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Abstract 

We propose a new approach for studying the radiation of a fireball, one of the main processes which 
occur when the meteor body enters the planetary atmosphere. The only quantities which directly 
follow from the available observations are the fireball brightness, its height above sea level, the 
length along the trajectory, and as a consequence its velocity as a function of time. Other important 
parameters like meteoroid’s mass, its shape, bulk and grain density, temperature remain unknown. 
The present study takes recent results in fireball aerodynamics and considers them together with the 
classical postulate that a fraction of the meteoroid kinetic energy is transformed into radiation 
during its flight. This gives us a new analytical dependence, which in particular shows that the 
fireball luminosity in general is proportional to the body pre-entry mass value, its initial velocity to 
the power of 3, and the sine of the slope between horizon and trajectory. Research helps in finding 
an answer to the general important question: Which fraction of the fireball kinetic energy is 
transformed into light during meteoroid drag and ablation in the atmosphere? 
 

1. Introduction 
 
Up to now practical results in Meteor Physics are only derived with some uncertainty mainly due to 
the possible variation of the meteoroid’s shape, mass (and also the way they change during the 
flight), and bulk density. Thus, results with an error in the order of a magnitude are often accepted 
as sufficient (Öpik, 1958).  
The main processes which in general are supposed to be taken into account are meteor body drag, 
radiation, ionization and ablation. The ablation rate depends on the meteoroid’s velocity while 
deceleration is determined by its mass. Therefore the mass loss and the drag equations for a 
meteoroid should be solved simultaneously. The ablation of the meteoroid can occur because of 
evaporation, fusion and spraying of the liquid film by the oncoming air flow, sputtering and 
fragmentation.  
The study of meteor radiation should be based on the three basic sources generating this process: 
compressed high-temperature atmospheric gas in the shock layer around the body, vapor of body 
material and other products of destruction, and the body surface. The first and third sources have 
been considered by Gritsevich and Stulov (2007). The luminosity values were determined as a 
function of the body radius, its velocity and density of the atmosphere at the height of the flight. 
The model of an equilibrium mixture of radiating components allowed calculating a radiation flux 
in the optical frequency range. However such an approach is approximate and we still keep some 
uncertainty due to unknown geometrical shape of the studied objects. 
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The radiation from the meteor body surface is significant for micrometeors or for early stage of 
events with larger scale while we still can consider the free molecular air flow around meteoroid, 
i.e. when the mean free path of the air molecules is larger than the characteristic body size. As the 
spectral lines of the elements which are present in majority of collected meteorites dominate in the 
observed meteor spectrum (the identified atoms and ions are the elements like Fe, Mg, Na, Ca, Ni, 
Si, Al, Co, Cr or Mn, etc., see e.g. Bronshten, 1983) the suggestion that the dominating contribution 
to the meteor luminosity comes from the emission of the atoms vaporized from the body surface is 
often generalized to be valid along the whole luminous trail even for large meteorite-producing 
fireballs, which for sure have experienced all possible flow regimes during atmospheric entry. This 
assumption means that atmospheric lines and bands are considered of secondary significance, while 
the body’s incandescent surface may be neglected (Bronshten, 1983). Thus the subsequent research 
under such assumptions leads to the special case (called luminous equation or photometric formula, 
depending on the way how it is written) relating the luminosity process to ablation only. This case 
we will discuss in more details in section 4. 
An alternative way to study meteor luminosity is based on the fact that its value should be 
proportional to the loss of meteoroid kinetic energy as there are no other possible sources for that. 
Then again the assumption that kinetic energy loss is determined by meteoroid ablation only (while 
the deceleration term can be ignored) leads to the number of studies (e.g. Bellot Rubio et al., 2002; 
Campbell Brown and Koschny, 2004; McAuliffe and Christou, 2006; and older papers discussed in 
section 4). However in the present study we consider the general case when the change in meteoroid 
mass and velocity are both significant and should necessarily be involved in the mechanism of 
energy transfer. Throughout this work we also permit changes in meteoroid shape during the whole 
luminous part of an atmospheric trajectory. We start from the drag and mass loss equations and the 
geometrical relation along a meteor trajectory in the atmosphere. Using dimensionless parameters 
and assuming an isothermal atmosphere, we solve the equations for the dynamical behavior of the 
meteoroid. We then compare the results with the observed drag rate and the light curve of the 
fireball and derive from this comparison the luminous efficiency. 

2. Basic differential equations and first integrals 
 
Let us start from the drag and mass loss equations which in physical theory of meteors are usually 
(see e.g. Bronshten, 1983; Stulov et al., 1995) given by:  
 

           ,
2

1 2SVc
dt

dV
M ad ρ−=                 (1) 

         SVc
dt

dM
H ah

3

2

1
* ρ−= ,                                                                            (2)                          

 
The explaining of used variables and parameters are given in the appendix of this paper. Variations 
in the entry angle γ of the meteoroid are not significant and usually they are not taken into account. 
Therefore the change in height with time is given as: 
 

,sinγV
dt

dh −=  (3) 

 
This can be used to introduce in Eqs. (1)-(2) the new variable h instead of t. Excluding t we get h as 
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the independent variable, and we still have 4 unknown variables, namely M, V, S, and ρa, depending 

on h in two equations. That is why two additional dependencies between these quantities are 

necessary for solving the equations. Thus the analytical solution of Eqs. (1) and (2) is obtained 

under the assumption of an isothermal atmosphere 

 
 ρa = ρ0 exp(−h/ h0),                                                                                                (4) 
 
which within the considered range of heights (Tab. 1) is sufficient. 
Following Levin (1956), we also introduce the parameter µ taking into account variations in the 
meteoroid shape as 
 

μ)(
ee M

M

S

S = .                                                                                                          (5) 

 
To solve these equations, we introduce dimensionless parameters. As a general rule, we use capital 
letters for the parameters with dimensions (e.g. M for the mass in kg) and small letters for the 
dimensionless parameters (e.g. m for the mass between 0 and 1). Detailed naming conventions for 
all variables and parameters are given in the appendix. Applying these assumptions together with 
initial conditions y = ∞, v = 1, m = 1, the first integrals of differential Eqs. (1) and (2) appear as: 
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For a more detailed derivation, see Gritsevich (2007). In Eqs. (6)-(7), α is the ballistic coefficient 
describing the drag properties of the meteoroid; β is the mass loss parameter; and μ is the shape 
change coefficient (again, see the appendix for detailed definitions). 
 
Finally we assume that a given fraction τ of the meteoroid kinetic energy is converted into visible 
radiation. Its luminosity then is described by the following formula: 
 

dt

dE
I ⋅−= τ ,                                                                                                (8) 

which in terms of meteor body mass and velocity can be rewritten as: 
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3. Approximation of observed trajectories 
 
As it follows from the previous section the real phenomena can be qualitatively described as soon as 
values for the non-dimensional parameters α, β, μ, and τ are known. Therefore it is expedient to 
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separate the problem of the determination of these parameters from observational data into several 
subtasks, each of which will allow us to identify one of the parameters unambiguously by the 
approximation of the corresponding physical process. We assume that from the data of observations 
at certain time points (i = 1, 2, …, n) the values of the meteor altitude hi and velocity Vi , as well as 
the meteor stellar magnitude Mpani  are known. Such kind of data has been published for example 
in the paper of Halliday et al. (1996). The paper contains the detailed final report on the Meteorite 
Observation and Recovery Project (MORP), which was prepared by the researchers directly 
involved in the project.  
 
 3.1. Altitude-velocity relation 

 
The analysis of the function (7) shows that there is actually just one pair of the parameters α and β  
which provide the best fit to the observed meteoroid altitude and velocity values (Gritsevich, 2007). 
Therefore these two parameters can be easily determined firstly from the altitude and the body’s 
deceleration in the atmosphere. The problem is solved using the least square method (see 
Gritsevich, 2008a, 2009 for exact formulas and details). The main advantage here is that during this 
part of the proposed model we do not involve any other assumptions or empirical constants. Thus 
the exact values of the meteoroid shape factor, meteoroid density and shape change parameter are 
not required.  
 
As we use Eq. (7) now not in meaning of describing, but for general approximation of real 
phenomena it should be clear that our model is identically sensitive to different types of meteoroid’s 
mass loss (e.g. it takes into account (i) the fusion of the outer layer, followed by spraying of the 
liquid layer by the hypersonic air flow, (ii) a vaporization of the solid phase or liquid layer, and 
removal of mass in the form of vapor, and (iii) a meteoroid fragmentation occurred by minute 
detachment of secondary solid particles from the parent body) . Indeed, as mass loss parameter β 
fits the actual observational data we assume change in meteoroid mass (6) to be result of ablation 
mechanisms in reality occurred along trajectory.  ). 

 
 3.2. Analysis of change in kinetic energy 
 
We consider here the general case when both mass and velocity of a meteor body are changing with 
time along the considered segment of a trajectory.  The theoretical curve (7) allows us to define 

dv

dу
. On the other hand from the geometrical equation (3) follows that 
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Using the definition of the dimensionless velocity and then replacing 
dv

dу
 with the derivative of (7) 

by using the theory of Special Functions (Yanke et al., 1964) yields 
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Using the definition of the dimensionless mass and replacing 
dv

dm
 with the derivative of equation 

(6) we receive: 
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Thus the luminosity equation (9) can be then rewritten as:  
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Where 
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As the value of mass loss parameter β is known from section 3.1., only the shape change coefficient 
μ remains unknown in the right side of Eq. (14). So we can now get its value from the condition of 
the best conformity to the shape of observed light curve, e. g. applying once again the least square 
method. The multiplier τMe in (13) then can be defined from the I(t) amplitude according to 
observations. 
Eq. (13) shows that in general the meteor luminosity is proportional to the body’s pre-entry mass 
value, its initial velocity raised to the power of 3, and sinus of a slope. As it immediately follows 
from dimension analysis, the luminous efficiency coefficient τ in (13) can be kept as non-
dimensional parameter. 
 
Using the definition of the ballistic coefficient α (see appendix) the pre-entry mass value Me can be 
written as: 
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Therefore by substituting Eq. (15) into Eq. (13) the current model allow us to determine the product 
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The right side of Eq. (16) contains such known parameters as the atmospheric density ρ0 = 0.00129 
g/cm3 at sea level, the atmospheric scale height h0 = 7160 m, the initial velocity Ve and the slope γ 
between horizon and trajectory. The values of the ballistic coefficient α and ratio I/f(v) are found by 
the present technique according to sections 3.1-3.2. 
Let us note that no initial assumptions about the meteoroid’s shape, mass, or bulk density have been 
involved in our study so far.     

3.3. Application to the real phenomena 
 
The theoretical concept described above is applied to the MORP fireballs # 018, 138 and 219, for 
which observational data are published by Halliday et al. (1996). The main trajectory data are given 
in Table 1. In the two last columns the local deceleration estimates resulting from our method (Eq. 
(11)) and numerical derivatives obtained by Halliday et al. (1996) are shown, respectively.  
Following Ceplecha and ReVelle (2005) we use the formula 
 

)185.10(lg5.2 −−= IM pan                                                                                                    (17) 

 
for converting the brightness which is expressed in absolute magnitudes by Halliday et al. (1996) 
into fireball luminosity, which is supposed to be the total energy emitted across the whole 
electromagnetic spectrum (Ceplecha et al., 1998). In the right side of Eq. (17) we exchange the 
multiplier of 2/5 given by Ceplecha and ReVelle (2005) with the value 2.5, which comes from the 
absolute magnitudes definition (see e.g. Karttunen et al., 1996). According to ReVelle (2009) the 
value of 2/5 in Ceplecha and ReVelle (2005) should be considered as a typographical error. The 
fireball luminosity in (17) is given in energetic units erg/s = 10-7 W, thus the final formula for 
converting absolute magnitudes we used in the present calculations has the form: 
 

185.34.010 +−= panMI  W                                                                                                             (18) 
 
In Table 2 the obtained values of the ballistic coefficient α, mass loss parameter β, shape change 
coefficient μ and the factor ( ) 23 −

med Ac ρτ  are given. In the last column of Table 2 we give values of 

the ablation coefficient σ, which are estimated by the formula: 
 

                                                      
2

2

(1 )
h

d e

c

c H V

βσ
μ∗= =

−
                                                             (19)  

 
The corresponding analytical dependencies I(v) (formula (13)) are shown in figure 1 (a-c), the dots 
shows experimental results derived from observations (Table 1). This helps us to put tighter 
margins on the estimate of the luminous efficiency coefficient. However at this stage for 
determination of the luminous efficiency coefficient τ we need to involve assumptions on the value 
of the product of the drag coefficient and initial shape factor cdAe and meteoroid bulk density. 
According to a review made by Gritsevich (2008b), cdAe = 1.8 can be considered as the most 
reasonable value. It correspond in particular to a body with an initial shape factor Ae =1.5 and a drag 
coefficient cd =1.2. Let us note nevertheless that an initial spherical shape (Ae =1.21) and cd ~1 are 
also widely used in meteor physics studies.  
The review of meteorite bulk densities reveal that the bulk density of stony meteorites is generally 
in the range of 3.3 to 3.9 g/cm3, with an average of about 3.6 g/cm3, which is denser than most 
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terrestrial rocks (Wood 1963). Most meteorites are ordinary chondrites (Grady 2000), with bulk 
density from 3.0 g/cm3 to 3.8-4.0 g/cm3. Some carbonaceous meteorites rich in volatiles (CI and 
CM classes) have bulk densities lower than 3.0 g/cm3. The higher bulk density values have 
stony-iron meteorites (4-6 g/cm3) and iron meteorites (4-8 g/cm3) which are highly differentiated 
meteorites possibly representing cores of large asteroid parent bodies broken apart by catastrophic 
collisions. However such a high bulk density iron objects expected to be rare exception among 
observed meteors (Borovička, 2006).  
Consolmagno and Britt (1998) make a note that most meteorites are substantially denser than their 
suggested asteroid analogous which must have larger porosity because of presence of empty space 
on scales larger than the size of the meteorites. Also the terrestrial atmosphere acts here as a filter 
“absorbing” more efficiently the low-density meteoroids and asteroids as well as braking the larger 
objects along mechanically weaker planes (faults, fractures and more porous areas) allowing the 
more solid fragments only to reach the surface as meteorites. Some asteroid mass and volume data 
supporting this conclusion were produced from space-based instruments and ground-based 
high-performance telescopes. Bulk density measurements for asteroids and asteroid-like bodies 
were published by Millis and Elliot (1979) for Pallas (2.6 ±0.5 g/cm3), Millis et al. (1987) for Ceres 
(2.7 ±0.14 g/cm3), Scholl et al. (1987) for Hygiea (2.05 ±1.00 g/cm3), Belton et al. (1995) for Ida 
(2.6 ±0.5 g/cm3), by Smith et al. (1995) for Phobos (1.53 ±0.1 g/cm3), and Deimos 
(1.34 ±0.83 g/cm3), by Veverka et al. (1997) for Mathilde (1.4 ±0.4 g/cm3), by Merline et al. (1999) 
for Eugenia (1.20 ±0.60 g/cm3), by Viateau (2000) for Psyche (1.8 ±0.6 g/cm3), and for Hermione 
(1.8 ±0.4 g/cm3), by Viateau and Rapaport (2001) for Vesta (3.3 ±0.5 g/cm3), and Parthenope 
(2.3 ±0.2 g/cm3), by Veverka et al. (2000) and Yeomans et al. (2000) for Eros (2.67 ±0.03 g/cm3) 
and by Abe et al. (2006) for Itokawa (1.95 ±0.14 g/cm3). Thus, asteroid bulk density values are in 
general in the range of 1-3 g/cm3. 
From this review we conclude that in the case we are unable to determine the meteoroid 
composition, internal structure and porosity either due to lack of sufficient observational data or due 
to nonexistence of recovered meteorites, the bulk density of such meteoroid most likely is within 
the range of 1-4 g/cm3. Our results are summarized in Table 3. 
Based on extensive meteorite density and porosity review done by Britt and Consolmagno (2003),  
Consolmagno et al. (2008), and more recent results achieved by the authors, Consolmagno et al. 
(2010) suggest the bulk density value of 3.5 g/cm3 to be the most appropriate input in meteoroid’s 
models. This conclusion is in good agreement with existing dynamic mass determination methods 
(e.g. Wetherill and ReVelle, 1981; Halliday et al., 1996; Gritsevich, 2009) and corresponds to the 
type I according to the fireball classification and PE-criterion introduced by Ceplecha and 
McCrosky (1976). Therefore, following the assumption made by Halliday et al. (1996), for the 
fireballs considered in this study we accept the bulk density value of 3.5 g/cm3 to be preferred. The 
luminous efficiency coefficient values are nearly the same if we simultaneously decrease assumed 
meteoroid’s bulk density and the value of the product of the drag coefficient and pre-entry shape 
factor cdAe. 
 
 4. Previous investigations concerning the luminous efficiency coefficient 
 
We should note here that there are a large number of publications devoted to the possible ways of 
determining the value of the luminous efficiency coefficient τ. The starting point is mostly based on 
the theory of meteor radiation developed by Öpik (1933; 1955; 1963). The theory was created for 
small meteors not more than a few centimeters in diameter. Then for the special case with 
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negligible deceleration (when we can assume that the meteoroid velocity is constant, i.e. =
dt

dV
 0) 

we can derive the photometric formula for the calculation of the mass of a fireball from Eq. (8): 
 

dt
V

I
tM

t

t

ph ∫−=
1

2
)(

τ
          (20) 

 
The integral is taken along the entire luminous segment of the trajectory, from the extinction time t 
= t1 to the corresponding time point t where the photometric mass estimate is done. The formula 
(20) is appropriate when kinetic energy loss is dominated by mass loss while the deceleration rate is 
considered being insignificant. Up to now the majority of pre-entry mass estimates and light curve 
studies are done with the use of the simplified photometric approach according to Eq. (20).  
Eq. (20) in fact is an integral form of the luminosity equation used by Whipple (1943) and Jacchia 

et al. (1965), which is a form of Eq. (9) when =
dt

dV
 0: 

 

2

2

dM
I V

dt

τ= −                                                                                       (21) 

 
As the spectra of meteors consist mainly of a discrete number of emission lines whose relative 
intensities vary greatly with meteor velocity, it was suggested that the luminous efficiency 
coefficient τ should be given by the power function of V: τ = τoVn (Jacchia et al.,1965). So, initially 

Whipple (1938; 1943) had assumed a linear relationship between luminous efficiency coefficient 
and meteoroid velocity. Using this assumption, Jacchia (1948) derived from Öpik's data that 
τ0 = 6.46·10-19 (the authors used cgs scale, while I is expressed in units of the intensity of a 
zero-magnitude star (Jacchia et al. 1965)). These values of n and τ0 were used by Jacchia (1948, 
1949, 1952) for deriving the masses of meteors photographed in the Harvard Meteor program. 
Later, the following formula 
 
τ = 1.0·10-19V (in cgs and 0-mag units)                                                                                           (22) 
 
assuming n = 1, was adopted by Verniani (1964) and Jacchia et al. (1965) in their study of the 
meteor luminous efficiency based on the Harvard's photographic data. In usual cgs units, Eq. (22) is 
equivalent to (Verniani, 1964): 
 
τ = 5.25·10-10V                                                                                                                                 (23) 
 
For comparison the maximal luminous efficiency coefficient values calculated according to formula 
(23) are given in Table 4. 
Finally, Eq. (20) was applied to the observational data (given in the form of tabulated values) 
changing the form of the equation to (see e.g. McCrosky and Posen (1968)): 
 

 
3

0

2
ph

I
M t

Vτ
= Δ∑                                                                                                                (24) 

The assumed empirical dependence of luminous efficiency coefficient on velocity was 
experimentally calibrated for ten iron and nickel artificial meteors by Ayers et al. (1970). Assuming 
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that τ = τ0V for these artificial events with pre-entry masses ranging from 0.64 to 5.66 g led the 
authors to the conclusion that τ0 is around 10-18. 
In order to summarize the observational data of Canadian Network fireballs Halliday et al. (1996) 
proposed the following scheme for calculating luminous efficiency coefficient τ: 
 

τ = 0; V ≤ 10 km/s;  

τ = 0.04; 10 < V < 36 km/s and 

τ = 0.069(V*/V)2; where V* = 36 km/s, and 36 km/s ≤ V                                                            (25)                
 
Currently, while estimating the mass with the photometric method, researchers mostly use the 
variable values of τ obtained from the analysis of the observational data of the Prairie and European 
Fireball Networks calibrated by the Lost City meteorite fall. Depending on the velocity of the 
fireball (slower/faster than 25.372 km/s), different formulas for calculating τ from the velocity, 
body mass, and atmospheric density (relative to that at the point of maximal brightness of the 
fireball) have been suggested by Ceplecha and ReVelle (2005). 
 

5. Discussion 
 
This study takes into account recent results in fireball aerodynamics which are considered together 
with the classical postulate that a fraction of the meteoroid kinetic energy is transformed into 
radiation during its flight. The change in meteoroid kinetic energy is described according to the drag 
and the mass loss equations, this allow us to consider it as a function of meteoroid’s velocity. 
Instead of using a variety of unknown quantities (namely, cd, ch, H*, Se, and Me) we introduce two 
dimensionless parameters with the following physical meaning: 

- the ballistic coefficient α characterizes the aerobraking efficiency. It is proportional  to the 
ratio between the mass of the atmospheric column along the trajectory with cross section Sе, 
to the meteoroid pre-entry mass Me;  

- the mass loss parameter β is proportional to the ratio of the fraction of the kinetic energy of 
the unit body’s mass arriving at the body in the form of heat to the effective destruction 
enthalpy. 

These parameters have been found by comparing the theoretical curve (Eq. (7)) with the actual rate 
of body deceleration in the atmosphere as described in section 3.1. 
The other two dimensionless parameters appeared in the study, μ and τ, are found as the best fit of 
Eq. (13) to photometrical observations. From the definition, the shape change coefficient μ 
characterizes the role of the meteoroid rotation during the flight and its value affect the shape of 
luminosity curve (13). The luminous efficiency coefficient τ is the proportionality factor between 
the loss in meteoroid kinetic energy and fireball luminosity. As τ comes at Eq. (13) as a multiplier 
only it determines the intensity (amplitude) of described process. All the studies cited in Section 4 
agree that the luminous efficiency depends on the instantaneous velocity. In this work the luminous 
efficiency is assumed to be constant. However, in view of the fits to the light curves, a velocity-
dependent luminous efficiency could be considered in further studies. 
We can conclude from the comparison of our results (Table 3) that old luminous efficiency 
coefficient estimates (Verniani, 1964; Jacchia et al., 1965) do not exceed 0.001 (Table 4), which is 
too low in the view of current results. This fully explains the fact that photometric way always 
overestimated the real mass calculated from Eq. (20) at that time (see e.g. Bronshten, 1983). At the 
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same time the prediction that τ = τ0V was suitable as it leads to the conclusion that 3~ eeVMI  (Eqs. 

(20), (24)) which is in agreement with our results (formula (13)). 
Halliday et al. (1996) suggested τ = 0.04 as appropriate value for the considered fireballs (except for 
the one to two last points where the velocity is less than 10 km/s; there the authors suggest that τ = 
0). This is in good correspondence with our results for fireball # 219. 
At the same time, assuming that the luminous efficiency τ should vary along the trajectory, 
Ceplecha and ReVelle (2005) derived a range from 0.006 to 0.097 for its possible apparent values 
for the Lost City fireball. The intrinsic luminous efficiency for Lost City was found by the authors 
to be less than 0.015, which does not contradict our results.  
Ceplecha et al. (1998) make a note that as the uncertainly in luminosity I derived from observations 
is of the order of 50 % (as the precision of Mpan is ±0.4 mag). As a consequence the authors 
assumed that the deceleration term in (9) is significant just for slow meteors (V < 16 km/s) if their 
ablation coefficient does not exceed 0.016 s2/km2. However the good fit of experimental points with 
the obtained theoretical curves (Fig. 1) supports the idea that the actual uncertainty in luminosity is 
not so large. Thus we can assume that for the three cases under consideration each proceeding step 
(namely the primary values deduced from observations by Halliday et al. (1996),  the formula (18) 
for converting absolute magnitudes, and further analysis as described in the present study) quite 
precisely describes the observed phenomena. 
In the present study, besides the question of luminous efficiency itself, we have approached another 
important topic, namely the rate of meteoroid rotation and its influence to the ablation type, drag 
rate and luminosity.  The shape change coefficient μ for fireball # 219  is derived to be 0.18 and 
apparently is much smaller than the ones for two others fireballs. The coefficient μ value 
characterizes the rate of the meteoroid rotation during the flight. The case μ = 0  provide the 
stabilized motion without rotation, when the maximal heating and evaporation occurs in the vicinity 
of the front critical point of a meteor body (Vislyi et al., 1985). Thus the middle section of a body 
remains to be constant. This possibility is directly supported by the shape of some fallen meteorites 
evidently retain the orientation they had along the trajectory (Bronshten, 1983). The assumption 
most often used is μ = 2/3. In the number of studies μ is replaced by 2/3 from the very beginning 
(Wetherill and ReVelle, 1981; Halliday et al., 1996; Ceplecha et al., 1998).  In the present study this 
value fully corresponds to the # 138 fireball. In this case the mass loss of a body occurs uniformly 
over the whole surface due to its rapid and chaotic rotation, and we can consider that the body shape 
stayed self similar (see, e.g. Bronshten, 1983). Fireball # 219 demonstrated substantially different 
behavior during the penetration into the atmosphere comparable to other cases under consideration 
(Tab. 1). It had almost the same pre-entry velocity, but it reached a much higher peak deceleration 
of about 12 km/s2, and was extremely bright and relatively fast. Surely, this is assumed to be 
connected with its more vertical entry. On the other hand these effects might be linked to its low 
shape change coefficient value. 
 

5. Conclusion 
 
This study combines photometric and dynamical observations to better constrain the percentage of 
kinetic energy emitted as light. Both changes in meteoroid mass and velocity are considered in the 
described model. No initial assumptions about the exact meteoroid’s shape, mass or bulk density 
were taken. Thus during the fireball entry into the atmosphere the main physical dependencies M(t), 
h(t), V(t), I(t) can be qualitatively approximated combining standard differential equations of 
meteor physics and their first integrals. Such an analytical approach allows us to calculate basic 
non-dimensional parameters α, β, and μ and put more tight margins on the luminous efficiency 
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coefficient τ. For the cases considered here, we find τ in the range of 0.6 % to 8 % for stony 
meteoroids while the product of the drag coefficient and initial shape factor cdAe is assumed to be in 
the range from 1.4 to 1.8. These values are an important tool in our understanding of the extensive 
observational data on the deceleration of meteors and bolides. 
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Appendix 
 
List of symbols  
 
σ = ablation coefficient 
α = ballistic coefficient 
β = mass loss parameter 
γ = slope between horizon and trajectory  
ρ0 = gas density at sea level 
ρa = gas density 
ρm = meteoroid bulk density 
A = shape factor  
Ae = pre-entry shape factor of meteoroid  
cd = drag coefficient 
ch = heat-transfer coefficient 
h = height 
H* = effective destruction enthalpy  
h0 = scale height 
I = meteor luminosity 
E = meteoroid kinetic energy 
M = meteoroid mass 
Me = pre-entry meteoroid mass 
Mpan = absolute panchromatic magnitude 
Mph = photometric mass 
S = middle section area 
Se = pre-entry middle section area of meteoroid 
t = time 
V = velocity 
Ve = pre-entry velocity 
μ = shape change coefficient 
τ = luminous efficiency coefficient 
 
 
Dimensionless parameters used 
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y = h/ h0 
 
v = V/ Ve 
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Special mathematical function used 
 
The exponential integral Ei(x), which for real, nonzero values of x, can be defined as: 

 ∫
∞−

=
x z

z

dze
x)i(E . 

The integral has to be understood in terms of the Cauchy principal value, due to the singularity in 
the integrand at zero.  

Integrating the Taylor series for function 
z

e z−

, and extracting the logarithmic singularity, we can 

derive the following series representation for Ei(x) for real values of x (see e.g. Abramovitz and 
Stegun, 1972): 

1

Ei( ) ln ,
!

n

n

x
x с x

n n

∞

=

= + +
⋅∑  x > 0 

where c is the Euler–Mascheroni constant (also called Euler's constant). It is defined as the limiting 
difference between the harmonic series and the natural logarithm: 

1

1
lim( ln ) 0.5772

n

n
k

с n
k→∞ =

= − ≈∑  
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Table 1. Detailed trajectory data for the chosen Canadian Network fireballs. 

 
MORP 
No. 

t1, 
s 

h1, 
 km 

V1, 
 km/s Mpan

1 y v 
I,  
W 

dV/dt, 
 km/s2 

dV/dt1, 
 km/s2 

018 0.00 75.5 18.5 -3.5 10.54 1.00 38459 0.00   

  1.00 65.3 18.4 -6.8 9.12 0.99 803526 -0.15   

  1.50 60.4 18.3 -8.6 8.44 0.99 4216965 -0.30   

  2.00 55.0 18.1 -9.4 7.68 0.98 8810489 -0.59   

  2.50 49.9 17.7 -9.6 6.97 0.96 10592537 -1.18   

  3.00 44.9 17.2 -9.7 6.27 0.93 11614486 -1.90   

  3.50 40.1 16.4 -9.6 5.60 0.89 10592537 -3.02   

  4.00 35.8 14.8 -8.9 5.00 0.80 5559043 -5.05   

  4.33 33.1 13.1 -8.1 4.62 0.71 2660725 -6.70 -5.7 

  4.67 30.9 10.9 -7.1 4.32 0.59 1059254 -7.77 -7.1 

  5.07 28.7 7.8 -5.3 4.01 0.42 201837 -6.93 -7.4 

  5.41 27.5 5.3 -3.2 3.84 0.29 29174 -4.61   

138 0.00 72.2 16.9 -2.8 10.08 1.00 20184 0.00   

  1.00 65.4 16.9 -5.1 9.13 1.00 167880 0.00   

  2.00 58.5 16.8 -7.2 8.17 0.99 1161449 -0.10   

  2.83 52.9 16.7 -8.4 7.39 0.99 3507519 -0.19   

  3.50 48.4 16.3 -8.7 6.76 0.96 4623810 -0.60   

  4.00 45.1 15.4 -8.7 6.30 0.91 4623810 -1.59 -2.3 
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  4.58 41.7 13.7 -7.8 5.82 0.81 2018366 -3.67 -3.6 

  5.08 39.2 11.7 -5.9 5.47 0.69 350752 -6.05 -4.4 

  5.58 37.0 9.5 -2.9 5.17 0.56 22131 -7.73   

219 0.00 67.7 18.4 -6.4 9.46 1.00 555904 0.00   

  0.58 62.7 18.3 -9.5 8.76 0.99 9660509 -0.20   

  1.08 55.2 18.2 -11.1 7.71 0.99 42169650 -0.40   

  1.58 47.8 17.9 -12.1 6.68 0.97 105925373 -1.01   

  2.08 40.6 17.1 -12.9 5.67 0.93 221309471 -2.66   

  2.58 33.5 15.6 -13.1 4.68 0.85 266072506 -5.78   

  2.83 30.3 14.1 -12.9 4.23 0.77 221309471 -8.67 -7.0 

  3.08 28.1 11.6 -12.4 3.92 0.63 139636836 -12.09 -11.5 

  3.33 26.1 7.8 -10.1 3.65 0.42 16788040 -11.75   
1(Halliday et al., 1996) 
 
 
Table 2. The values of the main parameters found according our model. 

MORP 
No. 

Ve, 
km/s sinγ α‡ β‡ μ 

( ) 23 −
med Ac ρτ  

cm6/g2 

σ 
s2/km2 

018 18.5 0.57 24.13 1.48 0.75 0.0036 0.034 

138 16.9 0.40 38.90 2.89 0.67 0.0041 0.061 

219 18.4 0.77 12.51 2.06 0.18 0.0193 0.015 
† (Halliday et al., 1996), ‡ (Gritsevich, 2009) 
 
 
 
Table 3. The values of the  luminous efficiency coefficient τ calculated for different assumptions about meteoroid 
density and its aerodynamic properties (see discussion in the text). 

ρm, g/cm3 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

MORP 018 

cdAe =1.2 0.0021 0.0046 0.0083 0.0129 0.0186 0.0253 0.0330 

cdAe =1.4 0.0013 0.0029 0.0052 0.0081 0.0117 0.0159 0.0208 

cdAe =1.6 0.0009 0.0020 0.0035 0.0054 0.0078 0.0107 0.0139 

cdAe =1.8 0.0006 0.0014 0.0024 0.0038 0.0055 0.0075 0.0098 

cdAe =2.0 0.0004 0.0010 0.0018 0.0028 0.0040 0.0055 0.0071 

MORP 138 

cdAe =1.2 0.0024 0.0053 0.0094 0.0147 0.0212 0.0288 0.0376 

cdAe =1.4 0.0015 0.0033 0.0059 0.0093 0.0133 0.0181 0.0237 

cdAe =1.6 0.0010 0.0022 0.0040 0.0062 0.0089 0.0122 0.0159 

cdAe =1.8 0.0007 0.0016 0.0028 0.0044 0.0063 0.0085 0.0111 

cdAe =2.0 0.0005 0.0011 0.0020 0.0032 0.0046 0.0062 0.0081 

MORP 219 

cdAe =1.2 0.0112 0.0251 0.0446 0.0697 0.1004 0.1366 0.1785 

cdAe =1.4 0.0070 0.0158 0.0281 0.0439 0.0632 0.0860 0.1124 

cdAe =1.6 0.0047 0.0106 0.0188 0.0294 0.0423 0.0576 0.0753 

cdAe =1.8 0.0033 0.0074 0.0132 0.0207 0.0297 0.0405 0.0529 
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cdAe =2.0 0.0024 0.0054 0.0096 0.0151 0.0217 0.0295 0.0385 
 
 
Table 4. The maximal (corresponding to the initial velocity) values of the luminous efficiency coefficient τ calculated 
according formula (23) given by Verniani (1964). 
 
MORP  
No. τ 
018 0.0010 
138 0.0009 
219 0.0010 
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Fig. 1 (a-c). Meteor luminosity: the obtained theoretical curves and experimental result (dots). 
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- We adopt a new technique to interpret brightness of a meteor. 

- Both changes in meteoroid mass and velocity are considered.  

- Meteor luminosity is expressed analytically as a function of its velocity.  

- We test methodology on 3 MORP fireballs. 

 
 
 
 
 


