
HAL Id: hal-00734840
https://hal.science/hal-00734840

Submitted on 24 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraic synthesis of logical controllers with
optimization criteria

Hélène Leroux, Jean-Marc Roussel

To cite this version:
Hélène Leroux, Jean-Marc Roussel. Algebraic synthesis of logical controllers with optimization criteria.
6th International Workshop on Verification and Evaluation of Computer and Communication Systems
VECOS 2012, Aug 2012, Paris, France. pp. 103-114. �hal-00734840�

https://hal.science/hal-00734840
https://hal.archives-ouvertes.fr


Algebraic synthesis of logical controllers with
optimization criteria

Hélène Leroux
LIRMM

161 rue Ada
F-34 095 Montpellier cedex 5, FRANCE

www.lirmm.fr
leroux@lirmm.fr

Jean-Marc Roussel
LURPA, ENS Cachan

61, Avenue du Pt Wilson
F-94235 Cachan Cedex, FRANCE

www.lurpa.ens-cachan.fr
jean-marc.roussel@lurpa.ens-cachan.fr

Formal methods can strongly contribute to improve dependability of logic controllers during design, by
providing means to avoid flaws due to designers’ omissions or specifications misinterpretations. This
communication presents a formal synthesis method whose goal is to obtain the control laws of a logic
system from specifications given in natural language.
The formal framework underlying the method is the Boolean algebra of n-variable switching functions. The
operations and relations of this algebra enable to represent controller specifications formally, to detect
inconsistencies within specifications and to generate control laws with optimization criteria.
The application of this formal design method to an example permits to illustrate its main advantages.

Dependable system, Controller synthesis, Algebraic approaches, Boolean algebra, Optimization

1. INTRODUCTION

Programmable Logic Controllers (PLCs) are fre-
quently used to control safety-critical systems. Since
failure of such systems may have disastrous effects,
the use of formal methods to the software of such
systems is highly desirable (12).

Numerous formal methods have been proposed
during the last two decades. Their goal is either
to detect flaws once the controller is designed or
to avoid flaws during design. The first approach
consists in letting the control system designer
develop control laws based on the requirements
contained in the set of specifications. Then
an automatic analysis is done on the formal
representation of these control laws. Such an
analysis may be carried out by using model-checking
techniques (2) provided that control laws can be
formally represented in the form of state automata
(5), (6), (1). These specifications can also be verified
by theorem-proving (19), (23).

The second approach, qualified as synthesis, aims
at deducing the control laws from the specifications,
without any involvement of a designer (or at least
in limiting it to a strict minimum). To design
logic controllers, several research teams propose
to exploit the Supervisory Control Theory (SCT)

defined by Ramadge and Wonham (18). This
language theory provides a formal framework for
Discrete Event Systems analysis and synthesis. The
starting point of this method is two distinct automata
called Plant and Specification. Synthesis algorithms
automatically generate an optimal Supervisor. It
operates synchronously with the plant to restrict
the language accepted by the plant to satisfy the
specification. Results obtained on complex case
studies (for example, (17)) point out the real potential
of this theory for a high-level description plant model.

However, when the plant model must be very
detailed to take into account all the reaction of
an operative system, the efforts made to obtain a
coherent plant model are often more important than
the efforts made to find a solution by hand. An
example of a plant model with this abstraction level
is presented in (20). To obtain from the Supervisor a
straightforwardly implementable Controller, a model
of the interactions between the Controller and the
Process has to be included in the Plant model.
Indeed it makes the extraction of the Controller
behavior from the Supervisor easier (4). As the
quality of the controller obtained with the SCT
depends on the precision of the plant model, this
approach is not really well-adapted to obtain a
software implementable into a PLC.



The proposed method was specially developed to
get the control law to be implemented into these
controllers. We have chosen to represent these
control laws with recurrent Boolean equations in
order to facilitate implementation aspects and the
formalization of safety requirements. The formal
framework underlying the method is the Boolean
algebra of n-variable switching functions. With
this choice, the formal description of the control
laws obtained at the end of the design can
be easily translated into a program developed in
a standardized language for programmable logic
controllers. The aim of this formal method is indeed
to provide a seamless whole from specifications
analysis to implementation.

This paper is organized as follows. Section 2
describes the objectives and the main principles
of our method. Section 3 presents the formal
framework used and the mathematical results on
which this method is based. Our algebraic synthesis
method with optimization criteria is finally developed
in section 4 thanks to an illustrative example.

2. OBJECTIVE

The proposed method was specially developed
to get the control law to be implemented into
logical controllers from specifications given in natural
language.

The generic model presented Fig. 1, has p Boolean
inputs (ui), q Boolean outputs (yj) and r Boolean
state variables (xl). These inputs and outputs
correspond to the inputs and outputs of the controller
for which the control laws must be designed. The
state variables, used to express the sequential
behavior, will be represented with internal variables
of the controller.

Combinational
system

∆

ui yj/
p

/
q

xl
/
r

{
yj [k] = Fj(u1[k], · · · , up[k], x1[k − 1], · · · , xr[k − 1])

xl[k] = Fq+l(u1[k], · · · , up[k], x1[k − 1], · · · , xr[k − 1])

Figure 1: Generic model of sequential systems expressed
with recurrent Boolean equations

The behavior of this model can be fully defined
according to the definition of (q + r) switching
functions of (p + r) variables. This representation is
very compact as the r Boolean state variables (xl) of

this model permit to represent as far as 2r different
states. The manual definition of these switching
functions has always been a very tedious and
error-prone task (11): the model, proposed Fig. 1,
admits 2p different inputs combinations, can send
as far as 2q different outputs combinations and can
express (22

(p+r)

)(q+r) different sequential behaviors.
That is why different methods based on state model
representations have been rapidly defined (15),
(16). Nevertheless, thanks to mathematical results
obtained for Boolean algebras (22), (3), an automatic
synthesis of these switching functions from their
formal specifications is now possible.

To cope with combinatorial explosion, switching
functions will be handled through a symbolic
representation (and not their truth-tables which
contains 2(p+r) Boolean values). Each input ui and
output yj of the controller will be represented by
the a switching functions: Ui or Yj . To take into
account the recursive aspect of state variables, each
state variable xl will be represented by two switching
functions: Xl (for time [k]) and pXl (for time [k − 1]).
We propose to obtain switching functions Yj and
Xl by solving a Boolean equations system which
represents the formal description of requirements
given by the designer.

The input data of the proposed method (Fig 2) are
informal functional and safety requirements given
by the designer. In practice, these requirements are
most often given in a textual form and/or by using
technical Taylor-made languages (Gantt Diagrams,
Function Blocks Diagrams, Grafcet...).

All the steps of our synthesis method are imple-
mented into a prototype software tool developed in
Python1. The first step is the formalization of require-
ments within an algebraic description. Requirements
expressed with a state model can directly be trans-
lated into recurrent Boolean equations, thanks to the
algorithm proposed by (14). Generic formalization of
some requirements are also proposed for helping the
designer to formalize “standard” requirements given
in textual form (examples are given in Section 4.2).
In case where the know-how of the designer enables
him to build a priori the global form of the solution (or
of a part of the whole solution) it is also possible to
give fragments of solution as requirements (10).

The second step consists in analyzing all the
requirements in order to control if they are consistent
together. In our case, this step is realized by
symbolic calculation on an algebraic formulation
of them. If inconsistencies exist, the conditions to
have them are given to the designer. It will help
1Case studies are available online: http://www.lurpa.ens-
cachan.fr/isa/asc/case studies.html



A
ut

om
at

ic
pr

oc
es

s

Functional or dependable
requirements

Formalization1

Consistency checking2

Inconsistency
conditions

System of equations

Equation solving3

Parametric
solution

Solution choice4

Control laws

Optimization
Criteria

Figure 2: Proposed method for designing logic controllers

him modifying the given requirements. When the
coherence is proved, the formal description of the
requirements becomes a system of equations in
which the searched control laws are the unknowns.

The third step is the synthesis of the control
laws. This step consists in solving the system of
equations representing the coherent requirements.
The obtained results (Theorem 5) allows us to
establish an exact symbolic form for solutions. The
set of solutions is described thanks to a parametric
expression of the solution.

The fourth step of the method is the choice of
a solution by the designer. This step consists in
fixing a specific value for each free parameter. The
designer also has the possibility to complete the
proposed requirements if the synthesized solutions
are unsatisfactory. If our method can prove the
coherence of the requirements, only the designer
can judge whether the requirements are completed
or not by analyzing the synthesized solutions.

To help the designer during this last step, we have
obtained new mathematical results (Section 3.4)
in order to be able to find automatically optimal
solutions according to given criteria. The case study
presented in Section 4 illustrates this fact.

In traditional design methods, the design procedure
of a logic controller is an interactive process
converging to an acceptable solution. At the

beginning, requirements are not complete. New
requirements can be introduced during the search
of solutions. These complementary elements are
given by the designer after an analysis of the
partial solutions or the detection of inconsistencies.
Designing a controller with an automatic synthesis
technique will also be an interactive process on
which the designer plays the leading part. Our
method is based on this interactive process.

3. MATHEMATICAL FOUNDATIONS

This section is composed of four subsections.
The first two regroup some classical results about
Boolean algebras and the Boolean algebra of n-
variable switching functions. Section 3.3 presents
how to solve Boolean equations. Section 3.4
presents unpublished results.

3.1. Boolean Algebra: typical feature

Definition 1 (Boolean Algebra) 2 Let B be a
nonempty set that contains two special elements 0
(the zero element) and 1 (the unity, or one, element)
and on which we define two closed binary operations
+, ·, and an unary operation . Then (B,+, ·, , 0, 1)
is called a Boolean algebra if the following conditions
are satisfied for all x, y, z ∈ B.

x+ y = y + x x · y = y · x Commutative Laws
x · (y + z) = (x · y) + (x · z) Distributive Laws
x+ (y · z) = (x+ y) · (x+ z)

x+ 0 = x x · 1 = x Identity Laws
0 6= 1

It exists many Boolean algebras. The most
known is the two-element Boolean Algebra:
({0, 1},∨,∧,¬, 0, 1).

To avoid confusion between 0 as a Boolean value
and 0 as the zero element of the Boolean algebra B,
Boolean values 0 and 1 will be noted respectively b0
and b1. The set of the two Boolean values b0 and b1
will be noted: B = {b0, b1}.

Definition 2 (Boolean Formula) 3 A Boolean for-
mula (or a Boolean expression) on B is any formula
which represents a combination of members of B by
the operations of +, ·, or .

By construction, any Boolean formula on B
represents one and only one member of B. Two
Boolean formulae are equivalent if and only if they
represent the same member of B.
Later on, a Boolean formula F built with the
members (α1, . . . , αn) of B is denoted F(α1, . . . , αn).
2Definition 15.5 of (7)
3from Section 3.6 of (3)



Theorem 1 (Boole’s expansion of a Boolean formula)
Let (α1, . . . , αn) be n members of B \ {0, 1}. Any
Boolean Formula F(α1, . . . , αn) can be expanded
as:

F(α1, . . . , αn) = F0(α2, . . . , αn)·α1+F1(α2, . . . , αn)·α1

where F0(α2, . . . , αn) and F1(α2, . . . , αn) are
Boolean formulae of only α2, . . . , αn. These two
formulae can be directly obtained from F(α1, . . . , αn)
as follows:

F0(α2, . . . , αn) = F(α1, . . . , αn)|α1←0

= F(0, α2, . . . , αn)

F1(α2, . . . , αn) = F(α1, . . . , αn)|α1←1

= F(1, α2, . . . , αn)

This theorem is an adaptation for Boolean formulae
of the Boole’s expansion theorem initially developed
for Boolean functions. In order to prove it4, it is
sufficient to verify its truthfulness for the elementary
Boolean formulae (0, 1, α1 and αj 6=1) and to verify
its conservation by composition with operations +, ·,
and .

The relation Equality is not the only defined relation
on a Boolean Algebra. It is also possible to define
a partial order relation between members of B. This
relation is called Inclusion-Relation in (3).

Definition 3 (Inclusion-Relation) 5

If x, y ∈ B, define x ≤ y if and only if x · y = x.

Since in any Boolean algebra, x · y = x ⇔ x · y = 0,
we also have x ≤ y ⇔ x · y = 0.

As Relation Inclusion is reflexive (x ≤ x),
antisymmetric (if x ≤ y and y ≤ x, then x = y)
and transitive (if x ≤ y and y ≤ z, then x ≤ z), this
relation defines a partial order between members of
B (Theorem 15.4 of (7)). It is only a partial order as
some elements are not comparable.

3.2. The Boolean algebra of n-variable
switching functions

To avoid confusion between Boolean variables
and Boolean functions of Boolean variables, each
Boolean variable bi will be noted bbi.

Definition 4 (N-variable switching functions) 6

An n-variable switching function is a mapping of the
form

f : Bn → B where B = {b0, b1}
(bb1, . . . , bbn) 7→ f(bb1, . . . , bbn)

4A complete demonstration could be found in (9).
5Definition 15.6 of (7).
6From Section 3.11 of (3).

The domain of a n-variable switching function has
2n elements and the co-domain has 2 elements;
hence, there are 22

n

n-variable switching functions.
Let Fn(B) be the set of the n-variable switching
functions.

Fn(B) contains (n + 2) specific n-variable switching
functions: the 2 constant functions (0, 1), and the
n projection-functions (f iProj). These functions are
defined as follows:

0 : Bn → B

(bb1, . . . , bbn) 7→ b0

1 : Bn → B

(bb1, . . . , bbn) 7→ b1

f iProj : Bn → B

(bb1, . . . , bbn) 7→ bbi

3.2.1. Structure of Boolean Algebra
Fn(B) can be equipped with three closed operations
(two binary and one unary operations):

Op. + : Fn(B)2 → Fn(B)

(f, g) 7→ f + g

Op. · : Fn(B)2 → Fn(B)

(f, g) 7→ f · g

Op. : Fn(B)→ Fn(B)

f 7→ f

where ∀(bb1, . . . , bbn) ∈ Bn,
(f + g)(bb1, . . . , bbn) = f(bb1, . . . , bbn) ∨ g(bb1, . . . , bbn)

(f · g)(bb1, . . . , bbn) = f(bb1, . . . , bbn) ∧ g(bb1, . . . , bbn)

f(bb1, . . . , bbn) = ¬f(bb1, . . . , bbn)

(Fn(B),+, ·, , 0, 1) is a Boolean Algebra. Each of
its member can be represented as a composition of
(f 1Proj, . . . , f

n
Proj, 0, 1) by operations +, · and .

3.2.2. Boolean formula and relations on Fn(B)

As (Fn(B),+, ·, , 0, 1) is a Boolean Algebra, it is
possible to write a Boolean formula of n-variable
switching functions and relations between Boolean
formula of n-variable switching functions.
As a n-variable switching function can always be
defined by its truth-table, relations Equality and
Inclusion can also be presented as follows:

• f and g are equal (f = g) iff the columns
for f , g [in their respective truth-table] are
exactly the same, i.e., ∀(bb1, . . . , bbn) ∈
Bn, f(bb1, . . . , bbn) = g(bb1, . . . , bbn).

• f is included into g (f ≤ g) iff the value of
g is always b1 when the value of f is b1, i.e.,
∀(bb1, . . . , bbn) ∈ Bn, [f(bb1, . . . , bbn) = b0] or
[g(bb1, . . . , bbn) = b1].



3.3. Solutions of Boolean equations over
Boolean algebra Fn(B)

In (3), F. M. Brown explains that many problems in
the application of Boolean algebra may be reduced
to solving an equation of the form

f(X) = 0

over a Boolean algebra B. Formal procedures for
producing solution of this equation were developed
by Boole himself as a way to treat problems of logical
inference. Boolean equations have been studied
extensively since Boole’s initial work (a bibliography
of nearly 400 sources is presented in (22)) Those
works concern essentially the two-element Boolean
Algebra ({0, 1},∨,∧,¬, 0, 1).

In this section, we focus on the Boolean algebra of
n-variable switching functions Fn(B). We consider
a Boolean system composed of m relations among
members of Fn(B) for which k of them are
considered as unknowns.

3.3.1. Canonic form of a Boolean system of k
unknowns over Boolean Algebra Fn(B)
Consider the Boolean algebra of n-variable switching
functions (Fn(B),+, ·, , 0, 1).

• Let (f 1Proj, · · · , f
n

Proj) be the n projection-functions
of Fn(B).

• Let (x1, · · · , xk) be k elements of Fn(B)
considered as unknowns.

For notational convenience, we note ‘Xk ’ the vector
(x1, · · · , xk) of the k unknowns and ‘Proj’ the vector
(f 1Proj, · · · , f

n
Proj) of the n projection-functions of Fn(B).

Theorem 2 (Reduction of a set of relations)
Any set of simultaneously-asserted relations of
n-variable switching functions can be reduced to a
single equivalent relation such as:

F(Xk,Proj) = 0

To obtain this equivalent relation, it is necessary:

• to rewrite each equality according to:

F1(Xk,Proj) =F2(Xk,Proj) ⇔

F1(Xk,Proj) · F2(Xk,Proj)+

F1(Xk,Proj) · F2(Xk,Proj) = 0

• to rewrite each inclusion according to:

F1(Xk,Proj) ≤F2(Xk,Proj) ⇔

F1(Xk,Proj) · F2(Xk,Proj) = 0

• to group together rewritten equalities as
follows:{

F1(Xk,Proj) = 0

F2(Xk,Proj) = 0
⇔

F1(Xk,Proj) + F2(Xk,Proj) = 0

In order to able to write a canonic form for a Boolean
system of k unknowns over Boolean algebra Fn(B),
we introduce the following notation: for x ∈ Fn(B)
and a ∈ {0, 1}, we define xa by

x0 = x x1 = x

This notation is extended to vectors as follows: for
Xk = (x1, · · · , xk) ∈ Fn(B)k and Ak = (a1, · · · , ak) ∈
{0, 1}k, we define XAk

k by

XAk

k =

i=k∏
i=1

xaii = xa11 · . . . · x
ak
k

Theorem 3 (Canonic form of a Boolean equation)
Any Boolean equation Eq(Xk,Proj) = 0 can be
expressed with the canonic form∑

Ak∈{0,1}k
Eq(Ak,Proj) · XAk

k = 0

where Eq(Ak,Proj) (with Ak ∈ {0, 1}k) are the 2k

discriminants7 of Eq(Xk,Proj) according to Xk.

This canonic form is obtained by expanding
Eq(Xk,Proj) according to the k unknowns
(x1, · · · , xk). For example, we have:

Eq(x,Proj) = Eq(0,Proj) · x+ Eq(1,Proj) · x
Eq(x1, x2,Proj) =

Eq(0, 0,Proj) · x1 · x2 + Eq(0, 1,Proj) · x1 · x2
+ Eq(1, 0,Proj) · x1 · x2 + Eq(1, 1,Proj) · x1 · x2

3.3.2. Solution of a single-unknown equation over
Fn(B)
The result presented on the following theorem
was initially obtained for the two-element Boolean
Algebra ({0, 1},∨,∧,¬, 0, 1). A generalization for all
Boolean Algebra can be found in (3).

Theorem 4 (Solution of a single-unknown equation)
The Boolean equation over Fn(B)

Eq(x,Proj) = 0 (1)

for which the canonic form is

Eq(0,Proj) · x+ Eq(1,Proj) · x = 0

7The term of ‘discriminant’ comes from (3).



is consistent (i.e. has at least one solution) if and only
if the following condition is satisfied:

Eq(0,Proj) · Eq(1,Proj) = 0 (2)

In this case, a general form of the solutions is:

x = Eq(0,Proj) + p · Eq(1,Proj) (3)

where p is an arbitrary parameter, i.e, a freely-
chosen member of Fn(B).

This solution can also be expressed as follows:

x = Eq(1,Proj) · (Eq(0,Proj) + p)

= p · Eq(0,Proj) + p · Eq(1,Proj)

The proof of this theorem includes four steps:

• (1) is consistent if and only if (2).

• (3) is a solution of (1) if (2).

• Each solution of (1) can be expressed as (3).

• If (2), the 3 parametric forms are equivalent.

As p is a freely-chosen member of Fn(B), the
proposed parametric forms allows to describe all
the solutions of (1). It should be noted that the
same solution can be described with two different
parameters. To establish a bijection between the set
of solutions and the set of value of the parameter, it
is necessary to impose the following constraint to the
parameter p: p ≤ Eq(0,Proj) · Eq(1,Proj)

3.3.3. Solution of k-unknown equations over Fn(B)
The global result presented in the following theorem
can be found in (22) or (3). However, in those works,
the solution is not expressed with a parametric
form, but with intervals only. The formulation
presented in this communication is more adapted to
symbolic computation and is mandatory to practice
optimization. The proof of this version of this theorem
can be found in (9).

A k-unknown equation can be solved by solving
successively k single-unknown equations. If we
consider the k-unknown equation as a single-
unknown equation of xk, its consistence condition
corresponds to a (k − 1)-unknown equation. The
process can be iterated until x1. After substituting
S(x1) for x1 in the last equation, it is possible to find
the solution for x2. Then, it is sufficient to apply this
procedure again (k− 2) times to obtain successively
the solutions S(x3) to S(xk).

Theorem 5 (Solution of a k-unknown equation)
The Boolean equation over Fn(B)

Eq0(Xk,Proj) = 0 (4)

is consistent (i.e. has at least one solution) if and only
if the following condition is satisfied:∏

Ak∈{0,1}k
Eq0(Ak,Proj) = 0 (5)

When (5) is satisfied, Equation (4) admits one
or more k-tuple solutions (S(x1), · · · , S(xk)) where
each component S(xi) is defined by

S(xi) =
∏

Ak−i∈{0,1}k−i

Eqi−1(0,Ak−i,Proj)

+ pi ·
∏

Ak−i∈{0,1}k−i

Eqi−1(1,Ak−i,Proj)
(6)

where

• Eqi(xi+1, · · · , xk,Proj) =
Eqi−1(xi, xi+1, · · · , xk,Proj)|xi←S(xi)

• pi is a arbitrary parameter, i.e, a freely-chosen
member of Fn(B).

It is important to note that the order in which
unknowns are treated affects only the parametric
form of the k-tuple solution. This is due to the fact
that the same k-tuple solution can be represented
with several distinct parametric form.

3.3.4. Partial conclusions
Thanks to theorems presented in this section, it is
possible to obtain a parametric representation of all
the solutions of any set of simultaneously-asserted
relations with k unknowns if a solution exists.

As the boolean algebra Fn(B) is equipped with a
partial order, the comparison of solutions according
to a given criterion can be envisaged.

3.4. Optimal solutions of Boolean equations
over Fn(B)

The goal is to be able to obtain automatically
the parametric form of the k-tuples solutions of
Fn(B) which satisfy not only a given equation
(Eq(Xk,Proj) = 0) of boolean functions but also
maximize (or minimize) a boolean formula of these
boolean functions (FC(Xk,Proj)) corresponding to
the desired optimization criterion.

Generally speaking, the search of the best solution
tuples according to a given criterion when the
space of solutions is composed of discrete values
is a complex mathematical issue. It is sometimes
necessary to make a side-by-side comparison of
each solution in order to identify the best one.
In our case, this exhaustive method cannot be
used as Fn(B) is only provided by a partial order:
two particular solutions can not always be ordered
between themselves.



Yet it is possible to obtain the researched parametric
form of the k-tuples thanks to the following results:

• When an equation between boolean functions
has one or more solution tuples in Fn(B),
every Boolean formula established from these
Boolean functions can be rewritten thanks to
only projection-functions of Fn(B) and free
parameters of Fn(B) which are describing
these solution tuples.

• Every boolean formula established from
projection-functions of Fn(B) and free
parameters of Fn(B) has an unique maximum
and an unique minimum. These extrema
can be expressed thanks to only projection-
functions of Fn(B).

Hence it is then possible to rewrite the initial problem:
Problem to solve:

Eq(Xk,Proj) = 0

Optimization Criterion:
Maximization of FC(Xk,Proj)

into a 2 equations system to solve{
Eq(Xk,Proj) = 0

FC(Xk,Proj) = FMaxC(Proj)

where

FMaxC(Proj) = Max
{Xk | Eq(Xk,Proj)=0}

(FC(Xk,Proj))

3.4.1. Extrema of a Boolean formula according to
freely-chosen members of Fn(B)
Considering the Boolean algebra of n-variable
switching functions (Fn(B),+, ·, , 0, 1):

• Let (f 1Proj, · · · , f
n

Proj) be the n projection-functions
of Fn(B).

• Let (p1, · · · , pk) be k elements of Fn(B)
considered as freely-chosen members. Let ‘Pk ’
be the corresponding vector.

Any formula F(Pk,Proj) for which Pk are freely-
chosen members of Fn(B) defines a subset of
Fn(B). According to the relation ≤, elements of
this subset can be compared. In this specific case,
the subset defined by F(Pk,Proj) admits a minimal
element and a maximal element.

Theorem 6 (Minimum of a Boolean formula) Any
formula F(Pk,Proj) for which Pk are freely-chosen
members of Fn(B) admits a minimum defined as
follows:

Min
Pk∈Fn(B)k

(F(Pk,Proj)) =
∏

Ak∈{0,1}k
F(Ak,Proj)

Proof: To prove this theorem, it is necessary to
establish that:
a)

∏
Ak∈{0,1}k F(Ak,Proj) is a lower bound of

F(Pk,Proj).
b) It exists at least one specific combination of Pk for
which F(Pk,Proj) =

∏
Ak∈{0,1}k F(Ak,Proj).

To establish a), it is sufficient to prove:∏
Ak∈{0,1}k

F(Ak,Proj) ≤ F(Pk,Proj)

To establish b), it is sufficient to prove that the
following equation admits solution:

F(Xk,Proj) =
∏

Ak∈{0,1}k
F(Ak,Proj)

Details of this proof can be found in (13).

�

Theorem 7 (Maximum of a Boolean formula) Any
formula F(Pk,Proj) for which Pk are freely-chosen
members of Fn(B) admits a maximum defined as
follows:

Max
Pk∈Fn(B)k

(F(Pk,Proj)) =
∑

Ak∈{0,1}k
F(Ak,Proj)

Proof: To prove this theorem, it is necessary to
establish that:
a)

∑
Ak∈{0,1}k F(Ak,Proj) is an upper bound of

F(Pk,Proj).
b) It exists at least one specific combination of Pk for
which F(Pk,Proj) =

∑
Ak∈{0,1}k F(Ak,Proj).

To establish a), it is sufficient to prove:

F(Pk,Proj) ≤
∑

Ak∈{0,1}k
F(Ak,Proj)

To establish b), it is sufficient to prove that the
following equation admits solution:

F(Xk,Proj) =
∑

Ak∈{0,1}k
F(Ak,Proj)

Details of this proof can be found in (13).

�

3.4.2. Solving on optimization problem
Considering the Boolean algebra of n-variable
switching functions (Fn(B),+, ·, , 0, 1):

• Let (f 1Proj, · · · , f
n

Proj) be the n projection-functions
of Fn(B). Let ‘Proj’ be the corresponding
vector.



• Let (x1, · · · , xk) be k elements of Fn(B)
considered as unknowns. Let ‘Xk ’ be the
corresponding vector.

• Let (p1, · · · , pk) be k elements of Fn(B)
considered as freely-chosen members. Let ‘Pk ’
be the corresponding vector.

• Let Eq(Xk,Proj) = 0 be the Boolean equation
to solve.

• Let FC(Xk,Proj) be the Boolean formula of
the given criterion to optimize (maximization or
minimization).

The method we propose, to obtain the parametric
form of the k-tuple of switching functions solution of
Eq(Xk,Proj) = 0 according to the given optimization
criterion FC(Xk,Proj) is composed of five steps:

• The first step consists to establish the
parametric form of the k-tuple solution of
Eq(Xk,Proj) = 0 only, thanks to Theorem 5.

• The second step consists to establish the
parametric form of the given optimization
criterion FC(Xk,Proj) by substituting S(xi) for
xi. Let FSC(Pk,Proj) be the result of this
substitution.

• The third step consists to calculate the ex-
tremum of FSC(Pk,Proj) according to Theorem
6 or Theorem 7. Let FEC(Proj) be the Boolean
formula of this extremum.

• The fourth step consists to replace the given
criterion by the equivalent relation:

FC(Xk,Proj) = FEC(Proj)

• The fifth step consists to establish the
parametric form of the k-tuple solution of the
equivalent problem:{

Eq(Xk,Proj) = 0

FCrit(Xk,Proj) = FExtCrit(Proj)

3.4.3. Partial conclusions
Thanks to the theorems presented in this section, it
is now possible to obtain a parametric representation
of the optimal solutions according to a given criterion,
of any set of simultaneously-asserted relations with
k unknowns if a solution exists.

The proposed method also permits to associate
simultaneously or sequentially several criteria.

• When several criteria are treated simultane-
ously, the equivalent problem obtained can be
incoherent and admits no solution. That is the
case when given criteria are antagonist.

• When several criteria are treated sequentially,
the obtained solutions satisfy given criteria with
a priority order. The first criterion is satisfied
without restriction. The second criterion is used
only to order solutions which satisfy the first
criterion. Therefore, it is possible to obtain
solutions.

An example of optimization with several criteria
treated sequentially is presented in the next section.

4. ALGEBRAIC SYNTHESIS OF LOGICAL
CONTROLLERS WITH OPTIMIZATION CRITERIA

The proposed method is illustrated with the complete
treatment of the synthesis of the control law
of a water distribution system. The system and
its specifications are given in Section 4.1. The
formalization of this problem with the Boolean
algebra of n-variable switching functions Fn(B) is
presented in Section 4.2. The resolution of this
problem with the results presented in Section 3.4
is presented in Section 4.3. The state model of the
obtained control law is given in Section 4.4.

4.1. Control system specifications

The studied system is the controller of a water
distribution system composed of two pumps which
are working in redundancy. The water distribution is
made when it is necessary according to the possible
failures of elements (the pumps and the distributing
system).

4.1.1. Inputs and outputs of the controller
The Boolean inputs and outputs of this controller are
given in Fig. 3. Each pump is controlled thanks to
a Boolean output (‘p1’ and ‘p2’). The controller is
informed of water distribution requests thanks to the
input ‘req’. Inputs ‘f1’ and ‘f2’ inform the controller of
a failure of the pumps and ‘gf’ of the global failure of
the installation. The input ‘Pr’ precises which pump
has priority.

Control of
the water

distribution
system

(Request of water) rq
(Pump1 failure) f1
(Pump2 failure) f2
(Global failure) gf

(Priority to Pump1) pr

p1 (Command of Pump1)

p2 (Command of Pump2)

Figure 3: Inputs and outputs of the controller to design

4.1.2. Expected behavior
The expected behavior of the control system
regarding the application requirements can be
expressed by the set of assertions given hereafter:

• The two pumps never operate simultaneously.



• A pump cannot operate if it is out of order.

• When a global failure is detected, no pump can
operate.

• Pumps can operate only if a water distribution
request is present.

• Pumps operate when it is possible. Priority
is given according to ‘pr’ (Pump1 has priority
when ‘pr’ is true).

• In order to reduce the wear of the pump, it is
necessary to restrict the number of starting of
the pumps.

4.1.3. Control laws to design
Our approach does not permit to identify automati-
cally which state variables must be used. They are
given by the designer according to its interpretation
of the specification. For the water distribution sys-
tem, we propose to use two state variables: one
for each output. According to this choice, we have
two 7-variable switching functions to synthesize. The
generic form of the control law we want to design is:

p1[k] = P1(rq[k], f1[k], f2[k] gf[k],pr[k],

p1[k − 1],p2[k − 1])

p2[k] = P2(rq[k], f1[k], f2[k] gf[k],pr[k],

p1[k − 1],p2[k − 1])

p1[0] = b0 p2[0] = b0

As P1 and P2 are two 7-variable switching functions,
this simple model permits to express 2256 ((22

7

)2)
different control laws. This explains why the manual
synthesis of control laws expressed with recurrent
Boolean equations is so difficult.

4.2. Formalization with the Boolean algebra of
n-variable switching functions Fn(B)

The first step of the proposed method consists
to formalize the expected behavior with relations
between formula of n-variable switching functions. in
order to do this, it is necessary to chose the size
of the Boolean algebra to use and to precise the n
projection-functions.

4.2.1. Choice of the Boolean Algebra to use
The Boolean algebra to use is fixed by the inputs of
the controller to synthesize and the state variables
chosen for the control laws.
In this case study, we have 5 inputs and 2 state
variables. Then, the 7 projection-functions are:

• The 5 switching functions (Rq, F1, F2, GF,
and Pr) which characterize the behavior of
the inputs of the controller and are defined as
follows:

Rq : B7 → B

(rq[k], . . . ,p2[k − 1]) 7→ rq[k]

• The 2 switching functions (pP1 and pP2) which
characterize the previous behavior of the state
variables of the controller and are defined as
follows:

pP1 : B7 → B

(rq[k], . . . ,p2[k − 1]) 7→ p1[k − 1]

In our case, only 2 switching functions must be
designed (P1 and P2). They represent the unknowns
or our problem.

4.2.2. Formalization of requirements
Assertions describing the expected behavior of
control systems in natural language can be
translated into formal statements thanks to the
relations Equality and Inclusion.

To illustrate the possibility of expression given
by these two relations, several examples (generic
assertions and equivalent formal relations illustrated
on the case study) are given hereafter:

• Pump1 and Pump2 never operate simultane-
ously: P1 · P2 = 0

• If Pump1 operates, Pump2 can not operate:
P1 ≤ P2

• If Pump1 is out of order (F1), Pump1 can not
operate: F1 ≤ P1

• Pump 1 can operate only if it is not out of order:
P1 ≤ F1

• When a global failure is detected, no pump can
operate: GF ≤ (P1 · P2)

• It is necessary to have a request for pumps
operate: (P1 + P2) ≤ Rq

• It is sufficient to have a request for pumps
operate: Rq ≤ (P1 + P2)

• When Pump1 is failed, it is sufficient to have a
request for Pump2 operate: F1 · Rq ≤ P2

• When Pump1 is failed, it is necessary to have
a request for Pump2 operate: F1 · P2 ≤ Rq

As P1 and pP1 represent the behavior of Pump1 at
respectively times [k] and [k − 1], it is also possible
to express relations about starts and stops of this
pump:

• It is necessary to have a request to start
Pump1: (P1 · pP1) ≤ Rq

• When Pump1 operates, it is sufficient to have
a global failure to stop Pump1:
(pP1 ·GF) ≤ (P1 · pP1)



Thanks to formal representations, it is possible to
prove that some of them are equivalent (for example,
the first two, the third and the fourth). When a
designer hesitates between two forms, he has the
possibility, by using symbolic calculation, to check if
the proposed relations are equivalent or not.

It is important to note that the relation Inclusion
permits to express distinctly necessary conditions
and sufficient conditions. This relation is the
cornerstone of our approach.

4.3. Resolution with optimal criteria

The result of the formalization of all the requirements
is composed of a set of relations for which the
solutions must be selected according to three criteria
treated sequentially (Fig. 4).

Problem to solve:

P1 · P2 = 0

F1 ≤ P1
F2 ≤ P2
GF ≤ P1 · P2
(P1 + P2) ≤ Rq

Optimization Criteria:
1. Maximization of: (P1 + P2)

2. Minimization of: ((P1 · pP1) + (P2 · pP2))

3. Maximization of: ((Pr · P1) + (Pr · P2))

Figure 4: Complete specification of the controller to design

The first criterion corresponds to the maximization
of the distribution of water. The second is the
minimization of the possibility to start a pump. The
last criterion consists to maximize the priority order
between the two pumps (Pump1 operates when ‘Pr’
is true and Pump2 operates when ‘Pr’ is false).

For this problem, the method we propose permits
to prove that proposed criteria cannot be treated
simultaneously as some of them are antagonist (it
is not possible to maximize the water distribution if
the pumps never start). A resolution with the two first
criteria conducts to an incoherent equivalent system.
It is necessary to order given criteria according to
their priorities (from maximal priority to minimal).

The details of the first optimization is given hereafter:
a) First resolution without optimization criterion:

P1 · P2 = 0

F1 ≤ P1
F2 ≤ P2
GF ≤ P1 · P2
(P1 + P2) ≤ Rq

⇔


P1 = p1 · Rq ·GF · F1
P2 = p2 · Rq ·GF · F2

· (F1 + p1)

(p1, p2) ∈ F7(B)2

b) Parametric form of the given criterion:

(P1 + P2) = Rq ·GF · (p1 · F1 + p2 · F2)

c) Calcul of the maximum of the given criterion:

Max
(p1,p2)∈F7(B)2

(P1 + P2) = Rq ·GF · (F1 + F2)

d) Second resolution with the optimization criterion:

P1 · P2 = 0

F1 ≤ P1
F2 ≤ P2
GF ≤ P1 · P2
(P1 + P2) ≤ Rq
(P1 + P2) = Rq ·GF · (F1 + F2)

⇔


P1 = Rq ·GF · F1 · (p1 + F2)

P2 = Rq ·GF · F2 · (F1 + p1)

p1 ∈ F7(B)

The same operations are made for the second
and the third criteria. The last equivalent Boolean
equations system to solve and its solution are given
in Fig 5.



P1 · P2 = 0

F1 ≤ P1
F2 ≤ P2
GF ≤ P1 · P2
(P1 + P2) ≤ Rq
(P1 + P2) = Rq ·GF · (P1 + P2)

((P1 · pP1) + (P2 · pP2))

= Rq ·GF · (F1 · F2 · pP1 + F1 · F2 · pP2
+ F1 · F2 · pP1 · pP2)

((Pr · P1) + (Pr · P2))

= Rq ·GF · (F1 · P2 · (F2 + pP1 + pP2)

+ F2 · P2 · (F1 + pP2 + pP1))

⇔


P1 = Rq ·GF · F1

· (F2 + Pr · (pP1 + pP2) + pP1 · pP2)

P2 = Rq ·GF · F2
· (F1 + Pr · (pP2 + pP1) + pP2 · pP1)

Figure 5: Last equivalent Boolean equations to solve and
its solution

4.4. Obtained contol laws

The control laws presented hereafter was obtained
by translating the expression of the unknowns
according to the projection-functions into relations
between recurrent Boolean equations. This control
law was implemented into a PLC with the Ladder



Diagram language. The code is composed of only
four rungs.

p1[k] = rq[k] · gf[k] · f1[k]

· (f2[k] + pr[k] · (p1[k − 1] + p2[k − 1])

+ p1[k − 1] · p2[k − 1]))

p2[k] = rq[k] · gf[k] · f1[k]

· (f1[k] + pr[k] · (p2[k − 1] + p1[k − 1])

+ p2[k − 1] · p1[k − 1])

p1[0] = b0 p2[0] = b0

If this form is well-adapted for an implementation, its
representation with a state model (Fig. 6) simplifies
the work of the designer. For this control law, the
equivalent state model (automatically built thanks to
(8)) is composed of three states only. For each state,
the set of emitted outputs is given. The six transition
conditions are a Boolean expression of the inputs.
By construction, this state model satisfies all the
requirements given Section 4.1.2.

0

{ }
1

{p1}

2

{p2}

E0−1

E0−2

E1−0

E 1−
2

E2−0 E 2−
1



E0−1 = rq · gf · f1 · (f2 + pr)
E0−2 = rq · gf · f2 · (f1 + pr)
E1−0 = rq + gf + f1 · f2
E1−2 = rq · gf · f1 · f2
E2−0 = rq + gf + f1 · f2
E2−1 = rq · gf · f2 · f1

Figure 6: State model of the obtained control law

5. CONCLUSIONS

The aim of the proposed method is to obtain
the control law of dependable logical systems
from specifications given in natural language. We
have chosen to represent these control laws with
recurrent Boolean equations, in order to facilitate
the formalization of safety requirements and the
implementation into a controller as a PLC or an ECU.

These control laws are synthesized by symbolic cal-
culation from relations between n-variable switching
functions which represent the functional or depend-
able requirements. Thanks to mathematical results
presented in this communication, we are able to find
automatically the optimal solution according to given
criteria. This new possibility simplifies greatly the

designer’s work as expected behaviors are simpler
to express.

To facilitate the designer’s work, we currently develop
a complementary module for the formalization
of requirements. Its aim is to detect incoherent
requirements and to rewrite automatically the
requirements, according to priority rules given by the
designer among these requirements (21).

REFERENCES

[1] Houda Bel Mokadem, Béatrice Berard, Vincent
Gourcuff, Olivier De Smet, and Jean-Marc
Roussel. Verification of a timed multitask
system with UPPAAL. IEEE Transactions on
Automation Science and Engineering, 7(4):921
– 932, October 2010.

[2] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie,
A. Petit, L. Petrucci, and P. Schnoebelen.
Systems and Software Verification: Model-
Checking Techniques and Tools. Springer
Publishing Company, 1st edition, 1999.

[3] Frank Markham Brown. Boolean Reasoning:
The Logic of Boolean Equations. Dover
Publications, 2003.

[4] Matteo Cantarelli and Jean-Marc Roussel.
Reactive control system design using the
Supervisory Control Theory: evaluation of
possibilities and limits. In Proceedings
of 9th International Workshop On Discrete
Event Systems (WODES’08), pages 200–205,
Göteborg, Sweden, May 2008.

[5] G. Frey and L. Litz. Formal methods
in PLC programming. In Systems, Man,
and Cybernetics, 2000 IEEE International
Conference on, volume 4, pages 2431–2436,
2000.

[6] Vincent Gourcuff, Olivier De Smet, and Jean-
Marc Faure. Efficient representation for formal
verification of PLC programs. In Proceedings of
8th International Workshop On Discrete Event
Systems (WODES’06), pages 182–187, Ann
Arbor, USA, July 2006.

[7] Ralph P. Grimaldi. Discrete and Combinatorial
Mathematics: An Applied Introduction. Addison-
Wesley Longman Publishing Co., Inc. Boston,
MA, USA, Fifth edition, 2004.

[8] Anaı̈s Guignard. Symbolic generation of the
automaton representing an algebraic descrip-
tion of a logic system. Master’s thesis, École
Normale Supérieure de Cachan, July 2011.



[9] Yann Hietter. Synthèse algébrique de lois de
commande pour les systèmes à évènements
discrets logiques. PhD thesis, École Normale
Supérieure de Cachan, May 2009.

[10] Yann Hietter, Jean-Marc Roussel, and Jean-
Jacques Lesage. Algebraic synthesis of
transition conditions of a state model. In
Proceedings of 9th International Workshop On
Discrete Event Systems (WODES’08), pages
187–192, Göteborg, Sweden, May 2008.

[11] D. A. Huffman. The synthesis of sequential
switching circuits. J. of the Franklin Institute,
257(3-4):161–190 and 275–303, 1954.

[12] IEC 61508. IEC 61508 Standard: Functional
Safety of Electrical/Electronic/Programmable
Electronic Safety-related Systems. Interna-
tional Electrotechnical Commission, Geneva,
Switwerland, 1998.

[13] Hélène Leroux. Algebraic synthesis of logical
controllers with optimization criteria. Master’s
thesis, École Normale Supérieure de Cachan,
July 2011.

[14] José Machado, J.B., Bruno Denis, Jean-
Jacques Lesage, Jean-Marc Faure, and Jaime
Fereira. Logic controllers dependability verifi-
cation using a plant model. In Proceedings
of the 3rd IFAC Workshop on Discrete-Event
System Design, DESDes’06, pages pp. 37– 42,
Rydzyna (Poland), September 2006.

[15] George H. Mealy. A method for synthesizing
sequential circuits. Bell System Technical
Journal, 34(5):1045–1079, 1955.

[16] Edward F. Moore. Gedanken Experiments on
Sequential Machines. In Automata Studies,
pages 129–153. Princeton U., 1956.

[17] Jean-François Pétin, David Gouyon, and
Gérard Morel. Supervisory synthesis for
product-driven automation and its application
to a flexible assembly cell. Control Engineering
Practice, 15(5):595–614, 2007.

[18] P. J. G. Ramadge and W. M. Wonham. The
control of discrete event systems. Proceedings
of the IEEE Transactions on Automatic Control,
77(1):81–98, 1989.

[19] Jean-Marc Roussel and Bruno Denis. Safety
properties verification of ladder diagram pro-
grams. Journal Européen des Systèmes Au-
tomatisés, 36(7):pp. 905–917, June 2002.

[20] Jean-Marc Roussel and Alessandro Giua.
Designing dependable logic controllers using
the supervisory control theory. In Proceedings

of the 16th IFAC World Congress, 2005, Praha,
Czech Republic, July 2005. CDROM paper
4427, 6 pages.

[21] Jean-Marc Roussel and Jean-Jacques Lesage.
Algebraic synthesis of logical controllers de-
spite inconsistencies in specifications. In
Proceedings of 11th International Workshop
On Discrete Event Systems (WODES’2012),
Guadalajara, Mexico, 2012. To appear, 6 pages.

[22] Sergiu Rudeanu. Lattice Functions and Equa-
tions (Discrete Mathematics and Theoretical
Computer Science). Springer, 2001.

[23] Litian Xiao, Ming Gu, and Jiaguang Sun.
The Verification of PLC Program Based
on Interactive Theorem Proving Tool COQ.
In 4th IEEE International Conference on
Computer Science and Information Technology
(ICCSIT2011), Chengdu, China, June 2011.


