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2ISTerre, CNRS, UMR 5559, Université de Savoie, Equipe Volcan, Le Bourget du Lac, France. E-mail: arevil@mines.edu
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S U M M A R Y
We propose a cross-hole imaging approach based on seismoelectric conversions (SC) asso-
ciated with the transmission of seismic waves from seismic sources located in a borehole to
receivers (electrodes) located in a second borehole. The seismoelectric (seismic-to-electric)
problem is solved using Biot theory coupled with a generalized Ohm’s law with an electroki-
netic streaming current contribution. The components of the displacement of the solid phase,
the fluid pressure, and the electrical potential are solved using a finite element approach with
Perfect Match Layer (PML) boundary conditions for the seismic waves and boundary condi-
tions mimicking an infinite material for the electrostatic problem. We develop an inversion
algorithm using the electrical disturbances recorded in the second borehole to localize the
position of the heterogeneities responsible for the SC. Because of the ill-posed nature of the
inverse problem (inherent to all potential-field problems), regularization is used to constrain
the solution at each time in the SC-time window comprised between the time of the seismic
shot and the time of the first arrival of the seismic waves in the second borehole. All the in-
verted volumetric current source densities are aggregated together to produce an image of the
position of the heterogeneities between the two boreholes. Two simple synthetic case studies
are presented to test this concept. The first case study corresponds to a vertical discontinuity
between two homogeneous sub-domains. The second case study corresponds to a poroelastic
inclusion (partially saturated by oil) embedded into an homogenous poroelastic formation. In
both cases, the position of the heterogeneity is recovered using only the electrical disturbances
associated with the SC. That said, a joint inversion of the seismic and seismoelectric data could
improve these results.

Key-words Electrical properties; Hydrogeophysics; Permeability and porosity.

1 I N T RO D U C T I O N

The seismoelectric method is an active geophysical method that
consists of measuring the electromagnetic excitations associated
with the conversion of the mechanical energy of seismic waves into
electromagnetic energy at macroscopic interfaces characterized by
variation in the electrical, hydraulic, and/or mechanical properties.
This interface conversion is often referred to as the seismoelec-
tric conversion (SC) in the geophysical literature. Another type of
electrical signal is the coseismic electrical signal propagating with
the seismic waves themselves. The seismoelectric method has been
used mainly in geophysical exploration (Martner & Sparks 1959;
Migunov & Kokorev 1977; Kepic et al. 1995; Russel et al. 1997)
but it is also a potential tool to image glaciers (Kulessa et al. 2006),
shallow objects (Haines et al. 2007), and the position of the water
table (Dupuis et al. 2007). The seismoelectric method is mainly
used as a surface geophysical method. However, this method has
also been used in boreholes, as a logging tool, especially for the

detection of fractures and high permeability flow pathways (Zhu &
Toksöz 1998, Zhu et al. 1999; Mikhailov et al. 2000; Dupuis &
Butler 2006; Hu et al. 2007; Dupuis et al. 2009) or for cross-hole
measurements as demonstrated by Zhu & Toksöz (2003). The seis-
moelectric method is also used to characterize the texture of porous
media (including colloidal suspensions) in the laboratory (e.g. Zhu
et al. 2008; Dukhin & Shilov 2010).

One of the challenges in the seismoelectric method is that it may
be difficult to distinguish between SC and coseismic signals (e.g.
Haines 2004). These coseismic signals are associated with the rel-
ative displacement between the pore water (dragging the diffuse
part of the electrical double layer coating the surface of the grains)
and the solid phase (Haartsen & Pride 1997). The magnitude of
this drag is frequency-dependent. Zhu & Toksöz (2003) and Haines
et al. (2007) proposed to separate the seismic sources from the
electrical receivers in order to temporally separate the SC from the
co-seismic signals. To avoid to separate the coseismic signals from
the SC, Jardani et al. (2010) have recently developed a stochastic
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full-waveform inversion of surface low-frequency seismoelectric
and seismic data to determine the probability distribution of the
material properties of different geological units. In their approach,
Jardani et al. (2010) assumed that the position of the discontinu-
ities is independently known and both the seismic, seismoelectric
and coseismic signals waveforms are used to invert the electrical,
hydraulic, and mechanical properties. In this paper, we take the
complementary approach and our objective below is to image the
position and shape of the heterogeneities between two boreholes
regardless the value of the material properties. In such a case, we
can use only the SC signals, avoiding the coseismic signals, because
the SC arrive earlier than the co-seismic signals in the second bore-
hole Zhu & Toksöz (2003) and Haines et al. (2007). Going one step
further and inverting for both the material properties and geometry
simultaneously will be an area of future research.

2 B A C KG RO U N D T H E O RY

In this section, we describe the equations that are used to model
the seismoelectric problem. We present these equations for two
reasons: (1) the poroelastic formulation we use is distinct from the
poroelastic formulation used by previous researchers working on
the seismoelectric problem and (2) the electrokinetic formulation
we use is also different than the electrokinetic formulation used by
previous researchers in modelling the seismoelectric signals.

2.1 Poroelastic equations

In this section, we review first the basic equations of linear poroelas-
ticity in an isotropic porous material and we provide the motivation
for using the fluid pressure and the displacement components of the
solid phase as state variables rather than the displacement compo-
nents of the water and solid phases. In our model, the wave equations
in a water-saturated isotropic linear poroelastic body are described
by Frenkel-Biot’s theory (Frenkel 1944; Biot 1962a,b). This theory
describes the propagation of two (compressional) P waves (the fast
and slow P waves) and the (shear) S waves in a water-saturated
porous body. The governing equations (including an inertial term
in the Navier-Stokes equations) for this problem are Newton’s law,
Hooke’s law, Darcy’s law, and some of the Biot’s constitutive equa-
tions. Because we solve these equations in the frequency domain
using a fine element approach, we provide these equations in the
frequency domain (see Pride 1994; Karpfinger et al. 2009; Gao &
Hu 2010),

−ω2
(
ρu + ρ f w

) = ∇ · T + F, (1)

T = [λu∇ · u + C∇ · w] I + G[∇u + ∇uT ] (2)

−ω2(ρ f u + ρ̃ f w) − jbωw = −∇ p + F f , (3)

−p = C∇ · u + M∇ · w, (4)

where j2 = −1 (j represents the pure imaginary number), ω = 2π f
is the angular frequency in rad s−1 (f is the frequency in Hz),
u denotes the solid displacement vector (in m), while w (in m)
denotes the fluid vector displacement relative to the solid (in a La-
grangian framework of reference associated with the deformation of
the solid), F is the body force on the elastic solid phase (in N), and
Ff is the body force on the viscous fluid phase (in N). The matrix I
represents the identity matrix, ρ represents the mass density of the
saturated porous medium (in kg m−3), and ρ f and ρs denotes fluid

mass density and the solid mass density respectively (in kg m−3).
The apparent density ρ̃ f (in kg m−3) denotes an apparent density
of the fluid including inertial effects (defined later), T is the total
stress tensor (in Pa), p denotes the pore fluid pressure (in Pa), λu =
Ku −(2 G/3) denotes the undrained Lamé modulus of the porous
material (in Pa), b denotes the mobility of the fluid in the porous
material (defined later and expressed in Pa s m−2), G represents the
shear modulus of the porous frame (in Pa), and C and M are of
the Biot Moduli (in Pa). Eq. (1) represents Newton’s second law (a
momentum conservation equation for the porous material), eq. (2)
represents Hooke’s constitutive law for the stress–strain relation-
ship, eq. (3) is Darcy’s law (momentum conservation equation for
the fluid), and eq. (4) represents one of Biot’s constitutive equation
of linear poroelasticity.

The other material properties entering eqs (1)–(4) are given
by

ρ = φρ f + (1 − φ)ρs . (5)

b = η f

k0
, (6)

ρ̃ f = ρ f

F
, (7)

α = 1 − K f r/Ks, (8)

Ku = K f (Ks − K f r ) + φK f r (Ks − K f )

K f (1 − φ − K f r/Ks) + φKs
, (9)

C = K f (Ks − K f r )

K f (1 − φ − K f r/Ks) + φKs
, (10)

M = C

α
= K f Ks

K f (1 − φ − K f r/Ks) + φKs
, (11)

where Ku represents the bulk (undrained) modulus of the porous
medium (in Pa), Kfr represents the bulk modulus of the dry
porous frame (in Pa), Kf is bulk modulus of the pore fluid (in
Pa), Ks denotes the bulk modulus of the solid phase (in Pa), α is the
Biot–Willis Coefficient (dimensionless), ηf denotes the dynamic
viscosity of the pore fluid (in Pa s), k0 denotes the DC-permeability
(in m2), φ denotes the connected porosity (dimensionless), and F
(dimensionless) denotes the electrical formation factor, which is
the ratio between the bulk tortuosity of the pore space divided by
the connected porosity. In the following, we use Archie’s law to
compute the formation factor F = φ−m , with m, the cementation
exponent, equals to 2 in clayey sandstones (Archie 1942; Revil et al.
1998)

The previous set of equations are usually used to solve the seismic
problem for the three components of u and the three components
of w in 3-D. However the poroelastic problem can be written in
term of the displacement of the solid phase u and the fluid pressure
reducing the number of unknowns from 6 to 4 in 3-D and from 4 to
3 for 2.5D and 2-D problems. Indeed, eqs (1)–(4) can be written as
(e.g. Jardani et al. 2010 and references therein):

−ω2ρs
ωu + θω∇ p = ∇ · T̂ + F, (12)

T̂ = λ(∇ · u)I + G[∇u + ∇uT ], (13)

1

M
p + ∇ · {kω[∇ p − ω2ρ f u]} = α∇ · u. (14)
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In 2-D, this change of variables reduces the number of variables
from 4 (ux, uz, wx, wz) to three (p, ux, uz). This is very important
to reduce the computational power needed to solve the forward
problem. The relationship between the total stress tensor and the
effective stress tensor T̂ is T = T̂ − αpI. The material properties
entering into equations (12)–(14) are given by Jardani et al. (2010):

kω = 1

ω2ρ̃ f + jωb
, (15)

λ = K f r − 2

3
G, (16)

ρs
ω = ρ − ω2ρ2

f kω, (17)

θω = α − ω2ρ f kω, (18)

where kω is a frequency-dependent transfer function, ρ̃ f is an ef-
fective fluid density, λ is the (drained) Lamé coefficient (in Pa),
and ρs

ω corresponds to the apparent mass density of the solid phase
at a given frequency ω (in kg m−3). The exact form of the partial
differential equations to solve are given in Jardani et al. (2010) and
will not be repeated here.

Assuming that the viscous coupling can be neglected, the velocity
of the P waves, cp, and the velocity of the shear waves, cs, are
approximated by the Biot–Gassmann equations (Gassmann 1951),

c2
p = Ku + 4G

3

ρ
= H

ρ
, (19)

c2
S = G

ρ
. (20)

Eqs (19) and (20) can be used to get a first estimate of the
traveltimes of the different waves through the porous body as shown
later. The compressional modulus H in eq. (19) is defined by

H = (Ks − K f r )2

D − K f r
+ K f r + 4

3
G, (21)

D = Ks

[
1 + φ

(
Ks

K f
− 1

)]
. (22)

More elaborate velocity relationships can be found in Morency &
Tromp (2008) in the case where the viscous coupling is not negligi-
ble. These relationships take into account the frequency dependence
of the seismic waves.

2.2 The Seismic source

The force associated with the seismic source described by the mo-
ment tensor M is given by (e.g. Dahlen & Tromp 1998; Morency &
Tromp 2008),

F = −M · ∇δ(r − rS)S(t), (23)

where rs refers to the point source location, δ(r − rs) is the Dirac
delta distribution located at rs, and S(t) is the source time function.
We consider an explosion generating compressional P waves only.
We use a Gaussian pulse to simulate the explosion. In the frequency
domain, the force associated with the source is therefore given by
Lathi (1998):

F(x, y, ω) = F(ω)δ(x − x0)δ(y − y0), (24)

Figure 1. Description of the seismic explosive source. We use a sharp
Gaussian pulse simulating an explosion at t0 = 0.1 s. The standard deviation
of the source in the frequency domain is 19 Hz.

F(ω) = σp

√
2πe− σ2

pω2

2 e− jωto , (25)

where xo and z0 denote the position of the source, F(ω) =
FT[ f (t)] is the Fourier transform of the argument f (t) =
exp(−(t − t0)2/2σ 2

p ), and σp is the variance of the pulse in the
time domain. In the following, we use t0 = 0.1 s for the time de-
lay and a standard deviation of 19 Hz (Fig. 1). Because seismic
sources rarely have any energy at zero frequency, we rarely model
them as Gaussian waveforms. We can use the 1st or 2nd derivative
of a Gaussian (the negative of the latter corresponds to a “Ricker
wavelet” source). That said, we point out that the results of the fol-
lowing models are strictly independent of the choice of the source
as long as the source is known. Indeed, it is always possible to per-
form a deconvolution of the seismoelectric response from the time
dependence of the source to obtain the response associated with an
impulse function.

2.3 The electrical signals

The electrokinetic coupling in the seismoelectric response is the re-
sult of a relative displacement of the pore water with respect to the
solid phase. We use below the electrokinetic theory developed by
Revil and co-workers (Revil et al. 2005, Revil & Linde 2006, and
Revil 2007). This approach was used by Bolève et al. (2007) and
Crespy et al. (2008) to solve some hydrogeophysical problems and
Jardani et al. (2010) and Revil & Jardani (2010) to solve some seis-
moelectric problems and this theory has already been extended to
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unsaturated conditions by Revil et al. (2007). Three approximations
are made to determine the seismoelectric disturbances:

(1) The transport of the electromagnetic disturbances is diffusive
by nature for the low-frequency range we are interested in. As we
are dealing with characteristic distances of few hundred meters, the
electromagnetic problem can be solved in the quasi-static limit of
the Maxwell equations. We justify as follows the fact that we can
neglect the characteristic time of diffusion of the electromagnetic
disturbances between the areas where a SC occurs and the receivers.
The electromagnetic diffusivity is defined by η = 1/μσ where
μ is the magnetic permeability (in H m−1). From the dimensional
analysis of the electromagnetic diffusivity, the characteristic time of
diffusion is τ = L2/η = L2μσ where L is a characteristic distance
between the source and a receiver. Taking μ = 10−6 H m−1, σ =
0.001 S m−1, and L = 300 m, we obtain τ = 0.1 ms. Therefore the
electromagnetic information diffuses much faster than the seismic
information travels (the traveltime for the seismic information is
on the order of 200 ms). So we can safely neglect the diffusion
of the electromagnetic disturbances associated with the SC and we
can consider the problem in the quasi-static limit of the Maxwell
equations (Jardani et al. 2010, and Revil & Jardani 2010).

(2) Rather than using the classical electrokinetic theory based
on the ‘zeta potential’ at the pore water solid interface (e.g. Pride
1994; Revil et al. 1999; Revil & Leroy 2004), our model is based
on an effective excess of electrical charge density in the pore water,
Q̄V . This approach offers an alternative to Pride (1994) theory used
in most recent papers dealing with the forward modelling of the
seismoelectric response of porous rocks (e.g. Garambois & Dietrich
2002). The charge density Q̄V is defined as the volume average of
the product of the local charge density by the local relative velocity
of the pore water divided by the average velocity of the pore water.
This approach allows to reduce the number of variables used to
describe the streaming current density as the effective charge density
per unit pore volume is strongly correlated to the permeability of
the porous material (Revil & Jardani 2010).

(3) We neglect the electromagnetic disturbances directly related
to the seismic source itself (for electromagnetic effects associated
with the source, see Huang 2002, Haines 2004, and Huang & Liu
2006). While these signals can be observed in field conditions,
they only provide an information on the time of the source and the
potential distribution depends on the resistivity distribution between
the source and the electrodes.

Under the quasi static limit of the Maxwell equations, the electri-
cal potential ψ (in V) is governed by the following Poisson equation:

∇ · (σ∇ψ) = ∇ · jS, (26)

where the source current density jS (in A m−2) is defined as (Jardani
et al. 2010, Revil & Jardani 2010):

jS = Q̄V ẇ = − jωQ̄V kω(∇ p − ω2ρ f u), (27)

where E = −∇ψ is the (quasi-static) electrical field (in V m−1), σ

denotes the electrical conductivity of the porous rock (in S m−1),
js denotes a source current density of electrokinetic nature (in A
m−2), and Q̄V (in C m−3) denotes the excess of electrical charges of
the diffusive layer per unit pore volume for the saturated rock. The
volumetric source term in the right-hand-side of eq. (26), defined as

�(r, t) = ∇ · jS(r, t), (28)

(expressed in A m−3), is associated with the seismic wave propa-
gation. It is a function of both space and time. Any heterogeneity

associated with the variables involved in eq. (27) can be respon-
sible for a source current density and the divergence of this cur-
rent source density, eq. (28), can be, in turn, responsible for an
electrical field. The volumetric source current density varies both
on space and time at positions where heterogeneities are illumi-
nated by the propagation of the seismic waves as shown in the next
section.

2.4 Boundary conditions at an interface

If we consider an interface between two media 1 and 2, the boundary
conditions at the interface are given by Pride & Haartsen (1996):

u1 = u2, (29)

p1 = p2, (30)

n̂ · (w1 − w2) = 0, (31)

n̂ · (T1 − T2) = 0, (32)

n̂ × (E1 − E2) = 0, (33)

where n̂ is the unit vector normal to the interface between the media
1 and 2. These boundary conditions express the continuity in the
solid displacement, the pore fluid pressure, the fluid displacement,
the momentum flux, and the tangential components of the electrical
field across the interface.

2.5 Lateral resolution of cross-hole seismoelectric data

In seismic, the first seismic Fresnel zone is defined as the area of the
reflector that contributes constructively energy to the total reflection
energy reaching an observation point P. The same definition can be
used for the transmission problem. In our case, the seismoelectric
Fresnel zones may be defined similarly as the area of an inter-
face that contributes constructively to the total transmitted energy
reaching an observation point P. If we consider a monochromatic
seismic source S located above a horizontal interface between media
of different electrical properties, the spherically spreading seismic
wave intersects the interface and causes fluid flow across the inter-
face. The resulting electrical field is due to the streaming current
imbalance at the interface. This is equivalent to have electrical
dipoles oscillating in phase with the seismic wave along the inter-
face. As a consequence, electromagnetic disturbances are radiated
away from the dipole sources and are recorded at the observation
point P. Assuming that S and P are colocated, the first Fresnel zones
correspond to two circles of radii rS and rSE , respectively. Fourie
(2003) provided a complete analysis of the reflection problem and
found that the seismic and seismoelectric first Fresnel zone radii are
given by

rS =
[(

d + λS

4

)2

− d2

]1/2

≈
√

dλS/2, (34)

rSE =
[(

d + λS

2

)2

− d2

]1/2

≈
√

dλS, (35)

respectively, where d denotes the distance between S and the in-
terface and λS corresponds to the wavelength of the seismic wave.
The approximation in eqs (34) and (35) are obtained by assum-
ing that d � λS and it yields rSE ≈ √

2 rS . In eq. (35), it is
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further assumed that the diffusion of the electromagnetic distur-
bances is much faster than the propagation of the seismic energy, a
very good approximation as discussed above in Section 2.3. There-
fore the lateral resolution of surface seismoelectric data is poorer
when compared with the lateral resolution of surface seismic data.
Fourie (2003) showed also that for a horizontal interface the first
seismoelectric Fresnel zones is nearly circular and centered beneath
the shot-point S. For the seismic case, the first Fresnel zone is an
ellipse centered halfway between the shot-point and the observation
point P.

3 F O RWA R D M O D E L L I N G O F T H E
S Y N T H E T I C DATA

The forward seismoelectric problem is performed with the finite-
element package COMSOL Multi-physics 3.5a and we use the
same partial differential equations as Jardani et al. (2010). The
problem specification in COMSOL comprises the following steps:
(1) formulating the semi-coupled field equations describing the
dynamic poroelastic problem and the associated electromagnetic
disturbances (see Section 2 earlier), (2) defining the geometry of
the model (see Fig. 2), (3) specifying the model parameters (see
Tables 1 and 2), (4) designing the finite element mesh (we use tri-
angular meshing in the present case), (5) selecting the boundary
layer conditions (we use PML boundary conditions for the seismic
problem, see Fig. 2), (6) solving the partial differential field equa-
tions, (7) performing the inverse quasi-electrostatic problem, and
finally (8) post-processing the data to produce an image using a
pixel-based approach. The flow chart is shown in Fig. 3. The PML

boundary conditions consist of a strip simulating the propagation
of the seismic waves into free space without any reflections going
back inside the domain of interest (see Jardani et al. 2010 for further
details on the implementation).

The first problem is to simulate the seismic wave propagation
associated with the source in order to get the distribution of the two
components of the displacement along the coordinates x and z and
the mean pore fluid pressure p at each time t. Since we are solving
stationary partial differential equations in the frequency domain, we
use the stationary parametric solver PARDISO (http://www.pardiso-
project.org/, see also Bollhoefer et al. 2009). This solver is used to
determine the distribution of the following parameters: first, the
fields ux , uz , p are determined as a function of space and time using
a back-Fourier transform of the solution in the spatial and temporal
frequency domain, and then the quasi-static scalar potential ψ is
computed by solving the Poisson equation coupled to the solution
of ux , uz , p by its source term. The solution in the time domain
is computed using an inverse-Fourier transform. In the frequency
domain, we solve the partial differential equations from 1 to 100 Hz
with a step of 1 Hz. The seismic forward modelling code we used
has been benchmarked by Jardani et al. (2010) using the analytical
solution of Dai et al. (1995) for a water-saturated poroelastic ma-
terial. Then, we use the components of the solid displacement and
the fluid pressure to determine the electrical potential distribution
at each time step. In our modelling, we will also neglect the Stone-
ley waves propagating along the boreholes in which the seismic
sources are located. These Stoneley waves can generate seismo-
electric signals (Mikhailov et al. 2000; Hunt & Worthington 2000)
and should be considered in the case of a real field experiment. How-
ever, we believe that they can be easily filtered out of the recorded

Figure 2. The domain is a 600 m × 600 m square. Borehole, #1, the shooting borehole, is located at position x = 100 m and the measurement borehole, #2, is
located at x = 500 m. The discretization of the domain comprises a finite element mesh of 60 × 60 rectangular cells. We consider 5 seismic sources (from S#1
at the top to S#5 at the bottom) equally spaced in Borehole #1 and 50 receivers (R#1 to R#50 at the bottom) located in Borehole #2. PML boundary conditions
are used at the borders of the domain. a. The Case Study #1 concerns a vertical interface separating two homogeneous half-space. This interface is located at
x = 300 m, at equal distance between the two sources. b. The Case Study #2 corresponds to an inclusion U2 embedded into a homogeneous material U1.
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Table 1. Material properties used for the numerical simulations corresponding to the
case study #1. Unit U1 simulates a sandstone and unit U2 is used to simulate a clayey
sandstone.

Parameter Description Unit U1 Unit U2

σ Conductivity of the medium 0.01 S m−1 0.1 S m−1

Q̄V Excess of charge per unit pore volume 0.203 C m−3 3.49 C m−3

ρs Bulk density of the solid phase 2650 kg m−3 2650 kg m−3

ρ f Bulk density of the fluid phase 1000 kg m−3 1000 kg m−3

φ Porosity 0.25 0.10
Ks Bulk modulus of the solid phase 36.5 × 109 Pa 6.9 × 109 Pa
Kf Bulk modulus of the fluid phase 0.25 × 109 Pa 0.25 × 109 Pa
G Shear modulus of the frame 4.00 × 109 Pa 3.57 × 109 Pa
Kfr Bulk modulus of the frame 2.22 × 109 Pa 6.89 × 109 Pa
k0 DC permeability 10−12 m2 10−16 m2

η f Dynamic viscosity of the pore fluid 10−3 Pa s 10−3 Pa s

Table 2. Material properties for the numerical simulation corresponding to the case study
#2 for which the inclusion U2 is used to simulate a porous formation with oil. Following
Linde et al. (2007) and Revil et al. (2007), the charge density of a partially water-saturated
reservoir, Q̄V , should be replaced by Q̄V /SW where SW (unitless) represents the partial
saturation in water.

Parameter Description Unit U1 Unit U2

σ Conductivity of the medium 0.01 S m−1 0.001 S m−1

Q̄V Excess of charge per unit pore volume 0.203 C m−3 1585 C m−3

ρs Bulk density of the solid phase 2650 kg m−3 2650 kg m−3

ρ f Bulk density of the fluid phase 1000 kg m−3 983 kg m−3

φ Porosity 0.25 0.33
Ks Bulk modulus of the solid phase 36.5 × 109 Pa 37 × 109 Pa
Kf Bulk modulus of the fluid phase 0.25 × 109 Pa 2.40 × 109 Pa
G Shear modulus of the frame 4.00 × 109 Pa 5 × 109 Pa
Kfr Bulk modulus of the frame 2.22 × 109 Pa 9.60 × 109 Pa
k0 DC permeability 10−12 m2 10−11 m2

η f Dynamic viscosity of the pore fluid 10−3 Pa s 10−1 Pa s

signals by performing forward modelling of this contribution
(see Ardjmandpour et al. 2011 for an example) using downhole
measurements of the slowness and resistivity.

The geometry of the two synthetic case studies investigated later
are shown in Fig. 2. The domain consists of a 600 m × 600 m region
and is infinite in the strike direction (2.5 D assumption). In the first
case study, the geometry is made of two half-spaces (U1 and U2)
separated by a vertical interface located at x = 300 m. The seismic
sources are located in Borehole #1 at x = 100 m and z = 150 m,
225 m, 300 m, 375 m, and 450 m for Shots #1, #2, #3, #4, and #5
respectively. In Borehole #2 (located at x = 500 m), we simulate
an array of 50 sensors consisting of electrodes and geophones. The
seismic sources are detonated sequentially in borehole#1. Mean-
while, seismic and electrical data are recorded for each individual
seismic shot. Table 1 provides the material properties of media U1
and U2 used in the model.

Fig. 4 shows some snapshots of the seismic waves, the associ-
ated electrical current density and the resulting voltage at Electrode
#25 in Borehole #2. Fig. 5 represents the signal at electrode #10
at location z = 140 m deep from the surface, which shows that
seismoelectric signals are generated at the interface before the co-
seismic signal arrives at the receivers. While the coseismic signals
show a characteristic hyperbolic shape, the seismoelectric signals
arrive nearly instantaneously to all receivers. In the following, we
call the ‘seismoelectric conversion (SC-) time window’ the time
between the shot of the seismic source and the time of the seismic
wave arrives at the receivers located in Borehole #2. The inverse
problem involves locating the distribution of SC at the interface. It

will be described in the following sections using the data inside the
SC-time windows for all the seismic shots.

4 F O RWA R D A N D I N V E R S E
M O D E L L I N G O F T H E E L E C T R I C A L
P RO B L E M

Our main objective in this section is to estimate the spatial distri-
bution of heterogeneities generating the seismoelectric source cur-
rent, regardless of the values of the material properties themselves
associated with these heterogeneities. At each time step, the seis-
moelectric signals recorded in Borehole #2 are like a self-potential
profile (that is a distribution of voltages recorded at a set of elec-
trodes with respect to a reference electrode and due to a quasi-static
source of current). At each time in the SC-time window and for
each shot, we use the electrical potential distribution recorded on
the array of electrodes located in the second well in order to find the
position of the current source generated through the SC between the
two wells. At each time step, the inverse seismoelectric problem is
therefore similar to a self-potential inverse problem for which sev-
eral algorithms have been developed over the past few years using
deterministic (Jardani et al. 2007; Minsley et al. 2007a, b; Jardani
et al. 2008) and stochastic (Jardani & Revil 2009; Revil & Jardani
2010) approaches. In general, we want to invert these voltages to
recover the position r and amplitude of volumetric current source
�(r, t). In our case, at each time step, the seismic waves impinging
on the interface are responsible for the source current density, which
has compact support (i.e. the spatial distribution of sources at any
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Cross-hole seismoelectric imaging 1291

Figure 3. Flowchart of the seismoelectric forward and inverse modelling.
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1292 A. H. Araji et al.

Figure 4. Modelling of the propagation of the seismic waves (displacement of the solid phase) and associated volumetric current density (Case Study #1, Shot
#3). CS: Coseismic signals, SE: seismoelectric conversions, RE: reflected wave.
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Cross-hole seismoelectric imaging 1293

Figure 5. Example of seismograms and electrograms corresponding to Shot #5 (deeper source). (a) Seismograms recorded in the offset borehole with a typical
parabolic shape. An example of seismogram is given for geophone #25. (b) Electrograms recorded in the offset borehole showing the seismoelectric conversion
at the vertical interface and the coseismic signal. An example of electrogram is given for electrode #25 (position x = 500 m, z = 300 m). The source occurs at
t = 110 s.

given time is very sparse). Therefore, the algorithm we use below is
based on compactness as a regularization tool as developed for the
self-potential source inversion problem by Minsley et al. (2007a,
b). A mathematical description of the algorithm is given later in
Section 4.2.

We open now a small parenthesis to check analytically the va-
lidity of our numerical computations and to compute the size of

the first Fresnel zone for the seismic and seismoelectric problems.
To estimate the time at which the SC occurs, we can estimate
the P-wave velocity based on the material properties reported in
Table 1. We obtain cp = 1935.5 m s−1 in unit U1 and 2163.5 m s−1

in U2. Taking the geometry of Fig. 2 (Case Study #1), we obtain a
traveltime of 0.115 s from the seismic source #5 to the interface and
a traveltime of 0.213 s from the seismic source #5 to the geophone
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1294 A. H. Araji et al.

#25. As the source has a time delay of t0 = 0.1 s, the SC occurs at
t1 = 0.215 and the coseismic signal occurs at t2 = 0.313 s. This is in
agreement with the numerical results of Fig. 5. Using the relation-
ship between the wavelength and the velocity of the P-waves λS =
cp / f where f is the dominating frequency, the first Fresnel zone
radius for the seismic wave is rS = (dcp/2 f )1/2. Using d = 200 m
(Fig. 2), f = 40 Hz, cp = 1935.5 m s−1 in unit U1, we obtain rS =
69 m. Using the relationship between the first seismic Fresnel zone
and the seismoelectric Fresnel zone (see Section 2.5 earlier), we
obtain rSE = 98 m, which provides an idea of the lateral resolution
of the seismoelectric method at this frequency.

4.1 2.5-D electric forward modelling

The Poisson equation governing the electrostatic potential distri-
bution corresponds to eq. (26). The source term of this Poisson
equation is described as a Dirac (delta) function and a point current
source, I (in A), as suggested by Coggon (1971),

�(r, t) = ∇ · js = I δ(x − xs)δ(y − ys)δ(z − zs), (36)

where (xs, ys, zs) denote the coordinates of the each point where the
SC takes place. Two assumptions are made in order to transform
the 3-D problem into a 2.5D problem. It is assumed that the model
is homogenous in the strike direction y, that is, ∂σ (x, y, z)/∂y = 0
and the strike direction extends to infinity in both directions. Solving
the Poisson equation in the wave number domain, where ky is the
wave number in the strike direction, and using the Fourier cosine
transform,

ψ̃(x, z, ky) =
∫ ∞

0
ψ(x, y, z) cos(ky y) dy. (37)

Eq. (36), in the wave number domain, takes the following form,

−∇ · (σ(x,z)∇ψ̃(x, z, ky)) + σ(x,z)k
2
yψ̃(x, z, ky)

= I δ(x − xs)(z − zs).
(38)

Therefore, the initial Poisson equation is transformed to a
Helmholtz-type differential equation in the wave number domain.
It is important to point out that the wave number is related to the
model geometry and the separation distances between source and
receivers. Eq. (38) is solved repeatedly for several wave numbers
and then the solution is transformed from the wave number do-
main to the spatial domain following the approach taken by Dey &
Morrison (1979) using an inverse cosine-transform.

In the finite element code COMSOL, the governing equation of
the forward electrical model can be written at each time step as,

Kψ = s, (39)

where K is the kernel matrix that contains the discrete form of
the differential operator on the left hand of eq. (39), s is a vector
containing the M source current density terms �(x, t), and ψ is the
vector of electric potential observations at the N receivers locations.

At the boundaries of the domain, we used the following boundary
conditions. A Neumann boundary condition is used at the interface
between the model and the padding layer. At the outer edge of the
padding layer, a Dirichlet’s boundary condition is used. The electric
potential at the outer edge of the padding layer tends to zero thus
simulating an infinite domain (Dey & Morrison 1979).

4.2 The initial inverse solution

Because the number of the measurement points is much less than
the number of mesh elements of the model where the source can
be located (N	M) (this is typical of potential field problems), the
inverse problem is underdetermined. It is also ill-posed and the
solution is non-unique. The non-uniqueness of the inverse problem
can be significantly reduced by using a regularization approach to
select a solution that minimizes both the data misfit and, at the
same time, carries a representation of the model structure that is
consistent with some prior information (sparseness of the source
distribution in this case).

The inverse problem involves reconstructing the spatial distri-
bution of the volumetric source field [right-hand side of eq. (39)]
at each time t through the optimization of the objective functions
following the approach outlined by Minsley et al. (2007):

C = ‖Wd(Gs − ψobs)‖2
2 + λ‖�s‖2

2, (40)

� = diag

√√√√ N∑
i−1

GT
kj

2
, (41)

where G = PK−1 denotes the Green’s matrix (NxM) computed as
the product of the inverse kernel matrix times a sparse selector
operator matrix P(N×M) that contains a single 1 on each row in the
column that corresponds to the location of that receiver. The rows
of G can be computed effectively using reciprocity, which involves
computing the forward response to a unit source located at each
receiver. The vector � represents an inverse-sensitivity weighting
function that accounts for distance from the receivers as well as
the resistivity structure, s is the vector containing the discretized
source current density terms �(r, t) with dimension M , ψobs is the
observed electric potential vector at the N sensors, and Wd is a
matrix that contains the information about the expected noise in
the data. The parameter λ is a trade-off parameter between the two
contribution of the cost function and is called the regularization
term. This term balances the relative influence of the data misfit
term, Cd = ‖Wd(Gs − ψobs)‖2

2, and the model misfit term, Cm =
‖�s‖2

2.
In the following, we consider Wd to be diagonal with each el-

ement on the diagonal being the inverse of the estimated variance
of the measurement errors. In all the tests, we consider a Gaussian
noise with a standard deviation equal to 10 per cent of the computed
data mean. This is a realistic noise level for this type of experiment
accounting for the amplitude of the signals that are measured (see
for instance Ardjmandpour et al. 2011). In addition, adding data
weights helps to stabilize the inversion by eliminating artefacts that
come from over-fitting the data.

The vector � represents the inverse-sensitivity weighting func-
tion. This function is needed because sensitivities decay quickly
away from the receiver locations (typically as a power-law func-
tion of the distance from the receiver in a homogeneous medium,
but is also affected by heterogeneous resistivity distributions). The
weighting function is therefore needed to recover sources that are
distant from the receivers.

Applying the following transform sw= �s and minimizing
eq. (40) gives the equation,[(

�−1GTWT
d Wd G�−1

) + λI
]

sw = �−1GTWT
d Wdψ

obs . (42)

The result of such an inversion is a smooth volumetric source
current distribution. However, we know from the physics of the
problem that the solution should be spatially compact. In the next
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Cross-hole seismoelectric imaging 1295

section, we describe a modification to the model regularization term
that promotes this compactness.

4.3 Getting compact volumetric current source
distributions

Source compactness is a relatively classical technique that suits the
nature of the electrical problem because the volumetric source cur-
rent densities associated with the SC tend to be spatially localized.
The technique has been used in medical imaging and in geophysics
(see for instance Last & Kubik 1983; Silva et al. 2001; and Minsley
et al. 2007a; Minsley 2007). Compactness is based on minimizing
the spatial support of the source. The new global objective function
is modified to include compactness as a regularization term,

C = ∥∥Wd(Gs − ψobs)
∥∥2

2
+ λ

M∑
k=1

s2
k

s2
k + β2

, (43)

where β is the threshold term introduced to provide stability as
sk → 0. This form of the objective function is now non-linear
since the compactness portion of the objective function is non-
quadratic. The compactness term is effectively a measure of the
number of source parameters that are greater than β, regardless
of their magnitude. Minimization of this objective function, eq.
(43), results in the solution that uses the fewest number of source
parameters that are still consistent with the measured data, which
enforces sparseness of the source distribution. As model values
fall below the threshold β, they no longer contribute to the sum in
eq. (43), and will be effectively masked from the solution.

In order to make this compact source problem linear so that
it can be solved in a least-squares framework, and to incorporate
the inverse sensitivity scaling, the model weighting operator � in
eq. (40) is modified as

� = diag

{
�2

kk

s2
k( j−1)

+ β2

}
, (44)

where diag(.) extracts the diagonal elements of the argument. Hence
the problem is transformed to a linear one by making the objective
function quadratic in sk by fixing the denominator of the model
objective function � with respect to the previous solution at step
( j − 1) using an iteratively reweighted least squares approach. The
vector s j−1 is the initial model used to compute the first degree of
compactness. A new vector � is determined for every compactness
degree based on the previous model generated from the immediate
previous compactness degree. Using the renormalization with sw =
�s and minimizing the global model objective function in eq. (43)
gives us the iterative solution which utilizes compactness(
�−1

j−1GTWT
d WdG�−1

j−1 + λI
)

sw, j = �−1
j−1GTWT

d Wdψ
obs . (45)

The process is halted after several iterations. Focusing the im-
age is a subjective choice. We found that nine iterations offers a
good compactness level to localize the sources responsible for the
observed self-potential data.

3.4 Benchmark tests

Before embarking into the process of inverting the seismoelectric
signals generated by the seismoelectric forward model, it is essen-
tial to benchmark our inversion algorithm through a synthetic and
well defined 2.5D electrical model. The benchmark model is a 450
× 500 m section described with 45×50 cells. The conductivity

distribution resembles that of the first case study of the vertical
interface with two units U1 and U2 in the model. In the first test,
we positioned a single point source at x = 430 m and z = 310 m
and we recorded the electrical potentials at x = 510 m via an array
comprised of 50 electrodes with 10 m vertical separation between
adjacent electrodes so that the array extends from z = 50 m to z =
550 m. The initial inverse source solution is recovered using eq.
(36), which is plotted in Fig. 6(a). This initial solution is diffusive
and does not represent the spatial nature of the true compact source.
Fig. 6(b) shows the electric potential corresponding to the source
from the initial inverse solution versus the observed data with added
noise. It is clear that the algorithm is able to predict, with a great
accuracy, the measured voltages without overfitting the noise. Nev-
ertheless, the 2-D representation of the model is overly smeared,
thus the need to include compactness as a regularization tool as
mentioned above. Upon performing only five iterations of eq. (45),
the algorithm was able to locate the source precisely as shown in
Fig. 6(b).

To test the ability of the algorithm to resolve two localized sources
in a heterogeneous conductivity distribution, we conducted another
benchmark test. Two volumetric current sources are located at po-
sition (x, z) = (250 m, 460 m) and (250 m, 150 m), respectively.
The geometry is kept identical to the previous test. The resulting
electrical voltage is aliased by the supersition of the two votage
distributions. The initial (diffusive) solution in terms of inverted
current density is presented in Fig. 7(a) using the observed data
contaminated with added Gaussian noise (same as above) and in
Fig. 7(b), we show the result of the inversion after five iterations in
the focusing procedure. The algorithm is able to distinguish and lo-
calize two distinct sources away from the receivers location without
losing sensitivity. Also, the predicted electrical voltages recorded in
borehole #2 [see Fig. 7(b)] is almost identical to the observed one.
In other words, the algorithm is able to retrieve the true amplitude
of the potentials without prior knowledge on the source.

These results highlight the ability of the compact source inversion
to accurately recover the true spatial distribution of current sources.
In these benchmark examples, the true sources are known to be
highly compact. In other cases, the degree of compactness may not
be known a priori. In other words, the electrical potential data can
be accurately reproduced with diffuse or compact sources because
of the non-unique nature of the problem, the user must decide
how many compactness iterations is appropriate. The choice in
focusing the tomogram is therefore the choice of the use, which
is definitively a drawback of this approach. Our tests are showing
that 5–10 iterations are usually a good iteration number to properly
focus the tomogram. Future efforts to address this issue will include
the use of auxiliary information from the recorded seismic response
to help constrain the location of the heterogeneities.

5 C A S E S T U D I E S

Our goal is to invert the source current densities at heterogeneities
regardless of their magnitudes. However, we note that our algorithm
is able to retrieve the values of the divergence of the current source
density as well. Hence, inverting for these sources using recorded
voltages in the offset borehole will provide us with a tool to distin-
guish and localize heterogeneities from the background material.
We start by sequentially triggering seismic sources in the source
borehole (Borehole#1) in order to produce electric potential time
series recorded in Borehole#2 for times belonging to the SC-time
window. The process is repeated for five seismic shots separated by
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1296 A. H. Araji et al.

Figure 6. Test of the electrical source localization for a single source localized in an inhomogeneous medium. The resistivity distribution is given in Fig. 1(a)
(see Table 1). A Gaussian noise with a standard deviation equal to 10 per cent of the computed data mean has been added to the data.

75 m in Borehole #1 (see Fig. 2). Electric potentials at each time
event are recorded versus depth and processed by the inversion al-
gorithm. As mentioned above, the decision to stop the compactness
algorithm is arbitrary. It seems that focusing the tomograms up to
the ninth iteration provides a suitable compact solution. All of the

inversions for different time events and for different seismic shots
are aggregated to produce the final image, which shows the position
of the heterogeneity between the two boreholes.

Fig. 8 shows eight voltage recordings as a function of depth
for eight different time steps for shot#3 (middle of the source
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Cross-hole seismoelectric imaging 1297

Figure 7. Test of the electrical source localization for two sources localized in an inhomogeneous medium.

borehole), corresponding to case study#1 in Fig. 2(a) (vertical inter-
face between two porous media). The eight times we chose belong
to the SC-time window, and sample the SC signal such as that il-
lustrated in Fig. 5(b). At each time step, the vertical recordings of
the potential field are processed using the source inversion algo-
rithm to produce a snapshot of the seismo-electric generated source

on the interface, which is shown on a normalized scale in Fig. 9.
Afterwards, the normalized source distributions at all time steps
are aggregated to produce the tomogram presented in Fig. 10 that
depicts the presence of a vertical interface at x = 300 m. The vol-
umetric source current distributions are thresholded according to
the global threshold level found by using Otsu method (Otsu 1979).
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1298 A. H. Araji et al.

Figure 8. Vertical distribution of the electrical potential (in mV, reference at infinity) in borehole #2 at different times in the SC-time window in which the
seismoelectric conversions taking place between the two boreholes occur (Shot #3).

This threshold is used to convert the distributions of the source
current densities into a binary image by minimizing the interclass
variance of the two types of pixels. Using multiple seismic shots
enables us to ‘illuminate’ certain parts of the interface, which is
usually the part closest to the source. Thus by utilizing several seis-
mic shots along the source borehole, we were able to ‘illuminate’
the interface using the seismoelectric signals.

Another synthetic case study is demonstrated to highlight the
ability of the algorithm to image reservoirs or oil plumes with ir-
regular geometries for more realistic scenarios. In this case study
we have an inclusion of a poroelastic material embedded in an
homogeneous poroelastic material (Fig. 2b). The material prop-
erties of the two materials are those of Table 2. The same pro-
cedure is used as in the previous cases study and the tomogram
produced is presented in Fig. 11, where we can relatively distin-
guish the inclusion from the background using seismoelectric data
only.

As explained in the introduction, this work focuses on the local-
ization of the current sources corresponding to the SC, but not the
amplitude of these sources. In order to obtain an image of the local-
ization of the seismoelectric sources, we aggregated all the sources
for the five shots and for eight different time steps that sample the
seismoelectric voltage distribution at the receivers. The resulting
source localization, shown in Fig. 10, spreads around the position
of the interface responsible for the SC. While the tomogram is not
perfect, we think that this is a fair comparison between the posi-
tion of the true interface and the image produced by the algorithm.
Note the presence of few ghosts in the tomogram corresponds to
spurious source localizations. The second case study investigates an
ellipsoidal anomaly embedded into a homogeneous material. The
final result (following the exact same procedure as for the first case
study) is shown in Fig. 11. We see that the position of the anomaly
is relatively well-localized, however, there are also few ghosts that
are present in the tomogram.

6 D I S C U S S I O N

In this section, we want to address few question that may arise re-
garding the applicability of the present methods. The first is related
to the sensitivity of the approach to the choice of the source param-
eters. What happens indeed to the model outputs if we change the
source characteristics? Our choice of the source parameters was to
make the source as impulsive as possible. That said, the choice of
the source is totally arbitrary and our approach is totally indepen-
dent of the choice of the source. We can choose any type of source
(e.g. a sweep), and we can always perform a deconvolution of the
resulting seismoelectric signals with the (known) source in order to
retrieve the impulse function of the system.

The second question we want to address is the noise level in the
electrical data. Typically on land, it is easy to record the electrical
field with a precision of at least one microvolt per meter and the
precision on the measurements can be better than one nanovolt per
meter for offshore applications (classically for CSEM) (Butler &
Russell 1993; Mikhailov et al. 1997; Haines 2004; Dupuis et al.
2007). Therefore the signal-to-noise ratio adopted in this paper is
rather pessimistic.

The third point is the use of compactness in the inversion of the
electrical potential data, which is a typical inverse problem in po-
tential field theory. The source inversion problem consist to identify
the position of the source between the two wells. This principle is
different from the inverse problem corresponding to the imaging
of the material properties using a smoothness regularization ap-
proach. A complete analogous application of the method we used
above has also been performed in the medical community using
electroencephalographic (EEG) data (measuring time-varying elec-
trical potentials on the scalp) and combining this information with
resistivity information to spatially and temporally locate electrical
sources within the brain. Portniaguine et al. (2001) proposed the
compactness approach as a method to focus the position of the
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Cross-hole seismoelectric imaging 1299

Figure 9. Source localization for the electrical potential distributions shown in Fig. 8 (shot #3). The white line indicates the position of the discontinuity
between the units U1 and U2.

source responsible for the observed EEG anomalies. This approach
has been very successful in EEG. We think that despite the draw-
back associated with the choice let to the user to stop the focusing
of the tomogram, this method provides images that are more reli-
able than having only an unfocused image. The electrical signature
collected at the boreholes due to SC is due the occurrence of local
electrical source current densities like in EEG. Also we point out
that the use of compactness does not remove the non-uniqueness
of the inverse problem. As for other deterministic methods, this

approach provide a set of solutions on the location of the sources.
The choice of the best solution is dependent on the availibility of
independent information, e.g. of a seismic nature.

7 C O N C LU S I O N S

We have presented the first cross-hole seismoelectric tomographic
algorithm. Our inversion approach uses only the electrical informa-
tion recorded in the observation borehole at each time step using

C© 2012 The Authors, GJI, 188, 1285–1302

Geophysical Journal International C© 2012 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/188/3/1285/687427 by guest on 18 June 2021



1300 A. H. Araji et al.

Figure 10. An aggregate of all the source distributions for the five shots
using six characteristic times for each shot for the Case Study #1. The white
line indicates the true position of the discontinuity.

realistic signal-to-noise ratios. Localization of the current sources
is accomplished using knowledge of the resistivity distribution and
incorporating compactness as a regularization tool. Errors in the
source localization due to imperfect knowledge of the true resis-
tivity structure are discussed by Minsley (2007, chapter 4). We
demonstrated that we can approximately recover the position of het-
erogeneities using this approach. A more advanced approach could
be to use the seismic information to estimate material properties
and to provide additional constraint for the source localization. In-
deed, if seismic tomography is first realized (using first arrival wave
tomography for instance), a velocity model and its uncertainty can
be recovered. Such a velocity model can be used to estimate where
the wave is located at each time step. This location can subsequently
be incorporated as a constraint for the areas where the SC occurs.
This information could be used to help to remove the somewhat
arbitrary choice of how many compactness iterations are needed for
the source localization by providing additional constraints on the
source localization. We could also use the magnetic information in
the inverse problem as new magnetic sensors can be used in bore-
holes. As long as magnetic minerals are absent, the magnetic field is
easier to invert than the electrical field as the magnetic permeability
is constant at the opposite of the electrical conductivity.
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Zhu, Z & Toksöz, M.N., 1998. Seismoelectric measurements in a frac-
tured borehole model (expanded abstract), Soc. Expl. Geophys., BH2.7,
314–317.
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