]← D[i, k] + d {transfer d vertical steps to Pi}
h[i + 1]← h[i+ 1]− d, h[i]← h[i] + d {adapt entry point into column}
for j from k − 1 down to 0 do

cur ← cur +B[i+ 1, j] −B[i, j]
if cur < d then

d← cur
B[i, j]← 0, B[i+ 1, j]← 1

Procedure 2: Backward operation on paths i, i + 1 up to column k inclusive

We can now formulate somewhat more formally what was proved above about
the forward and backward operations, as statement about the given procedures.
For conciseness we denote by Pathfam(n) the set of pairs of matrices (B,D)
where B is strictly lower triangular [n]× [n] matrix with entries in {0, 1}, while
D is weakly lower triangular [n]× [n] matrix with entries in N.

The procedures obviously only inspect and alter a small part of these matrices,
but there is no need to make explicit mention of that fact. The fact that, as
we proceed along the path Pi, the level decreases by the values of Bi,j and
Di,j encountered, has as consequence that the inequalities below are in the
opposite direction as the corresponding comparison of the levels of two paths.
Also we have chosen to leave out the respective initial levels i and i+ 1 of the
paths Pi and Pi+1 from the expressions, so when interpreting the inequalities as
comparisons of levels, one should take into account the difference in offset.
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Proposition 5.1. For 0 ≤ k ≤ i < n − 1, procedure 1 defines a bijection, and
procedure 2 defines the inverse bijection, between on one hand the set of pairs
(B,D) ∈ Pathfam(n) satisfying

Di+1,k = 0, and
∑j−1

j′=0
Bi+1,j′ ≤ Di,k +

∑j−1

j′=0
Bi,j′, for 0 ≤ j ≤ k,

and on the other hand the set of pairs (B,D) ∈ Pathfam(n) satisfying
∑j−1

j′=0
Bi+1,j′ ≤

∑j−1

j′=0
Bi,j′ , for 0 ≤ j < k, and

∑k−1

j=0
Bi+1,j +Di+1,k ≤

∑k−1

j=0
Bi,j.

The relations hi′ = i′ −
∑k−1

j=0 Bi′,j for i′ = i, i+ 1 are assumed to hold initially
in procedure 2, and continue to hold after its execution. �

We now build an algorithmic bijection corresponding to theorem 2 by repeated
application of basic operations. The iteration itself is straightforward, although
a bit of work will remain to show that the goal is attained. For a given value
of k, we shall start calling untangle(k, k) to make Pk and Pk+1 disjoint (recall
that Pk does not extend beyond column k), then untangle(k + 1, k) to make
Pk+1 and Pk+2 disjoint up to column k, and so forth up to untangle(n− 2, k) to
make the last two paths Pn−1 and Pn−2 disjoint up to column k. We shall show
that the disjointness obtained in a step is not lost in the following step, so this
iteration will result in paths Pk, . . . , Pn−1 being disjoint up to column k. Placing
the iteration within another iteration, in which k decreases from n− 2 to 0, we
ensure that all paths that extend beyond column k are already disjoint when
this inner iteration starts. Since the parts beyond column k are unaffected by
it, the inner iteration will in fact achieve that Pk, . . . , Pn−1 are entirely disjoint,
and at the end of the outer iteration the whole n-family will be disjoint. Note
that in general applying untangle(i, k) will destroy the disjointness of Pi+1 and
Pi+2 up to column k, which explains why the inner iteration is needed.

Since untangle(i, k) will set the value of Di+1,k for use in the subsequent
untangle(i + 1, k), all that remains to do is to ensure that Dk,k is set correctly
before the inner iteration at k starts; this is easy since the number of final
vertical steps in the cliff-shaped path Pk is equal to its number of horizontal
steps. We obtain the combing algorithm described in procedure 3.

for k from n− 1 down to 0 do

D[k, k]← k −
∑

0≤j<k B[k, j] {initialise diagonal entry}
for i from k to n− 2 do

untangle(i, k)

Procedure 3: Combing algorithm from cliff-shaped to disjoint n-families

A first verification to be made is that the condition of proposition 5.1 is
satisfied whenever untangle(i, k) is invoked. This is clear initially when i = k,

since the initialisation of Dk,k gives that Dk,k+
∑j−1

j′=0 Bi,j′ = k−
∑k−1

j′=j Bi,j′ ≥ j.
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To prove that the inequality is satisfied when i > k, we need the hypothesis that
the paths Pi and Pi+1 were disjoint just before untangle(i− 1, k) was executed.

This means that one has
∑j−1

j′=0Bi+1,j′ ≤
∑j−1

j′=0Bi,j′ for 0 ≤ j ≤ k at the start

of untangle(i − 1, k). If d = Di,k is the final value obtained by this variable

during that execution, then for any such j the value of
∑j−1

j′=0Bi,j′ is decreased

by at most d by the procedure, and since the values Bi+1,j′ are unaffected, one

obtains
∑j−1

j′=0 Bi+1,j′ ≤
∑j−1

j′=0 Bi,j′ + d at the end of untangle(i − 1, k), and

therefore at the beginning of untangle(i, k); this is the condition required.
A reverse (uncombing) algorithm is also easy to formulate. Here both B and D

have well defined values initially, and the only initialisation required is that of
the vector h, which should give the levels at which paths Pi and Pi+1 enter
column k at the point where cliffify(i, k) is invoked, as mentioned in proposi-
tion 5.1. Since procedure 2 takes care of updating the vector h according to
the changes to B it produces, these initialisations are easily integrated into the
uncombing algorithm, which only needs to take care of the passage from column
k − 1 to k. We obtain the algorithm described in procedure 4.

for k from 0 to n− 1 do

for i from n− 1 down to k do

if k = 0 then

h[i]← i {initialise height function for column 0}
else

h[i]← h[i]−B[i, k − 1] {adapt height function to column k}
if i < n− 1 then

cliffify(i, k)

Procedure 4: Uncombing algorithm from disjoint to cliff-shaped n-families

For this algorithm it is easy to see that in the inner loop for k, the condition
of proposition 5.1 is satisfied, provided that the paths Pk, . . . , Pn−1 are disjoint
at the start of the loop. Indeed the condition when calling cliffify(i, k) precisely
requires the disjointness of Pi and Pi+1, and although a preceding cliffify(i+1, k)
may have changed the entries Bi+1,j that describe Pi+1, this can only have
made them smaller, moving Pi+1 away from Pi. In column k the vertical steps
introduced come before the unchanging point where Pi+1 leaves that column, so
this does not endanger disjointness with Pi either. On the other hand it is not
obvious that Pk+1, . . . , Pn−1 are again disjoint at the end of the inner loop (and
of course Pk in general will not be disjoint from them). This brings us to the
main technical verification that needs to be done in order to conclude that we
have described well defined combing and uncombing bijections.

Proposition 5.2. Let Pathfam(n, k) denote the subset of Pathfam(n) of pairs
(B,D) encoding n-families without any vertical steps in any non-final column
before column k (so Di,j = 0 whenever 0 ≤ j < k and j < i < n) and for which
the supports of the paths Pk, . . . , Pn−1 are all disjoint. Then for each k < n,
the inner loop at k of procedure 3 defines a bijection, and the one of procedure 4
defines the inverse bijection, between Pathfam(n, k + 1) and Pathfam(n, k)
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Proof. We have already seen that, when starting in the forward direction from
an element of Pathfam(n, k + 1), the calls untangle(i, k) in the inner loop of
procedure 3 are invoked under the proper conditions: the number of units of Di,k

(vertical steps) that such a call transfers to Di+1,k does not exceed the value
of Di,k at that point. Starting in the backward direction from an element
of Pathfam(n, k), the inner loop of procedure 4 will also invoke the calls of
cliffify(i, k) under the proper conditions, and they will transfer all units from
Di+1,k to Di,k, so that in the end all units of column k of D have been combined
into Dk,k. The only point left to prove is the disjointness of the supports of the
indicated set of paths at the completion of the inner loop, in both directions.
This was assumed and remains unchanged beyond column k, and for column k
the verifications were done in proposition 5.1 (the disjointness in that column
obtained by untangle(i, k) is not endangered by a following untangle(i+ 1, k)).
So only the parts of the paths in columns j < k need to be considered.

It is part of proposition 5.1 that after untangle(i, k) the paths P ′
i and P ′

i+1 have
disjoint supports up to column k, but (if i 6= n− 2) the subsequent application
of untangle(i + 1, k) may move P ′

i+1 in the direction of P ′
i again, and we need

to show that the resulting path P ′′
i+1 nevertheless stays disjoint from P ′

i . Let
as before h0, h1 be the functions describing the initial paths Pi and Pi+1, with
h′0, h

′
1 the ones after modification by untangle(i, k); let h2 similarly describe the

initial path Pi+2, and call the functions obtained after untangle(i+1, k) modifies
h′1 and h2 respectively h′′1 and h′2. Just as untangle(i, k) determines a sequence
(d0, . . . , dk) there is a sequence determined by untangle(i + 1, k) that we call
(e0, . . . , ek); then one has equation (7) and similarly h′′1(j) = h′1(j) − ej , and
h′2(j) = h2(j) + ej for 0 ≤ j ≤ k. From (8) we have h′0(j) < h′1(j) − dj and
we wish to show h′0(j) < h′′1(j) = h′1(j) − ej. It will therefore suffice to show
that ej ≤ dj for 0 ≤ j ≤ k. We shall do so by induction on j; the starting case
e0 = 0 = d0 is trivial, so suppose j > 0. Then the equivalent of (6) for ej can be
written ej = max(ej−1, h

′
1(j) + 1− h2(j)). Now by induction ej−1 ≤ dj−1 ≤ dj ,

while from the hypothesis h1(j) < h2(j) that Pi+1 and Pi+2 are initially disjoint
we get h′1(j)+1−h2(j) = dj +h1(j)+1−h2(j) ≤ dj as well, so indeed ej ≤ dj .

Having shown that the inner loop at k of procedure 3 maps Pathfam(n, k+1)
to Pathfam(n, k), we must also prove that conversely the inner loop at k of
procedure 4 maps Pathfam(n, k) to Pathfam(n, k + 1). The situation is a bit
different, in that the disjointness of Pi+2 and Pi+1 that we need to show (for
k ≤ i < n − 2) is first potentially destroyed by cliffify(i + 1, k), and then must
be restored by cliffify(i, k). We can use the same notation as above, but the hy-
potheses differ: we assume that cliffify(i+1, k) transforms (h′′1 , h

′
2) into (h′1, h2)

while producing (from right to left) a sequence (e0, . . . , ek), and then cliffify(i, k)
transforms (h′0, h

′
1) into (h0, h1) while producing a sequence (d0, . . . , dk). Again

the key point is establishing dj ≥ ej for 0 ≤ j ≤ k, since analogously to (8)
one has h′1(j) = h′′1(j) + ej < h′2(j), and so the condition dj ≥ ej will imply
the desired inequality h1(j) = h′1(j) − dj < h′2(j) − ej = h2(j). This time
we use descending induction on j; the initial case ek ≤ dk is a consequence
of the fact that cliffify(i + 1, k) transfers all ek vertical steps of P ′

i+1 to P ′
i ,

where they contribute to dk. In the induction step we use equation (9) in the
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form dj = min(dj+1, h
′
1(j) − h′0(j) − 1), which allows us to prove dj ≥ ej in

two parts, as before: by induction dj+1 ≥ ej+1 ≥ ej , and since h′′1(j) > h′0(j)
(the hypothesis that the original paths P ′′

i+1 and P ′
i are disjoint) one also has

h′1(j)− h′0(j) − 1 = h′′1(j) + ej − h′0(j) − 1 ≥ ej . This completes the proof. �

We can now state our main result, a bijective version of theorem 2.

Theorem 3. The algorithm of procedure 3 defines a bijection, and the algo-
rithm of procedure 4 defines the inverse bijection, between on hand the set of
cliff-shaped Schröder n-families, encoded by the corresponding strictly lower tri-
angular matrices B with entries in {0, 1}, and on the other hand the set of
disjoint Schröder n-families, encoded by the corresponding pairs (B,D).

Proof. After pairing each B corresponding to a cliff-shaped n-family with the
corresponding diagonal matrix D with diagonal entries Dk,k = k−

∑

0≤j<iBi,k,

the set of cliff-shaped Schröder n-families corresponds to Pathfam(n, n) and the
set of disjoint Schröder n-families corresponds to Pathfam(n, 0). Now proce-
dure 3 realises the composite map

Pathfam(n, n)→ Pathfam(n, n− 1)→ · · · → Pathfam(n, 0) (11)

where the individual maps are the bijections of proposition 5.2, and procedure 4
realises the reverse composition of the corresponding inverse bijections. �

It may be observed that the initial map Pathfam(n, n)→ Pathfam(n, n− 1)
and the final map Pathfam(n, 1)→ Pathfam(n, 0) are in fact identity maps: the
sets of families involved are the same in both cases (with just slightly different
descriptions), namely that of the cliff-shaped n-families respectively that of the
disjoint n-families, and our procedures only perform some administrative actions
without any changes to the paths for k = n− 1 and for k = 0.

6. Some complements and discussion

As we have mentioned in the introduction, and illustrated in figure 1, there
is a bijection between disjoint n-families and tilings of the Aztec diamond of
order n − 1. It is not easy to attribute the discovery of this bijection clearly:
a bijection between families of paths and domino tilings of the Aztec diamond
is first mentioned in [EuFu05], in the proof of their proposition 2.2; however it
is strongly based on a bijection involving single paths that occurs in a slightly
different context, and whose origin goes back to Sachs and Zernitz [SaZe94].
That context is originally that of counting dimer coverings (perfect matchings)
in a graph describing the adjacency of squares in the augmented Aztec diamond,
obtained from an Aztec diamond of order n by replacing the 2 × 2n rectangle
it contains by a 3 × 2n rectangle; each such covering (equivalent to a domino
tiling of the augmented Aztec diamond) turns out to be determined (bijectively)
by a path from source to sink in a particular orientation of the graph that is
illustrated in figure 9. The observation that those paths can be replaced by paths
with three types of steps, two of which are not parallel but at a 45◦-angle with
the corresponding dominoes (our Schröder-type paths), is due to Dana Randall
(unpublished), and is mentioned in [Ciu96] and [Stan99, p. 277 (6.49 a)].
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Figure 9. Directed graph for augmented Aztec diamond, order 4

The illustrations of this phenomenon, like our figure 1, are considered so
convincing that one does not find in the references we cited anything more
precise than a rule how to associate a path family to a tiling, with no attempt
to formulate a proof of bijectivity of the correspondence. Even though the proof
is indeed straightforward, it is worth while to formulate one, as this gives the
occasion to see just how few assumptions about the nature of the context are
used, so that the argument can prove a much more general statement. For this
reason we give here such a statement and its proof.

Proposition 6.1. Let S be a finite subset of Z2, viewed as a set of squares in
the plane, with B = { (i, j) ∈ S | i ≡ j (mod 2) } and W = S \ B its subsets
of black respectively white squares. Define sets E, I,X of vertical edges with a
white square w to their left and a black square b to their right, where E (the
“entries”) is the set of such edges with w /∈W and b ∈ B, the set X (the “exits”)
is that of such edges with w ∈W and b /∈ B, and I (the “interior edges”) is the
set of such edges with w ∈W and b ∈ B; formally (identifying an edge with the
square to its right)

E = { b ∈ B | b− (0, 1) /∈W },

I = { b ∈ B | b− (0, 1) ∈W },

X = { b ∈ Z
2 \B | b− (0, 1) ∈W }.

There is a bijection between the set of domino tilings of S and the set of families
of paths, using steps chosen from {(1, 1, ), (0, 2), (−1, 1)}, such that each entry
in E is connected by some path to an exit in X and vice versa, with paths passing
through elements of I only, and such that each element lies on at most one path.

Finiteness is the only hypothesis made for the set of squares for which domino
tilings are considered (we leave it as an exercise to find where it is used implicitly
in the proof below). This means of course that very possibly no domino tilings
exist at all, and therefore no path families. The most obvious obstruction against
the existence of such tiling is a nonzero balance #B −#W between black and
white squares; this balance is equal to the balance #E−#X between entry and
exit points for the path which clearly must be zero for path families to exist.
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While the expressions for E, I,X in the statement of the proposition identify
vertical edges with a black square to their right with that black square (as an
element of Z2), our proof be in a geometric language that distinguishes them as
different kinds of objects.

Proof. Suppose first that a domino tiling of S is given. We associate to each
domino d of the tiling a pair (e, e′) ∈ (E∪I)×(I∪X), which will serve as a step
in one of the paths of the corresponding family whenever e 6= e′: we take e to be
the left edge of the black square of d, and e′ is the right edge of the white square
of d. Every edge in E ∪ I occurs as e for a unique domino of the tiling, namely
for the domino the contains the square b ∈ B at the right of the edge, and every
edge in I ∪ X occurs as e′ for a unique domino of the tiling, namely for the
domino the contains the square w ∈W at the left of the edge. According to the
four possibilities for the orientation and colouring of a domino, each such pair
(e, e′) either satisfies e = e′, or that e′− e is in the set {(1, 1, ), (0, 2), (−1, 1)} of
allowed steps; therefore by collecting those pairs with e 6= e′ and chaining them
together, we get a family of paths (cycles are of course impossible due to strict
monotonicity of the second coordinate) that has all the stated properties.

Conversely let a family of paths as described in the proposition be given. For
any black square b ∈ B of S, its left edge e belongs to E ∪ I; if e is in I but not
on any path for the family, then the white square w to the left of e is in W and
(w, b) will form a domino of the tiling; otherwise b will form a domino with the
white square to the left of the edge e′ reached from e by one forward step on the
path passing through it. Similarly the right edge e′ of any square w ∈W belongs
to I ∪X, and w is paired either with the black square the right of e′ if e′ ∈ I is
not on any path for the family, or otherwise with the black square to the right
of the edge e reached by going one step back along the path passing through e′.
Clearly this attribution of squares is reciprocal, so one obtains a partition of
S = B ∪W into dominoes. The maps from domino tilings to path families and
vice versa are inverses of each other, by inspection of the definitions. �

We note that a similar result can be proved in the same way for lozenge tilings
of a subset of triangles in a triangular tiling of the plane, and leads to a bijection
with families of disjoint paths in which only two basic steps are allowed.

To apply this proposition to obtain the correspondence between domino
tilings of the Aztec diamond of order n − 1 and disjoint Schröder n-families,
it suffices to apply a linear transformation with matrix 1

2

(1 −1
1 1

)

to the paths, so

as to map their basic steps respectively to (0, 1), (−1, 1) and (−1, 1), and then
shift them to match the required starting and ending points. A small proviso
must be made for the path P0 with 0 steps (our proposition cannot produce such
paths due to E ∩X = ∅): we simply add this path in the proper place, on the
edge that sticks out beyond the two squares at a corner of the Aztec diamond,
which edge may be thought of as part of the configuration even though neither
of the squares it separates belong to the Aztec diamond.

The proposition allows us to understand the qualitative difference between the
problems of tiling the Aztec diamond and the augmented Aztec diamond: the
latter (if properly positioned) gives rise in the path setting to a situation where
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Figure 10. Aztec and augmented diamonds; entries and exits

there is just a single entry and a single exit, whereas for the Aztec diamond of
order n there are n entries and n exits. This is illustrated in figure 10.

From the point of view of domino tilings, the choice to focus on vertical
edges between squares with a black square on their right is an arbitrary one
among four similar possibilities. This means that with one domino tiling one
can associate four different disjoint path families by making different choices,
adapting the direction of the basic steps in paths, as is illustrated in figure 11.
Note that the duality illustrated in figure 4 just expresses the relation between
two of these disjoint path families associated to the same domino tiling, those
using the two possibilities with (after transformation) SW–NE running edges.

In the introduction we mentioned “domino shuffling” as a previously known
method of constructing a domino tiling of the Aztec diamond of order n using

a sequence of n(n+1)
2 bits as input, in an invertible manner. In this aspect our

algorithm is similar to domino shuffling, but a closer comparison show that the
methods are nevertheless quite different.

In domino shuffling a tiling is obtained by constructing tilings Aztec diamonds
of increasing order until the desired order is attained. In passing from one order
to the next, a first step is to remove information from the configuration (a
number of “bad blocks” of two dominoes each are removed), then the remaining
dominoes are shifted by a fixed rule in the direction of one of the corners, those
corners themselves moving outwards so as to enlarge the diamond, and finally
the resulting open space is filled with a choice of “good blocks” of two dominoes
each. The shifting rule simply looks at the type of the domino as is apparent
in figure 11, and moves the domino towards the corner which (in our figure)
contains a domino of the same type; good and bad blocks are pairs of dominoes
that form a 2 × 2 square with a dark respectively light square in the leftmost
corner (again in our figure). Each such block has one of two possible tilings and
therefore represents one bit of information, so the net information that is added
in the expansion from order i−1 to order i is the difference between the number
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Figure 11. Four families of disjoint paths for a single tiling

of good blocks added and the number of bad blocks removed; this amounts to i
fresh bits, independently of those individual numbers.

Although the information contained in the bad blocks can be recycled when
inserting good blocks, this repeated partial deconstruction/reconstruction gives
a certain irregularity of operation to domino shuffling that is an essential aspect
of it. The removal cannot be avoided, because the dominoes of the bad block
would get in the way of the others. The method is based on a representation of
tilings by a pair of alternating sign matrices which differ by 1 in size, and each
of which severely restricts the possibilities for choosing the other; the removal
of the bad blocks corresponds to forgetting the smaller of these matrices while
keeping the other, and the insertion of good blocks to choosing a new alternating
sign matrix one size larger than the one that was kept, forming a new pair. Thus
one works oneself up to ever larger pairs, making sure to keep one matrix, and
thereby the major part of the accumulated information, intact at all times.

Our algorithm is completely different. For one thing, the possibly intersecting
families of lattice paths it operates upon do not correspond to domino tilings at
all. When part of the path family has been made disjoint, this can be translated
into an incomplete tiling with irregular border, but while the integration of
a new path into this part is done by a “sweep” iterating a procedure that is
simple to describe in terms of paths, the description of the corresponding “ripple”
that modifies and extends the incomplete tiling does not appear to be very
easy. Finally, our procedure treats paths by decreasing size, and so uses its bits
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grouped n, n− 1, . . . , 1, which is the opposite order as used in domino-shuffling.
This seems to be an essential aspect of our procedure; we cannot see how it (or
a variant) could be used to expand a disjoint n-family to a disjoint n+1-family
by integrating a new cliff-shaped path with n bits of fresh information.

We conclude by telling how our algorithm was found, which happened without
realising at first any connection with the Aztec diamond theorem. It started
with a question [M.SE11] posed on the online form Math.StackExchange. It
asked for an explanation of the nice evaluation of a the determinant of a ma-
trix with entries defined by a recurrence relation, a slight generalisation of the
matrix A[n] of Delannoy numbers of section 2. One of the answers given (by
“Grigory M”) proposed a combinatorial explanation in terms of counting families
of non-intersecting lattice paths, but failed to complete the argument showing
that this enumeration was given by the proposed formula. The second author,
having came across this question and incomplete answer, was also unable to
find a combinatorial argument, but discussed the problem with the first au-
thor. In this discussion various ideas were attempted, but no bijective proof
was found. The first author eventually came up with the algorithm leading to
bijection presented in this paper, but the details were never discussed to the
point of convincing the second author. several months later that the second au-
thor learned, through a discussion with Christian Krattenthaler, that this lattice
path enumeration was known to be equivalent to the well known Aztec diamond
theorem, but that no quite satisfactory bijective proof of it was known. This led
to renewed interest and discussion between the authors, in the course of which
the details of the algorithm were made sufficiently clear to be implemented in a
computer program. This dispelled any doubt about the validity of the method,
and eventually led to writing the current paper.
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