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Summary : We continue the study of higher order correlation coefficients. These coefficients
complement the classical correlation coefficient by measuring some dependences more and more
sharply. We prove that they can detect the existence of functional dependence of type g(X)=g’(Y).
We obtain the asymptotic distribution of empirical higher order correlation coefficients.

Summary : On continue l’étude des coefficients de corrélation d’odre supérieur. Ces coef-
ficients complètent le coefficient de corrélation classique en mesurant des dépendances de plus en
plus fines. Nous montrons qu’ils peuvent détecter toute dépendance du type g(X)=g’(Y).

Key Words : Correlation coefficients, canonical analysis, functional dependence, conditional
probability, orthogonal functions, Hilbertian test.

1 Introduction

Orthogonal polynomials have many interesting geometrical applications in Probability and Statis-
tics. So they have introduced higher order correlation coefficients and higher order variances (cf
[17], [2], [8], [10], [9], [7], [6], [13]). They also have introduced new assumptions for the central
limit theorem (cf [7]). One can also obtain the distributions of quadratic forms, Gaussian or not
Gaussian, and simple methods of calculation of these laws (cf [12]).

In this paper we continue the study of higher order correlation coefficients wich generalize and
complement the classical correlation coefficient.

Notations 1.1 let (X,Y), X ∈ Rp, Y ∈ Rq, be a random vector defined on a probability space
(Ω,A, P ). We denote by Q, µ, µ′, and FX,Y , FX , FY the laws and the distribution functions of
(X,Y), X and Y respectively. We denote by {Pi}i=0,1,... and {Qj}j=0,1,... two families of orthonor-
mal functions of L2(Rp, µ) and L2(Rq, µ′), respectively, such that P0 ≡ 1 and Q0 ≡ 1.

For every i > 0 and j > 0, we set

ρi,j = ρi,j(X,Y ) = E{Pi(X)Qj(Y )} ,

where E denotes the expectation .

For example, at first, we suppose that p=q=1 and that {Pi}i=0,1,... and {Qj}j=0,1,...

are the families of orthonormal polynomials.
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Then, the ρi,j ’s measure polynomial dependences. In particular ρ1,1 measures the linear de-
pendence. Indeed, P1(x) = x−E{X}

σ(X) and Q1(y) = y−E{Y }
σ(Y ) where σ2(.) is the variance. Therefore

ρ1,1 is the classical linear correlation coefficient ρ. In the same way, ρ1,2 , ρ2,1 and ρ2,2 measure
quadratic dependences.

Now, we suppose moreover that {Pi}i=0,1,... and {Qj}j=0,1,... are bases of L2(R, µ) and L2(R, µ′),
respectively. Therefore, when (X,Y) has a density function f with respect to the product measure
µ⊗ µ′ such that f ∈ L2(Rq, µ⊗ µ′) then,

f(x, y) = 1 +
∑

i>0,j>0

ρi,jPi(x)Qj(y)

in L2(Rq, µ⊗ µ′).

Clearly X and Y are independent if ρi,j = 0 for all (i, j) ∈ {1, 2, ...} ⊗ {1, 2, ..., }. Moreover ρ,
the classical linear correlation coefficient, is naturally the first term of a sequence of correlation
coefficients : ρ = ρ1,1.

Obviously the ρi,j ’s generalize and complement the classical correlation coefficient. So we call
them ”higher order polynomial correlation coefficients” or more simply ”higher order correlation
coefficients”.

These higher order coefficients have been introduced by Blacher in 1983 in [8]. In this report,
we continue their study and we develop the obtained before results in [6] and [2].

At first when (X,Y) have not density function, we can write

FX,Y (x, y) = FX(x)FY (y) +
∑

i>0,j>0

ρi,j

(∫ x

−∞
Pi.dµ

)(∫ y

−∞
Qj .µ

′
)

for all (x, y) ∈ R2.

Moreover, we can write also the conditional expectation, the conditional probability and the
conditional density with the ρi,j ’s. For example let E{Y |X = x} be the conditional expectation
of Y given X=x. Then,

E{Y |X = x} = E{Y }+ σ(Y )
∑
i>0

ρi,jPi(x) in L2(R, µ) .

Moreover, the normality of the classical correlation coefficient is generalized in a interesting
way : ∑

i>0

ρ2
i,j ≤ 1 .

Moreover, ∑
i>0

ρ2
i,j = 1

if and only if there exists g ∈ L2(R, µ) such that Qj(Y ) = g(X) a.s.

As a matter of fact the most part of these properties holds when Pi and Qj are not orthonormal
polynomials and for any p and q. Then, now we dot suppose that Pi and Qj are orthonor-
mal polynomials any more.

Now the ρi,j ’s defines orthogonal projections.
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Notations 1.2 let P and Q be the subspaces of L2(Rp+q,Q) generated by the functions (x, y) 7→
Pi(x), i=1,2,.... and (x, y) 7→ Qj(y), i=1,2,.... , respectively.

We define the matrix ρ by ρ = {{ρi,j}}, i > 0 and j > 0.

Then, ρ and tρ are matrices of orthogonal projection associated to the bases (of P and Q) {Pi}
and {Qj}.

Then, if {Pi} and {Qj} are bases of L2(Rp, µ) and L2(Rq, µ′), there exists g ∈ L2(Rp, µ) and
g′ ∈ L2(Rq, µ′) such that g(X) = g′(Y ) a.s. if and only if 1 is an eigenvalue of tρρ. In this case,
g’ is an eigenvector of tρρ.

Now, when canonical analysis exists, canonical correlation coefficients are a particular case of
higher order correlation coefficients. For example, let us suppose that FX,Y is φ2-bounded, i.e.
FX,Y has a density function f with respect to µ⊗µ′, f ∈ L2(R2, µ⊗µ′). Then, the pair of canonical
function ηi, ξi is a pair of eigenelements of operators of orthogonal projection Π, Π∗ associated to
tρ, ρ. Moreover, ρi, the associated canonical correlation coefficient is the associated eigenvalue.
Indeed,

E{ξi(X)ηj(Y )} = ρiδi,j

(where δi,j is the Kronecker delta). Finally, ηi is also an eigenvector of tρρ and ρ2
i is the associated

eigenvalue.
Clearly, the canonical corelation coefficients are a particular case of the higher order correlation

coefficients : ρi is the correlation coefficient of order (i,i) associated to ξi and ηi.
Moreover,

f(x, y) = 1 +
∑
i>0

ρiξi(x)ηi(y)

and φ2 + 1 =
∫
f2.d(µ⊗ µ′).

Now, we understood that, often, one can use canonical correlation coefficients in the general
case. We recall some results about this question in section 4.

Now a good point of orthogonal functions is that we can obtain easily estimators of the previous
coefficients.

Notations 1.3 Let {(X`, Y`)}`∈N, X` ∈ Rp, Y` ∈ Rq, be an I.I.D. sequence of random vectors
defined on (Ω,A, P ) with (X0, Y0) = (X,Y ). For all n ∈ N∗, we denote by Qn, µn, µ′n the
empirical probabilities associated to {(X`, Y`)}`=1,2,...,n, {X`}`=1,2,...,n, {Y`}`=1,2,...,n.

For example, µn(E) = 1
n .card{1 ≤ ` ≤ n|X` ∈ E}.

In order to show how we obtain estimators of the ρi,j ’s, we suppose again that {Pi} and {Qj}
are the families of orthonormal polynomials with p=q=1. In this case, we can use the empirical
orthogonal polynomials.

Let Pni and Qnj be the orthonormal polynomials associated to µn and µ′n. Then, for every
x and y, Pni (x) a.s.→ Pi(x) and Qnj (y) a.s.→ Qj(y). Indeed, in order to obtain Pni and Qnj from Pi

and Qj , it is enough to replace moments by empirical moments. For example, Pn1 (x) = x−En(X)
σn(X)

and Qn1 (y) = y−En(Y )
σn(Y ) where En(X) and σn(X) are the empirical expectation and the empirical

standard deviation.

Clearly by using theses empirical polynomials, we obtain estimators of the ρi,j ’s. Indeed, we
define ρ̂ni,j by

ρ̂ni,j =
1
n

[ n∑
`=1

Pni (X`)Qnj (Y`)
]

=
∫
Pni (x)Qnj (y)Qn(dx, dy) .
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Then, ρ̂ni,j
a.s.→ ρi,j .

Then, we call ρ̂ni,j the empirical correlation coefficient of order (i,j). In particular, ρ̂n1,1 is the
classical empirical correlation coefficient.

As a matter of fact, we use the ρ̂ni,j ’s when we do not know the marginal distributions. Other-
wise, we can use the ρni,j ’s defined as ρni,j =

∫
Pi(X)Qj(Y ).Qn(dx, dy).

Then, we obtain easily estimators of all functions which we have introduced above. For example

f̂n(x, y) = 1 +
hn∑
i,j=1

ρ̂ni,jP
n
i (x)Qnj (y)

where hn is an increasing sequence of integers. Then, f̂n converges almost surely to f when hn is
correctly choosen.

The proofs of these results are simple : it suffices to apply the geometrical properties of
empirical orthogonal polynomials. We set Pni = Pi +

∑i
s=0 εi,sPs. Then, εi,s

a.s.→ 0. We deduce
easily the above convergences.

But the geometrical properties of empirical orthogonal functions are mainly interesting in order
to obtain asymptotic distributions. Indeed,

εi,s = −
∫
PiPs.dµn + op(n−1/2) if s < i and 2εi,i = 1−

∫
PiPi.dµn + op(n−1/2) ,

where op(.) denotes the sthocastics ”o” 1 .
The form of these results is quite remarkable. Indeed, the elementary properties of orthogonal

functions show that

εi,s =
∫
Pni Ps.dµ if s < i and εi,i =

∫
Pni Pi.dµ− 1 .

Now, we can generalize these results to other orthogonal families. Indeed, the above geometrical
properties holds when orthonormals functions are built up by the Gram Schmidt process.

Then, we can write easily the asymptotical distributions of all above estimators by using or-
thogonal projection.

Notations 1.4 let h and k ∈ N∗. We denote by Π
∗
[Pi] and Π[Qj ] the orthogonal projections of

(x, y) 7→ Pi(x) and (x, y) 7→ Qj(y) onto the subspaces of L2(Rp+q,Q) generated by the functions
(x, y) 7→ Qj(y) , j=0,1,2,.....,k-1, and (x, y) 7→ Pi(x), i=0,1,....,h-1, respectively. Then, we set

Ci,j(x, y) = Pi(x)Qj(y)− ρi,j
2

[Pi(x)2 +Qj(y)2]−Qj(y)Π
∗
[Pi](y)− Pi(x)Π[Qj ](x) .

Then, we shall prove that the random matrix
√
n{{ρ̂ns,t−ρs,t}}, (s, t) ∈ {1, 2, ...., h}×{1, 2, ...., k}

has asymptotically a normal distribution with mean 0 and variance matrix{{
E{Ci,j(X,Y )Ci′,j′(X,Y )}

}}
.

1According to [19] page 8, section 1.2.5, we write Xn = op(Zn) for two sequences of random variable Xn and

Zn, if Xn/Zn
p→ 0.
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We shall see that this result is more simple than the old classical results. For example, by
using this method, we find immediately that the asymptotic variance of ρ̂n1,1 is equal to

“
1+

ρ2
1,1

2

”
E{P1(X)2Q1(Y )2}+ρ2

1,1
E{P1(X)4}+ E{Q1(Y )4}

4
−ρ1,1

h
E{P1(X)Q1(Y )3}+E{P1(X)3Q1(Y )}

i
.

This result is the good point of empirical orthogonal functions : by simple proofs, we obtain
explicitly each term of asymptotic matrices in a geometrical form.

With these results, we have Hilbertian independence tests. Indeed, by the central Limit Theo-
rem we know its asymptotical distribution. In particular, when X and Y are independent,

n
[ h∑
i=1

k∑
j=1

(ρni,j)
2
]

has asymptotically a chi squared distribution with hk degrees of freedom. We deduce an indepen-
dence test : this test is particular case of the Hilbertian test of Bosq (cf [14]).

2 Elementary properties

At first, we have the following result.

Theorem 2.1 We suppose that {Pi} and {Qj} are two bases of L2(Rp, µ) and L2(Rq, µ′), respec-
tively. Let g ∈ L2(Rp, µ) and g′ ∈ L2(Rq, µ′). Then,∫

g(x)g′(y)Q(dx, dy) =
(∫

g.dµ
)(∫

g′.dµ′
)

+
∑

i>0,j>0

ρi,j

(∫
gPi.dµ

)(∫
g′Qj .dµ

′
)
.

Proof We can write g =
∑
i αiPi in L2(Rp, µ) and g′ =

∑
j βjQj in L2(Rq, µ′).

Therefore, g(x) =
∑
i αiPi(x)Q0(y) and g′(y) =

∑
j βjP0(x)Qj(y) in L2(Rp+q,Q). Then, by

the continuity of the scalar product,∫
g(x)g′(y)Q(dx, dy) =

∑
i,j

αiβjρi,j ,

with ρ0,0 = 1 and ρs,0 = ρ0,s = 0 if s 6= 0. �.

Therefore that proves that we can write FX,Y as in the introduction :

FX,Y (x, y) = FX(x)FY (y) +
∑

i>0,j>0

ρi,j

(∫ x

−∞
Pi.dµ

)(∫ y

−∞
Qj .dµ

′
)
.

More generally we have the following theorem.

Theorem 2.2 We suppose that the hypotheses of theorem 2.1 hold. Let E and F be two Borel sets
of Rp and Rq. Then,

P{X ∈ E, Y ∈ F} = µ(E)µ′(F ) +
∑

i>0,j>0

ρi,j

(∫
E

Pi.dµ
)(∫

F

Qj .dµ
′
)
.
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In particular, we have the following theorem

Theorem 2.3 We suppose that the hypotheses of theorem 2.1 hold. Then, X and Y are indepen-
dent if and only if ρi,j = 0 for all i ≥ 1 and j ≥ 1

Now, it is easy to prove the following theorem.

Theorem 2.4 We suppose that the hypotheses of theorem 2.1 hold.
Then, there exists a probability density function f with respect to µ⊗µ′ such that f ∈ L2(Rq, µ⊗

µ′) if and only if
∑
i>0,j>0 ρ

2
i,j < +∞. Moreover, under this hypothesis,

f(x, y) = 1 +
∑

i>0,j>0

ρi,jPi(x)Qj(y) in L2(Rp+q, µ⊗ µ′) .

Now we generalize the normality of the linear correlation coefficient.

Theorem 2.5 For all j ≥ 1,
∑
i≥1 ρ

2
i,j ≤ 1. Moreover,

∑
i≥1 ρ

2
i,j = 1 if and only if there exists

g ∈ P such that Qj(Y ) = g(X) a.s.

Proof It is enough to apply the elementary properties of the orthogonal projection of (x, y) 7→
Qj(y) onto P. �.

As a matter of fact ρ is a matrix of orthogonal projection.

Theorem 2.6 The pair of operators Π Π∗ is given by the matrices ρ, tρ with respect to the bases
{Qj}j≥1, {Pi}i≥1.

Proof Again, it is enough to apply the elementary properties of the orthogonal projection. In-
deed, Π Π∗ are bounded. Then, the theory of infinite matrices is the simple generalization of the
finite case (cf Akhiezer parag 26, Smirnov ch 5, Weidmann ch 6.3). �.

The following theorem shows that empirical measures are always φ-bounded.

Theorem 2.7 We suppose that µ is concentrated in h+1 distinct points. Then, (X,Y) has a
density function with respect to µ⊗ µ′ : f ∈ L2(Rp+q, µ⊗ µ′).

Proof We can suppose that {Pi} and {Qj} are bases of L2(Rp, µ) and L2(Rq, µ′) (th 3-9 Weid-
mann). Moreover, {Pi} is a finite family : i=0,1,....,h. Then, it is enough to apply theorems 2.5
and 2.4. �.

3 Functional dependence

We know that Pi(x) = Qj(Y ) a.s. if and only if ρi,j = 1 and that Qj(Y ) = g(X) a.s. if and only
if
∑
i≥1 ρ

2
i,j = 1.

In order to generalize these results, we need operators of orthogonal projection. In particular,
we recall that we denote by P and Q are the subspaces of L2(Rp+q,Q) generated by (x, y) 7→ Pi(x),
i=1,2,.... and (x, y) 7→ Qj(y), i=1,2,.... Then, we need operators Π and Π∗.

Notations 3.1 We denote by Π and Π∗ the operators of orthogonal projections of Q onto P and
P onto Q, respectively.
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Then, ρ = {{ρi,j}} is the matrix of orthogonal projection associated to Π with respect to the
bases (of P and Q) {Pi} and {Qj}. Morover tρ is the matrix associated to Π∗ (tρ is the transpose
of ρ).

Now, when q=1, when {Pi} is a basis of L2(R, µ), and when Q1(y) = y−E(Y )
σ(Y ) , there exists

g ∈ P, such that Y=g(X) a.s. if and only if
∑
i>0 ρ

2
i,1 = 1. Moreover, in this case

Y = E{Y }+ σ(Y )
[∑
i>0

ρi,1Pi(X)
]
a.s.

As a matter of fact, this result is also a particular case of the following theorems.

Theorem 3.1 Let λ be an eigenvalue of Π, Π∗. Then, −1 ≤ λ ≤ 1. Moreover, 1 or -1 is an
eigenvalue if and only if there exists g ∈ P, g 6= 0, and g′ ∈ Q, g′ 6= 0 such that g(X)=g’(Y) a.s.
Under this hypothesis, g and g’ are eigenelements associated to eigenvalue 1 (or -1). Moreover
g = Π(g′) and g′ = Π∗(g).

On the other hand all eigenvalues are equal to 0 when X and Y are independent.

Proof This result is a corollary of theorems 1-2 and 1-5 of [15]. �

Theorem 3.2 Let ν be an eigenvalue of tρρ. Then, 0 ≤ ν ≤ 1.
Moreover, 1 is an eigenvalue if and only if there exists g ∈ P, g 6= 0, and g′ ∈ Q, g′ 6= 0

such that g(X)=g’(Y) a.s. Under this hypothesis, g’ is an eigenvector associated to eigenvalue 1.
Moreover g = Π(g′) and g′ = Π∗(g).

On the other hand all eigenvalues are equal to 0 when X and Y are independent.

Proof We know that λ is an eigenvalue of Π, Π∗ if and only if λ2 is an eigenvalue of Π ◦ Π∗ (cf
ch 7 of [21] or 3-14 of [6]). �

In particular, we can generalize theorem 1.4 of Lancaster.

Proposition 3.1 We suppose that {Pi} and {Qj} are two bases of L2(Rp, µ), and L2(Rq, µ′),
respectively. Then, there exists a measurable function g such that Y=g(X) a.s. if and only if
tρρ = I where I is the identity matrix.

Proof Let γ ∈ L2(Rq, µ′).
At first, we suppose there exists g such that Y=g(X) a.s. Then, γ(Y ) = γ[g(X)] and γ ◦ g ∈

L2(Rp, µ). Then, Π(γ) = γ ◦ g and Π∗(γ ◦ g) = γ, i.e. Π∗ ◦Π is the identity operator.
Now, we suppose tρρ = I. Then, ||γ|| = ||Π∗ ◦ Π(γ)|| ≤ ||Π(γ)|| ≤ ||γ|| where ||.|| is the norm

of L2(Rp+q,Q). Then, Π(γ) = γ in L2(Rp+q,Q).
Therefore, when Ys ∈ L2(Ω,A, P ), (Y = (Y1, Y2, ...., Yq)), there exists gs ∈ L2(Rp, µ) such that

Ys = gs(X) a.s.
When Ys /∈ L2(Ω,A, P ), we use a partition {Om} of Ω : we define Y ms ∈ L2(Ω,A, P ) by

Y ms (ω) = Ys(ω) when ω ∈ Ωm and 0 if not. �

4 Canonical correlation coefficients

At first, we suppose that FX,Y is φ2-bounded. Then, the pair of canonical function ηi, ξi is a pair
of eigenelements of Π, Π∗ and ρi, the canonical correlation coefficient, is the associated eigenvalue :
E{ξi(X)ηj(Y )} = ρiδi,j . Then, ηi is also an eigenvector of tρρ and ρ2

i is the associated eigenvalue.
Moreover, f(x, y) = 1 +

∑
i>0 ρiξi(x)ηi(y) and φ2 + 1 =

∫
f2.d(µ⊗ µ′).

Now, in the case of canonical analysis of countable type, we obtain still an orthonormal basis
of canonical functions {ξi} and {ηi}. Indeed, we recall the following theorem.
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Theorem 4.1 We suppose that there exists {ξi}i≥1 and {ηj}j≥1 two orthonormal bases of P and
Q respectively such that E{ξi(X)ηj(Y )} = ρiδi,j. Then, ξi, ηi is a pair of eigenelements of Π, Π∗

with associated eingenvalue ρi.

In this case, ({ξi}, {ηi}, {ρi}) is a canonical analysis of countable type of P and Q (cf [16]).

In this case, if P = L2(Rp, µ) and Q = L2(Rq, µ′),

FX,Y (x, y) = FX(x)FY (y) +
∑
i>0

ρi

(∫ x

−∞
ξi.dµ

)(∫ y

−∞
ηi.dµ

′
)

for all (x, y) ∈ Rp+q.

In the general case, Dauxois and Pousse have generalized the definition of canonical analysis
by using Π and Π∗. Unfortunately the canonical correlation coefficients are not always defined.

However, in practice, it is not important that the theoretical ρi exist. Indeed, we calculate
the eigenelements ξi = ξi(h) and ηi = ηi(h) and the eigenvalues ρi = ρi(h) of a finite matrix
ρ(h) = {{ρi,j}}, i and j ∈ {1, 2, ...., h}.

Now, by theorem 2.2, we can specify this approximation.

Theorem 4.2 We suppose that the hypotheses of theorem 2.2 hold. For all h ∈ N∗, we denote by
Ph and Qh

the subspaces of L2(Rp+q,Q) generated by (x, y) 7→ Pi(x), i=1,2,....,h, and (x, y) 7→
Qj(y), j=1,2,....,h, respectively.

Then, there exists {ξhi }i=1,2,...,h and {ηhj }j=1,2,...,h two orthonormal bases of Ph and Qh
respec-

tively, such that E{ξhi (X)ηhj (Y )} = ρhi δi,j for all (i, j) ∈ {1, 2, ..., h}2.
Moreover,

P{X ∈ E, Y ∈ F} = µ(E)µ′(F ) + Limh→∞

[ h∑
i=1

ρhi

(∫
E

ξ
h

i .dµ
)(∫

F

ηhi .dµ
′
)]

.

In particular,

FX,Y (x, y) = FX(x)FY (y) + Limh→∞

{ h∑
i=1

ρhi

(∫ x

−∞
ξhi .dµ

)(∫ y

−∞
ηhi .dµ

′
)}

for all (x, y) ∈ Rp+q.

5 Conditional Probabilities

At first, because the conditional expctation is an orthogonal projection, we have the following
theorem (cf Lancaster th 1-2).

Theorem 5.1 We suppose that {Pi} is a basis of L2(Rp, µ). We suppose also that q=1, E{Y 2} <
+∞, Q1(y) = y−E{Y }

σ(Y ) . Then, E{Y |X = x} ∈ L2(Rp, µ).
Moreover,

E{Y |X = x} = E{Y }+ σ(Y )
∑
i>0

ρi,1Pi(x) ∈ L2(Rp, µ) .

We deduce a series expansion for the conditional probability.
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Theorem 5.2 We suppose that the hypotheses of theorem 2.2 hold. Let P{Y ∈ F |X = x} be the
conditional probability of Y ∈ F given X=x. Then, P{Y ∈ F |X = x} ∈ L2(Rp, µ). Moreover,

P{Y ∈ F |X = x} = µ′{F}+
∑
i>0

[∑
j>0

ρi,j

(∫
F

Qj .dµ
′
) ]

Pi(x) .

Proof By theorem 5.1,

P{Y ∈ F |X = x} = µ′{F}+
∑
i>0

[ ∫
Y ∈F

Pi(X).dP
]
Pi(x) .

By theorem 5.1 again ,∫
Y ∈F

Pi(X).dP =
∫
F

E{Pi(X)|Y = y}.µ′(dy) =
∫
1F (y)

(∑
j>0

ρi,jQj(y)
)
µ′(dy) .

By the continuity of scalar product, we deduce 5-2. �

Now the dependence density is also a conditional density

Theorem 5.3 We suppose that there exists a probability density function f of (X,Y) with respect
to µ⊗ µ′. Let µ′x be the conditional distribution of Y given X=x. Let fx be the function defined
by fx(y) = f(x, y). Then, fx is µ-almost surely the probability density function of µ′x with respect
to µ′.

Proof This theorem is proved by the same way as the classical theorem for the Lebesgue
measure. �

In [6], we named f ”dependence density” because this density defines completely dependence
between X and Y. Now, if f ∈ L2, we can specify this result.

Theorem 5.4 We suppose that the hypotheses of theorem 2.4 hold. Then, fx ∈ L2(Rq, µ′) µ-
almost surely.

Moreover, for all x ∈ Rp, such that fx is defined and fx ∈ L2(Rq, µ′),

fx(y) = 1 +
∑
j>0

Hx
j Qj(y) in L2(Rq, µ′),

and for all j > 0, Hx
j =

∑
i>0 ρi,jPi(x) ∈ L2(Rp, µ).

Proof Let D be set of x ∈ Rp such that fx is a density and fx ∈ L2(Rq, µ′).
When x ∈ D, we set fx =

∑
j≥0H

x
j Qj in L2(Rq, µ′).

When x /∈ D, we set Hx
0 = 1 and Hx

j = 0 if j > 0.
Then, µ(D) = 1. Therefore,∫

[Hx
j ]2.µ(dx) =

∫ [ ∫
f(x, y)Qj(y).µ′(dy)

]2
.µ(dx)

≤
∫ [

f(x, y)2.µ′(dy)
] [ ∫

Qj(y)2.µ′(dy)
]
.µ(dx)

=
∫ [

f(x, y)2.µ′(dy)
]
.µ(dx) <∞ .

Therefore, Hx
j ∈ L2(Rp, µ) and∫
Hx
j Pi(x).µ(dx) =

∫ [ ∫
f(x, y)Qj(y).µ′(dy)

]
Pi(x)µ(dx) = ρi,j . �
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6 Estimation

In this section, we use again {(X`, Y`)}`∈N, an I.I.D. sequence of random vectors. We denote byQn,
µn, µ′n the empirical probabilities associated to {(X`, Y`)}`=1,2,...,n, {X`}`=1,2,...,n, {Y`}`=1,2,...,n .

For example suppose that Pni and Qnj are the orthonormal polynomials associated to µn and
µ′n, then, Pn1 (x) = x−En(X)

σn(X) and Qn1 (y) = y−En(Y )
σn(Y ) .

Moreover, ρ̂ni,j =
∫
Pni (x)Qnj (y)Qn(dx, dy) and ρni,j =

∫
Pi(X)Qj(Y ).Qn(dx, dy) are estimators

of ρi,j .

Now, we generalize these results to other orthogonal families. Indeed, the above geometrical
properties holds when orthonormals functions are built up by the Gram Schmidt process. Then,
we recall the hypotheses which are necessary in order to build up empirical orthogonal functions.

Notations 6.1 Let {Z`}`∈N be an IID sequence defined on (Ω,A, P ). Let m be the law of Z0. For
all n ∈ N∗, we denote by mn the empirical probability associated to {Z`}`=1,2,....,n.

Let z0, z1, ...., zh be h+1 real variables. We set z = (z0, z1, ...., zh) and we identify zs with the
function z 7→ zs. We suppose that

∫
z2
s .dm < +∞ for all s ∈ 0, 1, ..., h and that z0, z1, ...., zh are

lineraly independent in L2(Rh+1,m) .
Moreover, let <,> and ||.||, (resp <,>n and ||.||n) be the scalar product and the norm of

L2(Rh+1,m) (resp L2(Rh+1,mn)).

Under these hypotheses, we can define orthogonal functions

Notations 6.2 For all z ∈ Rh+1, we set Ã0(z) = A0(z) = Ãn0 (z) = An0 (z) = 1 and for h ≥ j > 0,
let

Ãj(z) = zj −
j−1∑
s=0

< zj , As > As(z),

Ãnj (z) = zj −
j−1∑
s=0

< zj , A
n
s >n A

n
s (z),

Aj(z) =
Ãj(z)
||Ãj ||

.

Anj (z) =
Ãnj (z)

||Ãnj ||n
if ||Ãnj ||n 6= 0, Anj (z) = 0 if ||Ãnj ||n = 0.

For example, in order to obtain orthogonal polynomials, we orthogonalize 1, x, x2, ...., xh in
L2(Rp, µ) by the Gram schmidt Process. Moreover, we build up the empirical orthonormal poly-
nomials by orthogonalizing 1, x, x2, ...., xh in L2(Rp, µn). More generally, we can obtain estimators
of Pi if {Pi} is built up by the Gram Schmidt Process.

Hypotheses 6.1 In this section, we suppose that {Pi}, i=0,1,...,h, and {Qj}, j=0,1,...,k, are two
families of orthonormal functions. Therefore ρ is an h× k matrix.

We suppose also that, for all ` ∈ N, Z` = φ(X`) where φ is a measurable function. We suppose
also that, Pi(x) = Ai[φ(x)] for all i ∈ {0, 1, ..., h}. Then, we define Pni by Pni (x) = Ani [φ(x)].

We suppose that the corresponding assumptions hold for the Qj’s : Qj(y) = Bj [γ(y)], Qnj (y) =
Bnj [γ(y)].

10



For example if φ(X) = (1, X,X2, ..., Xh), {Pi} is the family of orthonormal polynomials.

Then, the Pni ’s are estimators of the Pi’s.

Theorem 6.1 For all j ∈ {0, 1, ..., h}, we set

P̃nj = P̃j +
j∑
s=0

ε̃nj,sPs and Pnj = Pj +
j∑
s=0

εnj,sPs .

Then, for all i ∈ {0, 1, ..., h} and for all s ∈ {0, 1, ..., i}, εi,s
a.s.→ 0.

Proof In order to prove this result, we use the same method as in 3-3 of [3]. �

Remark that ε̃nj,j = 0, i.e. P̃nj = P̃j +
∑j−1
s=0 ε̃

n
j,sPs .

Then, we can define higher order empirical correlation coefficients.

Notations 6.3 For all (i, j) ∈ {0, 1, ..., h} × {0, 1, ..., k}, we set

ρ̂ni,j =
∫
Pni (x)Qnj (y).Qn(dx, dy) and ρni,j =

∫
Pi(x)Qj(y).Qn(dx, dy) .

Moreover, we set ρ̂n = {{ρ̂ni,j}}(i,j)∈{0,1,...,h}×{0,1,...,k} and ρn = {{ρni,j}}(i,j)∈{0,1,...,h}×{0,1,...,k}.

Then, these coefficients are estimators of the ρi,j ’s.

Theorem 6.2 For all (i, j) ∈ {0, 1, ..., h} × {0, 1, ..., k}, ρ̂ni,j
a.s.→ ρi,j and ρni,j

a.s.→ ρi,j.

Proof This theorem is deduced from theorem 6.1. �.

We obtain also estimators of the canonical correlation coefficients.

Theorem 6.3 For all (i, j) ∈ {0, 1, ..., h} × {0, 1, ..., k}, let (ξi, ηj), (ξ̂ni , η̂
n
j ), (ξni , η

n
j ) be the

eigenelements of (tρ, ρ), (tρ̂n, ρ̂n), (tρn, ρn), respectively, with associated eigenvalues ρi, ρ̂i, ρni .
Then, for all x ∈ Rp, and for all i ∈ {0, 1, ..., h}, ξ̂ni (x) a.s.→ ξi(x) and ξni (x) a.s.→ ξi(x). Moreover,

ρ̂ni
a.s.→ ρi and ρni

a.s.→ ρi.

Proof This theorem is deduced from theorem 6.1. �.

Remark 6.1 In theorem 6-7 of [2], we have wrotten that ξ̂ni (x) a.s.→ τi and ξni (x) a.s.→ τi. It was an
error. Moreover, we had not defined τi in this paper : τi is defined in part I, theorem 3-23 of [6].

Finally, we can also obtain estimators of the dependence density and of conditional probability.
For example, we have the following theorem.

Theorem 6.4 We suppose that the hypotheses of theorem 2.4 hold.
Then, there exists two increasing sequences of integers {hn} and {kn} such that

∫
(f−f̂n)2.d(µ⊗

µ′) a.s.→ 0 where

f̂n(x, y) = 1 +
hn∑
i=1

kn∑
j=1

ρ̂ni,jP
n
i (x)Qnj (y) .

11



Proof We know that∫
(f − f̂n)2.d(µ⊗ µ′) =

hn∑
i=1

kn∑
j=1

[
ρ̂ni,j − ρi,j

]2 +
∑

i>hn or j>kn

ρ2
i,j . �

In the same way, we can also obtain estimators of E{Y |X = x}, P{Y ∈ F |X = x} and fx. In
particular En{Y |X = x} is the OLSE (cf [5]). We shall study these results later.

In order to obtain the asymptotical distribution of the ρ̂ni,j ’s, we recall the theorem 1 of [5] (cf
also theorem 11, page 23 of [13]).

Theorem 6.5 We suppose that E{Pi(X)4} < +∞ for i=0,1,...,h. Then, for all i ∈ {0, 1, ..., h},
εi,s = −

∫
PiPs.dµn + op(n−1/2) if i > s and εi,i = 1−

R
P 2

i .dµn

2 + op(n−1/2).

Now we recall that we set Ci,j(x, y) = Pi(x)Qj(y)− ρi,j

2 [Pi(x)2 +Qj(y)2]−Qj(y)Π
∗
[Pi](y)−

Pi(x)Π[Qj ](x) where Π
∗
[Pi] and Π[Qj ] are the orthogonal projections of Pi(x) and Qj(y) onto

the subspaces of L2(Rp+q,Q) generated by the functions (x, y) 7→ Qj(y) , j=0,1,.....,k-1, and
(x, y) 7→ Pi(x), i=0,1,....,h-1.

Then, we can prove the following theorem.

Theorem 6.6 We suppose that E{Pi(X)4} < +∞ for all i ∈ {0, 1, ..., h} and E{Qj(Y )4} < +∞
for all j ∈ {0, 1, ..., k}.

Then,
√
n(ρ̂n−ρ) has asymptotically a normal distribution with mean 0 and covariance matrix{{

E{Ci,j(X,Y )Ci′,j′(X,Y )}
}}

.

Proof We set

Pni = Pi +
i∑

s=0

εi,sPs and Qnj = Qj +
j∑
t=0

ε′j,tQt ,

and we use theorem 6.5.
Then, εi,sε′j,t = op(n−1/2) and

εi,s

∫
Ps(x)Qj(y).Qn(dx, dy) = εi,sE{Ps(X)Qj(Y )}+ op(n−1/2) .

We deduce that √
n(ρ̂ni,j − ρi,j)

=
∫
Ps(x)Qj(y).Qn(dx, dy)− ρi,j

2

[ ∫
P 2
i .dµn +

∫
Q2
j .dµ

′
n

]
−

∑i−1
s=0 E{Ps(X)Qj(Y )}

∫
PiPs.dµn

−
∑j−1
t=0 E{Pi(X)Qt(Y )}

∫
QjQt.dµ

′
n

+ op(n−1/2)

=
∫
Ci,j .dQn + op(n−1/2) .

By the holder inequality, E{Ci,j(X,Y )2} < +∞. Then, it is enough to apply the central limit
theorem. �
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Therefore, when X and Y are independent
√
nρ̂n has asymptically a normal distribution with

mean 0 and covariance matrix the identity matrix.

Now, in some cases, on can obtain asymptotic distribution of some functional estimators.

Theorem 6.7 We suppose that the hypotheses of theorems 2.4 and 6.6 hold. We write θn =
{{θni,j}}(i,j)∈{0,1,...,h−1}×{0,1,...,k−1} where

f̂n(x, y) =
hn∑
i=0

kn∑
j=0

θni,jPi(x)Qj(y) .

Moreover, in this theorem, we set ρ = {{ρi,j}}(i,j)∈{0,1,...,h−1}×{0,1,...,k−1} with ρ0,0 = 1 and
ρ0,i = ρi,0 = 0 if i > 0.

Then,
√
n(θn−ρ) has asymptotically a normal distribution with mean 0 and covariance matrix{{

E{Mi,j(X,Y )Mi′,j′(X,Y )}
}}

where Mi,j(x, y) = Pi(x)Qj(y)−Pi(x)Π
′
[Qj ](x)−Qj(y)Π[Pi](y)−

ρi,j.

Proof We set εn = {{εi,s}}(i,s)∈{0,1,....,h−1}2 with εi,s = 0 if s > i.
Then

t(Pn0 , P
n
1 , .......P

n
h−1) =t (P0, P1, .......Ph−1) + εn t(P0, P1, .......Ph−1) .

Of course, we can write equivalent equalities for the Qj ’s : Qnj = Qj +
∑k−1
s=0 β

n
j,sQs and

t(Qn0 , Q
n
1 , .......Q

n
k−1) =t (Q0, Q1, .......Qk−1) + βn t(Q0, Q1, .......Qk−1) .

Let Ih be the idendity matrix (h,h). Then,

θn =
(
Ih +t εn + εn +t εnεn

)
ρn
(
Ik +t βn + βn +t βnβn

)
.

Let Rn = {{
∫
PrPt.dµn}}(r,t)∈{0,1,....,h−1}2 and T n = {{

∫
QrQt.dµn}}(r,t)∈{0,1,....,k−1}2 . Then, by

using theorem 6.5
θn = ρn + (tεn + εn)ρ+ ρ(tβn + βn) + op(n−1/2)

= ρn + (Ih −Rn)ρ+ ρ(Ik − T n) + op(n−1/2) .

We deduce the theorem. �.

Now, one can suppose that h, k → ∞. Indeed, let Π[Pi]∞ be the orthogonal projection of
Pi(x) on the subspace generated by the functions Qj(y), j ∈ N (if {Qj} is a basis of L2(R, µ′), this
subspace is obviously L2(R, µ′)). Then, we know that Π[Pi](y)→ Π[Pi]∞ as h→∞ in L2(Rq, µ′).

Then, one can obtain various assumptions such that

E{Mi,j(X,Y )Mi′,j′(X,Y )} → E{M∞i,j(X,Y )M∞i′,j′(X,Y )}

where M∞i,j(x, y) = Pi(x)Qj(y) − Pi(x)Π
′
[Qj ]∞(x) − Qj(y)Π[Pi]∞(y) − ρi,j and, therefore, the

asymptotic distribution of

f̂n(x, y) = 1 +
hn∑
i=1

kn∑
j=1

ρ̂ni,jP
n
i (x)Qnj (y)) .
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Moreover, one can obtain the same type of results for the other estimators introduced in this
report. In particular for the OLSE. We shall study these problems later.

Thes results are more simple than the old classical results. Indeed in order to obtain asymptotic
distributions, one could also use the following theorem (th A, p 122 of [19]).

Theorem 6.8 Let Un = (Un,1, Un,2, ..........., Un,k) ∈ Rk be a random vector asymptotically normal
with mean m and covariance matrix bnΣ when bn → 0. Let g(u) = [g1(u), g2(u), ....., gr(u)] ∈ Rr,
u = (u1, u2, ...., uk), be a vector valued function for which each component functions gi(u) is real
valued and has a nonzero differential at u = m.

Then, g(Un) is asymptotically normal with mean g(m) and covariance matrix b2nDΣtD where

D =
[ ∂gi
∂uj

∣∣∣
u=m

]
r×k

.

This theorem was the key of many problems on symptotical distributions. But the obtained
formulae my be complicated. For example, in order to obtain the asymptotic distribution of the
empirical linear correlation coefficient, we set ρ̂n1,1 = g(U) (cf [19] p 126) where

U =
(
En(X),En(Y ),

∫
x2.µn(dx),

∫
y2.µ′n(dy),

∫
xy.Qn(dx, du)

)
=

1
n

( n∑
`=1

X`,

n∑
`=1

Y`,

n∑
`=1

X2
` ,

n∑
`=1

Y 2
` ,

n∑
`=1

X`Y`

)
.

and
g(u1, u2, u3, u4, u5) =

u5 − u1u2√
(u3 − u2

1)(u4 − u2
2)
.

Now, bn = 1
n ,

m =
(
E{X},E{Y },E{X2},E{Y 2},E{XY }

)
and

Σ =

0BBBBB@
E{X2} − E{X}E{X}) , E{XY } − E{X}E{Y }) , E{X3} − E{X}E{X2}) , E{XY 2} − E{X}E{Y 2}) , E{X2Y } − E{X2}E{Y })
E{XY } − E{X}E{Y }) , E{Y 2} − E{Y }E{Y }) , E{X2Y } − E{X2}E{Y }) , E{Y 3} − E{Y }E{Y 2}) , E{XY 2} − E{Y }E{XY })

E{X3} − E{X}E{X2}) , E{X2Y } − E{X2}E{Y }) , E{X4} − E{X2}E{X2}) , E{X2Y 2} − E{X2}E{Y 2}) , E{X3Y } − E{X3}E{XY })
E{XY 2} − E{X}E{Y 2}) , E{Y 3} − E{Y }E{Y 2}) , E{X2Y 2} − E{X2}E{X2}) , E{Y 4} − E{Y 2}E{Y 2}) , E{XY 3} − E{Y 2}E{XY })

E{X2Y } − E{X}E{XY }) , E{XY 2} − E{X}E{XY }) , E{X3Y } − E{XY }E{X2}) , E{XY 3} − E{XY }E{Y 2}) , E{X2Y 2} − E{XY }E{XY })

1CCCCCA

Then the form of asymptotic variance of ρ̂n1,1 is complicated. For example,

∂g

∂u1
=

[u5 − u1u2]′[
√

(u3 − u2
1)(u4 − u2

2)]− [u5 − u1u2][
√

(u3 − u2
1)(u4 − u2

2)]′

|(u3 − u2
1)(u4 − u2

2)|

=
−u2

√
(u3 − u2

1)(u4 − u2
2)− (1/2)[u5 − u1u2][(−2u2

1)(u4 − u2
2)]
{

(u3 − u2
1)(u4 − u2

2)
}−1/2

|(u3 − u2
1)(u4 − u2

2)|

=
−u2√

(u3 − u2
1)(u4 − u2

2)
+

[u5 − u1u2][u2
1(u4 − u2

2)]{
(u3 − u2

1)(u4 − u2
2)
}3/2

.

Therefore

∂g

∂u1
(m) =

−E{Y }√(
E{X2} − E{X}2

)(
E{Y 2} − E{Y }2

)+
E{X}2

[
E{XY } − E{X}E{Y }

](
E{Y 2} − E{Y }2

){(
E{X2} − E{X}2

)(
E{Y 2} − E{Y }2

)}3/2
.
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Now it is needed to write also ∂g
∂us

(m) for s=2,3,4,5.

Then, a priori, by using theorem 6.8, one see that the asymptotic variance of ρ̂n1,1 is a rational
fraction of square roots of linear combination of polynomials in E{X}, E{X2}, E{X2}, E{Y 2}
and E{XY }.

Then the calculations in order to obtain explicitly this variance are very complicated. If they
are done, we see that the writing of this variance is indeed complicated. However, this is only the
variance of the correlation coefficient of order (1,1). Imagine what it will be for other correlation
coefficients.

In contrast, if we use the theorem 6.6, we saw that this variance is given in a simple geometric
form. Moreover the computation is also much simpler. Indeed, by using theorem 6.6, we find
immediately that the asymptotic variance of ρ̂n1,1 is equal to

“
1+

ρ2
1,1

2

”
E{P1(X)2Q1(Y )2}+ρ2

1,1
E{P1(X)4}+ E{Q1(Y )4}

4
−ρ1,1

h
E{P1(X)Q1(Y )3}+E{P1(X)3Q1(Y )}

i
.

This result is the good point of empirical orthogonal functions : by simple proofs, we obtain ex-
plicitly each term of asymptotic matrices in a geometrical form.

7 Hilbertian independence test

Because we have the asymptotic distribution of ρn, we can deduce a Hilbertian independence test.

Theorem 7.1 We suppose that the hypotheses of theorem 6.6 hold. We set

||Ŝn||2 = n
[ h∑
i=1

k∑
j=1

(ρ̂ni,j)
2
]

||Sn||2 = n
[ h∑
i=1

k∑
j=1

(ρni,j)
2
]
.

Then, if X and Y are independent, ||Ŝn||2 and ||Sn||2 have asymptotically a chi squared distri-
bution with hk degrees of freedom.

Moreover, il there exists (i, j) ∈ {1, 2, ..., h} × {1, 2, ..., k} such that ρi,j 6= 0, then, ||Ŝn||2
a.s.→

+∞ and ||Sn||2
a.s.→ +∞.

We point out that Bosq has studied the asymptotic power of the test associated to ||Sn||2 when
h = h(n) → +∞ and k = k(n) → +∞ (cf [14]). Moreover, the power of the test associated to
||Ŝn||2 is studied in [6].

8 Examples

8.1 Polynomial correlation coefficients

We suppose that {Pi} and {Qj} are the families of orthonormal polynomials (with p=q=1).
Then, the ρi,j ’s measure polynomials dependences. Thus, ρ1,2, ρ2,1 and ρ2,2 measure quadratic
dependences. For example, Y = aX2 + bX + c if and only if

ρ2
1,1 + ρ2

2,1 = 1.
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Now, when h, k →∞, we know that Fh,kX,Y (x, y)→ FX,Y (x, y) where

Fh,kX,Y (x, y) = FX(x)FY (y) +
h∑
i=1

k∑
j=1

ρi,j

(∫ x

−∞
Pi.dµ

)(∫ y

−∞
Qj .dµ

′
)
.

For example if X and Y have the uniform distribution U([0,1]), then, Pi = Qi = Li, the
Legendre polynomials of degree i, and if ρi,j = 0 for i ≤ k and j ≤ k, then, by [11] and [8],

D(X,Y ) ≤ 1, 372

√
log
(2k + 1

2k − 3

)
,

where

D(X,Y ) ≤

√
90
(∫ ∫ [

FX,Y (x, y)− FX(x)FY (y)
]
µ(dx)µ′(dy)

)
.

As a matter of fact, D(X,Y ) is an standardized indicator of dependence which checks the
axioms of Renyi (cf [22], or 1-5 [8]).

We recall also that {Pi} may be not a basis of L2(R, µ) (cf Natanson p 149-150). But {Pi}
is a basis when the supporting set of µ is bounded or also when X has a Normal or a Gamma
distribution (cf Natanson).

8.2 Hermite correlation coefficients

We are in a particular case of polynomials correlation coefficients. When X ∼ N(0, 1) and
Y ∼ N(0, 1), the orthonormal polynomials are the Hermite polynomials Hi. They are a basis
of L2(R, µ).

In particular, when (X,Y) is a normal vector (X,Y ) ∼ N2(0, C), Hi(x) and Hi(y) are the
canonical functions with ρi for associated correlation coefficient with ρ = ρ1,1, i.e. ρi = ρi, ρi,j =
ρiδi,j (cf Lancaster 3-5-2). There is a single dependence parameter ρ. Therefore, if ρ1,1 = ρ = 0 ,
ρi,j = 0 and X and Y are independent.

Now, if we suppose only that X ∼ N(0, 1) and Y ∼ N(0, 1), we have a countable number of
dependence parameters, the ρi,j ’s. In this case, ρ1,1 may be equal to 0 even if X and Y are not
independent.

Now we suppose that (X,Y ) ∈ R4 is a nonsingular normal vector, X = (X1, X2, X3), Xs ∼
N(0, 1), Y ∼ N(0, 1). We suppose that X1, X2 and X3 are not independent. Then, the family
{Hi1(X1)Hi2(X2)Hi3(X3)} is not orthogonal.

But we know that there exists a matrix Λ such that t(U1, U2, U3) = Λt(X1, X2, X3) where
(U1, Y ), U2 and U3 are independent and Us ∼ N(0, 1) (Csaki Fisher page 39-43). So we set
Hi1,i2,i3(x1, x2, x3) = Hi1(u1)Hi2(u2)Hi3(u3) where t(u1, u2, u3) = Λt(x1, x2, x3). Then, {Hi1,i2,i3}
is an orthonormal basis of L2(R3, µ).

Moreover ρ(i1,i2,i3),J = E{Hi1,i2,i3(X)HJ(Y )} = ρi1δi1,Jδi2,0δi3,0 where ρ is the linear correla-
tion coefficient of U1 and Y.

8.3 Spearmann correlation coefficients

We suppose that FX and FY are continue with p=q=1. We know that
(
FX(X), FY (Y )

)
∈ [0, 1]2.

Moreover, FX(X) and FY (Y ) have the uniform distribution µu.
Let {Li} be the family of the Legendre orthonormal polynomials. Then {Li} is an orthonormal

basis of L2(R, µu) (cf Natanson).
We know that ρS , the Spearmann correlation coefficient of (X,Y) is equal to the linear cor-

relation coefficient of FX(X) and FY (Y ). Then, we denote by ρSi,j the polynomial correlation
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coefficient of order (i,j) of FX(X) and FY (Y ) : ρSi,j = E{Li[FX(X)]Lj [FY (Y )]}. Clearly the
ρSi,j ’s generalize and complement ρS = ρS1,1. Then, we can call them ”higher order Spearmann
correlation coefficient”.

We set ρ̃i,j = ρi,j if i ≥ 1 and j ≥ 1 and 0 if not. Then, by 3-7 of [11], one can write

FX,Y (x, y) = FX(x)FY (y) +
∞∑
i=0

∞∑
j=0

βi,jLi[FX(x)]Lj [FY (y)] ,

where

βi,j =

ρ̃i+1,j+1√
(2i+3)(2j+3)

+ ρ̃i−1,j−1√
(2i−1)(2j−1)

− ρ̃i−1,j+1√
(2i−1)(2j+3)

− ρ̃i+1,j−1√
(2i+3)(2j−1)

4
√

(2i+ 1)(2j + 1)
.

Then, as in section 8.1, one can deduce

D(X,Y ) ≤ 1, 372

√
log
(2k + 1

2k − 3

)
,

if ρSi,j = 0 for i ≤ k and j ≤ k.

8.4 Haar Correlation coefficient

Let {Ei}i=0,1,...,h and {Fj}j=0,1,...,k be two partitions of Rp and Rq, respectively. If Pi and Qj are
linerar combinations of the indicator functions 1Es and 1Ft , we obtain systems of Haar. Moreover,
in order to obtain orthonormal basis, it is enough to use sequences of partitions judiciously chosen.

For example, when µ = µu the lebesgue measure on [0,1[, we can use Haar special system {Wi}:
W0 ≡ 1, and for i = 2k

′
+m, m < 2k

′
, k′,m ∈ N, Wi(x) = 1 if 2m

2k′+1 ≤ x < 2m+1
2k′+1 , Wi(x) = −1 if

2m+1
2k′+1 ≤ x < 2m+2

2k′+1 and Wi(x) = 0 if not. Afterwards, we normalize the Wi’s.
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Figure 1: W0
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Figure 2: W1

Now, when, we truncate the series expansion of P (cf theorem 2.2 ), we obtain an approximation
of Q. This approximation has a density function with respect to µ⊗ µ′ :

fh,k(x, y) = 1 +
h∑
i=1

k∑
j=1

ρi,jPi(x)Qj(y) .
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Figure 3: W2
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Figure 4: W3
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Figure 5: W4
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Figure 6: W5
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Figure 7: W6
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Figure 8: W7
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Figure 9: ρ1,1 =
√

2[Q(A) +Q(C)−Q(B)−Q(D)]

Clearly f is constant on every rectangle Ei × Fj : f(x, y) = Q(Ei×Fj)
µ(Ei)µ′(Fj)

. In the same way,

Ph,k{Y ∈ F |X = x} = µ′(F ) +
h∑
i=1

[ k∑
j=1

ρi,j

∫
F

Qj .dµ
′
]
Pi(x)

is an approximation of the conditional probability. Thus, we can choose {Fj} such that there
exists j with F = Fj . Then, when x ∈ Ei,

Ph,k{Y ∈ F |X = x} =
Q(Ei × F )
µ(Ei)

= P{Y ∈ F |X ∈ Ei} .

Moreover, when p=1, we can suppose that the Ei’s are intervals. Then, P{Y ∈ F |X = x} is the
limit in L2 of Q(Ei×F )

µ(Ei)
, x ∈ Ei, when the length |Ei| of Ei converges to 0 :

P{Y ∈ F |X = x} = lim|Ei|→0, x∈Ei

(Q(Ei × F )
µ(Ei)

)
in L2(R, µ) .

In order to estimate Pi and Qj , we remark that hypotheses 6.1 hold : we orthogonalize {1Ei}
and {1Fj} with respect to µn and µ′n. For example, we can choose φ = (1,1E0 ,1E1 , ......,1Eh−1).
Then, we estimate f by

fn(x, y) = 1 +
h∑
i=1

k∑
j=1

ρni,jP
n
i (x)Qnj (y)

or

f̂n(x, y) = 1 +
h∑
i=1

k∑
j=1

ρ̂ni,jP
n
i (x)Qnj (y) .

Let ni,j (resp, ni., n.j) be the number of (X`, Y`) which belongs to Ei × Fj , (resp, Ei × Rq,
Rp × Fj) when 1 ≤ ` ≤ n. Then, f̂n and fn are constant on each Ei × Fj :

f̂n(x, y) = n
ni,j
ni.n.j

and fn(x, y) =
ni,j

nµ(Ei)µ′(Fj)
.

Moreover, when x ∈ Ei,

µ′n(Fj) +
h∑
s=1

[ k∑
t=1

ρ̂ns,t

∫
F

Qt.dµ
′
n

]
Pns (x) =

ni,j
ni.

,

the empirical probability of Y ∈ Fj given X ∈ Ei.

Now, the Hilbertian independence tests are the chi squared independence tests. When the
marginal distributions are unknown, the following equalities hold :

χ̂2
X,Y = n

h∑
i=1

k∑
j=1

(
ni,j − ni.n.j

n

)2
ni.n.j

= n

∫ ∫
(f̂n − 1)2.dµndµ′n = n

h∑
i=1

k∑
j=1

(ρ̂ni,j)
2 .
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Then, the chi squared independence test with estimation of parameters is an particular Hilbertian
independence test.

In the case where the marginal distribution are known, we have proved that (with classical
notations : cf [4])

n

h∑
i=1

k∑
j=1

(ρni,j)
2

=
h∑
i=0

k∑
j=0

(
ni,j − nµ(Ei)µ′(Fj)

)2
nµ(Ei)µ′(Fj)

−
h∑
i=0

(
ni. − nµ(Ei)

)2
nµ(Ei)

−
k∑
j=0

(
n.j − nµ′(Fj)

)2
nµ′(Fj)

.

= χ2
X,Y − χ2

X − χ2
Y .

The independence test is the restricted chi squared test. Therefore, the Hilbertian independence
test is more powerful than the chi squared test because this one tests again that the marginal
distributions are µ and µ′ (cf [4]).
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[10] BLACHER R. (1984) Coefficient de correlation d’ordre (i,j) et variances d’ordre i. Symposium International
de Bar Le Duc, Polynomes orthogonaux et applications, Springer Verlag, 1171, 475-486.
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