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The action of pseudo-differential operators on

functions harmonic outside a smooth

hyper-surface

Louis Boutet de Monvel∗ & Yves Colin de Verdière†

September 24, 2012

The goal of this note is to describe the action of pseudo-differential operators
on the space H of L2 functions which are harmonic outside a smooth closed
hyper-surface Z of a compact Riemannian manifold without boundary (X, g) and
whose traces from both sides of Z cöıncide. We will represent these L2 harmonic
functions as harmonic extensions of functions in the Sobolev space H−1/2(Z) by
a Poisson operator P. The main result says that, if A is a pseudo-differential
operator of degree d < 3, the operator

B = P⋆ ◦ A ◦ P

is a pseudo-differential operator on Z of degree d− 1 whose principal symbol of
degree d− 1 can be computed by integration of the principal symbol of A on the
co-normal bundle of Z.

These “bilateral” extensions are simpler (at least for the Laplace operator)
than the “unilateral” ones whose study is the theory of pseudo-differential oper-
ators on manifolds with boundary (see [1, 2, 3, 4, 6]).

1 Symbols

The following classes of symbols are defined in the books [4], sec. 7.1, and in [5],
sec. 18.1. A symbol of degree d on Ux × R

n
ξ where U is an open set in R

N is a
smooth complex valued function a(x, ξ) on U × R

n which satisfies the following
estimates: for any multi-indices (α, β), there exists a constant Cα,β so that

|Dα
xD

β
ξ a(x; ξ)| ≤ Cα,β(1 + ‖ξ‖)d−|β| .
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The symbol a is called classical if a admits an expansion a ∼
∑∞

l=0 ad−l where aj
is homogeneous of degree j (j an integer) for ξ ∈ R

n large enough; more precisely,
for any J ∈ N, a−

∑J
j=0 ad−j is a symbol of degree d− J − 1.

We will need the

Lemma 1 If a(x; ξ, η) is a symbol of degree d < −1 defined on Ux ×
(

R
n
ξ × Rη

)

,
b(x; ξ) =

∫

R
a(x; ξ, η)dη is a symbol of degree d+1 defined on Ux×R

n
ξ . Moreover,

if a is classical, b is also classical and the homogeneous components of b are given
for l ≤ d+ 1, by bl(x; ξ) =

∫

R
al−1(x; ξ, η)dη

2 A general reduction Theorem for pseudo-differential

operators

We choose local coordinates in some neighborhood of a point in Z denoted x =
(z, y) ∈ R

d−1 ×R, so that Z = {y = 0}. We denote by (Ωj, j = 1, · · ·N) a finite
cover of Z by such charts and denote by Ω0 an open set disjoint from Z so that
X = ∪N

j=0Ωj . We choose the charts Ωj so that the densities |dz| and |dx| are the
Lebesgue measures.

If X is a smooth manifold, we denote by D′(X) the space of generalized
functions on X of which the space of smooth functions on X is a dense subspace.
We assume that X and Z are equipped with smooth densities |dx| and |dz|. This
allows to identify generalized functions with Schwartz distributions, i.e. linear
functionals on test functions; this duality extending the L2 product is denoted
by 〈|〉. We introduce the extension operator E : D′(Z) → D′(X) sending the
distribution f to the distribution fδ(y = 0) defined

〈fδ(y = 0)|φ(z, y)〉 = 〈f |φ(z, 0)〉

and its adjoint, the trace T : C∞(X) → C∞(Z) defined by φ → φ|Z . Let A be
a pseudo-differential operator on X : let us call Aj the restriction of A to test
functions compactly supported in Ωj . We will work with one of the Aj’s given
by the following “quantization” rule

Aju(z, y) =
1

(2π)d

∫

R2d

ei(〈z−z′|ζ〉+(y−y′)η)aj(z, y; ζ, η)u(z
′, y′)dz′dy′dζdη .

So we have formally, using the facts that the densities on X and Z are given by
the Lebesgue measures in these local coordinates:

T ◦ Aj ◦ Ev(z) =
1

(2π)d

∫

R2d−1

ei〈z−z′|ζ〉aj(z, 0; ζ, η)v(z
′)dz′dζdη ,

which we can rewrite

T ◦ Aj ◦ Ev(z) =
1

(2π)d−1

∫

R2d

ei〈z−z′|ζ〉bj(z; ζ)v(z
′)dz′dζ ,
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with

bj(z; ζ) =
1

2π

∫

R

aj(z, 0; ζ, η)dη . (1)

We have the

Theorem 1 If A is a pseudo-differential operator on X of degree m < −1 whose
full symbol in the chart Ωj is aj, then the operator T ◦A◦E is a pseudo-differential
operator on Z of degree m + 1 whose symbol is given in the charts Ωj ∩ Z by
Equation (1).

This is proved by looking at the actions on test functions compactly supported
in the chart Ωj , j ≥ 1: then we use Lemma 1.

Remark 1 The principal symbol can be described in a more intrinsic way: let
z ∈ Z be given, from the smooth densities on TzX and on TzZ given by |dx| and
|dz|, we get, using the Liouville densities, densities on the dual bundles T ⋆

z Z and
T ⋆
zX. Let us denote by Ω1(E) the 1-dimensional space of densities on the vector

space E. From the exact sequence

0 → N⋆
zZ → T ⋆

z X → T ⋆
z Z → 0 ,

we deduce
Ω1(T ⋆X) ≡ Ω1(N⋆Z)⊗ Ω1(T ⋆Z)

and a canonical density dm(z) in Ω1(N⋆
zZ). The principal symbol of B = T ◦A◦E

is given in coordinates by b(z, ζ) = (1/2π)
∫

N⋆
zZ

a(z; ζ, η)dm(η).

3 The “bilateral” Dirichlet-to-Neumann oper-

ator

We will assume that the local coordinates x = (z, y) along Z are chosen so that
g(z, 0) = h(dz) + dy2 and the Riemannian volume along Z is |dx|g = |dz|h|dy|.
We will choose the associated densities on X and Z. We will denote by ∆g the
Laplace-Beltrami operator on (X, g) as defined by Riemannian geometers (i.e.
with a minus sign in front of the second order derivatives).

If f is given on Z, let us denote by DN (f) minus the sum of the interior
normal derivatives on both sides of Z of the harmonic extension F of f ; this
always makes sense, even if the normal bundle of Z is not orientable. We have
the

Lemma 2 The distributional Laplacian of the harmonic extension F of a smooth
function f on Z is ∆gF = E(DN (f)).

Proof.–
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The proof is a simple application of the Green’s formula: by definition
of the action of the Laplacian on distributions, if φ is a test function on
X , 〈∆gF |φ〉 := 〈F |∆gφ〉. We can compute the righthandside integral
as an integral on X \ Z using Green’s formula.

∫

X\Z

(F∆gφ− φ∆gF )|dx|g =

∫

Z

(Fδφ− φδF )|dz|h

where δ is the sum of the interior normal derivatives from both sides
of Z. Using the fact that ∆gF = 0 in X \ Z and δφ = 0, we get the
result.

�

Denoting by ∆−1
g the “quasi-inverse” of ∆g defined by ∆−1

g φj = λ−1
j φj for

the eigenfunctions φj of ∆g with non-zero eigenvalue λj and ∆−1
g 1 = 0, we have

f =
(

T ◦∆−1
g ◦ E

)

◦ DN (f) (mod constants). By Theorem 1, the operator B =
T ◦ ∆−1

g ◦ E is an elliptic self-adjoint pseudo-differential operator on Z. The
operator DN is a right inverse of B modulo smoothing operators and hence also
a left inverse modulo smoothing operators. So that DN = B−1 is an elliptic
self-adjoint of principal symbol the inverse

1

2π

∫

R

(‖ζ‖2h + η2)−1dη =
1

2‖ζ‖h
,

namely 2‖ζ‖h. Hence

Theorem 2 The bilateral Dirichlet-to-NeumannDN is a self-adjoint elliptic pseudo-
differential operator of degree 1 on L2(Z, |dz|) and of principal symbol 2‖ζ‖h. The
kernel of DN is the space of constant functions.

The full symbol of DN can be computed in a similar way from the full symbol
of the resolvent ∆−1

g along Z.

4 The Poisson operator

Let A be an pseudo-differential operator on X of principal symbol a. We are in-
terested to the restriction to the space H of the quadratic form QA(F ) = 〈AF |F 〉
associated to A. We will parametrizeH as harmonic extensions of functions which
are in H− 1

2 (Z) by the so-called Poisson operator denoted by P; the pull-back RA

of QA on L2(Z) is defined by

RA(f) = 〈APf |Pf〉 = 〈P⋆APf |f〉 .

The goal of this section is to compute the operator B = P⋆AP associated to the
quadratic form RA.
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From Lemma 2, we have, modulo smoothing operators,

P = ∆−1
g ◦ E ◦ DN .

Hence
B = DN ◦

[

T ◦
(

∆−1
g ◦ A ◦∆−1

g

)

◦ E
]

◦ DN .

The operator ∆−1
g ◦ A ◦ ∆−1

g is a pseudo-differential operator of principal
symbol a/(‖ζ‖2h + η2)2 near Z.

Applying Theorem 1 to the inner bracket and Theorem 2, we get the:

Theorem 3 If A is a pseudo-differential operator of degree d < 3 on X and
P the Poisson operator associated to Z, the operator B = P⋆AP is a pseudo-
differential operator of degree d− 1 on Z of principal symbol

b(z, ζ) =
2

π
‖ζ‖2h

∫

R

a(z, 0; ζ, η)

(‖ζ‖2h + η2)2
dη .

Remark 2 Note that if A is a pseudo-differential operator without the trans-
mission property, the operator A ◦ P may be ill-behaved and have disagreeable
singularities along Z; however P∗AP is always a good pseudo-differential opera-
tor on Z.
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