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Introduction

Congested traffic equilibrium models on finite networks have received a lot of attention since the early 50's because of applications to road traffic as well as to communication networks. In such problems, the notion of Wardrop equilibrium [START_REF] Wardrop | Some theoretical aspects of road traffic research[END_REF] plays a distinguished role. The standard congested network model consists of:

• a finite oriented connected graph G = {N, E} (N is the set of nodes of G and E the set of its edges) modelling the network;

• distribution of sources f G -:= x∈N f G -(x) δ x and sinks f G + := y∈N f G + (y) δ y which are discrete measures with same total mass (which can be assumed to be 1) on the set of nodes N that capture respectively the amount of traffic emitted and absorbed at the nodes of the network;

• for each edge e ∈ E, there is a function h e : R + → R + that is typically increasing and which captures the congestion effect in the sense that h e (m) represents the travelling time of edge e when the traffic flow on e is m.

One then looks for an equilibrium flow configuration, that is a flow configuration that is compatible with the distribution of sources and sinks and such that paths on which there is a positive flow minimize the travelling time between their endpoints, given the congestion effects. More precisely, a flow configuration is a probability measure Q on the set C G of (loop-free) paths on the network that satisfies the mass conservation constraints

Q {γ ∈ C G : γ starts at x} = f G -(x), for every x ∈ N, Q {γ ∈ C G : γ ends at y} = f G + (y),
for every y ∈ N.

A flow configuration Q induces a collection of arc-flows through m Q (e) := Q {γ ∈ C G : e ∈ γ} , for every e ∈ E, and then a collection of arc-travelling times h e (m Q (e)) as well as the total travelling time of a path γ ∈ C G :

T Q (γ) = e∈γ h e (m Q (e)).
A Wardrop equilibrium is then by definition a flow configuration Q such that for every x and y and every γ in the set of paths C G x,y starting at x and ending at y, if Q({γ}) > 0 then one shoud have

T Q (γ) = min τ ∈C G x,y T Q (τ ).
In other words, a Wardrop equilibrium requires that users behave rationally by choosing the shortest available paths, taking congestion into account, i.e. the fact that travel times increase with the flow. Finding Wardrop equilibria is a fixedpoint problem in nature that presents some analogies with the mean-field games theory of Lasry and Lions [START_REF] Lasry | Mean-Field Games, Japan[END_REF], eventhough it is purely stationary. Soon after the work of Wardrop, it was observed by Beckmann, McGuire and Winsten [START_REF] Beckmann | Studies in Economics of Transportation[END_REF] that Wardrop equilibria coincide with the minimizers of the convex functional

e∈E H e (m Q (e))
where

H e (m) = m 0 h e (s) ds,
among flow configurations Q. This variational characterization is nice both from a theoretical point and for numerical computations. Unfortunately, the minimization problem above has one flow variable per admissible path on the network, it may therefore quickly become untractable for realistic road or communication networks.

A natural question at this point is whether the situation somehow simplifies on very dense networks and if one can find some continuous counterpart to the discrete theory. This issue was recently addressed in [START_REF] Baillon | From discrete to continuous Wardrop equilibria[END_REF] in the case of a two-dimensional cartesian grid, where

G = G ε = {N ε , E ε } with N ε = εZ 2 ∩ Ω and E ε = {[x, x + εv k ] : x ∈ N ε , k ∈ {1, . . . , 4}} ,
where (v 1 , v 2 , v 3 , v 4 ) := ((1, 0), (0, 1), (-1, 0), (0, -1)) denote the directions of the grid and Ω is some bounded two-dimensional domain. Under suitable assumptions1 , it is shown in [START_REF] Baillon | From discrete to continuous Wardrop equilibria[END_REF] that Wardrop equilibria at scale ε converge as ε → 0 + to solutions of inf

Q∈Q(f + ,f -) Ω 4 k=1 H k (x, m Q k (x)) dx, (1.1) 
where

Q(f + , f -) is the set of Borel probability measures Q on C([0, 1], R 2 ) satis- fying the mass conservation conditions e 0# Q = f -, e 1# Q = f + , where e t (γ) = γ(t), t ∈ [0, 1], (1.2) 
and such that

Q(L) = 1. Here L = W 1,∞ ([0, 1], Ω) is the set of Lipschitz curves. For k = 1, . . . , 4, the measure m Q k is defined by: Ω ϕ(x) dm Q k (x) := L 1 0 ϕ(γ(t)) ( γ(t) • v k ) + dt dQ(γ), (1.3) 
for every ϕ ∈ C(Ω, R), while the functions H k are related to h k by H k (x, m) = m 0 h k (x, s) ds. They are therefore convex and nondecreasing in their second argument, since h k are typically nonnegative and nondecreasing in their second argument. We shall suppose in the sequel that there is some p > 1 such that for k = 1, . . . , 4, the functions H k satisfies the growth condition

1 λ (m p -1) ≤ H k (x, m) ≤ λ (m p + 1). (1.4) So that in (1.1), it is intended that m Q k ∈ L p (Ω), k = 1, . . . , 4 
and thus, we shall also assume that

Q p (f + , f -) := Q ∈ Q(f + , f -) : m Q k ∈ L p (Ω), k = 1, . . . , 4 = ∅. (1.5)
This assumption is satisfied for instance as soon as f + and f -belong to L p (Ω) and Ω is convex, as follows from the results of De Pascale, Evans and Pratelli [START_REF] Pascale | Integral estimates for transport densities[END_REF][START_REF] Pascale | Regularity properties for Monge transport density and for solutions of some shape optimization problem[END_REF][START_REF] Pascale | Sharp summability for Monge Transport density via Interpolation[END_REF] and Santambrogio [START_REF] Santambrogio | Absolute continuity and summability of transport densities: simpler proofs and new estimates[END_REF].

Let us note that (1.1) is very similar to the optimal transport with congestion studied in [START_REF] Carlier | Optimal transportation with traffic congestion and Wardrop equilibria[END_REF], except that it keeps track of the anisotropy of the network. However, at first glance, it is absolutely not clear that problem (1.1) which is posed over probability measures over curves (two layers of infinite-dimensions!) offers any simplication with respect to the discrete problem. In the present paper, we want to go one step further with respect to the convergence results of [START_REF] Baillon | From discrete to continuous Wardrop equilibria[END_REF] and we shall see that solving (1.1) roughly amounts to solve a single PDE. Following a similar approach as the one developed in [START_REF] Brasco | Congested traffic dynamics, weak flows and very degenerate elliptic equations[END_REF] for the isotropic case, we shall investigate the relationship between (1.1) and the simpler problem

inf σ∈L p (Ω,R 2 ) Ω 4 k=1 H k (x, (σ(x) • v k ) + ) dx : -div σ = f , (1.6) 
where f := f + -f -and the equation -div (σ) = f should be understood as

Ω ∇u • σ = Ω u df, for every u ∈ C 1 Ω ,
so that it incorporates in the weak sense the homogeneous Neumann boundary condition σ • ν Ω = 0 on ∂Ω. Problem (1.6) belongs to a class of problems introduced by Beckmann [START_REF] Beckmann | Studies in Economics of Transportation[END_REF] for the design of an efficient commodity transport program2 . Solving (1.6) can be done by first solving the Euler-Lagrange equation of its dual formulation and then by using the primal-dual optimality conditions. However, in typical congestion models, the functions H k (x, •) have a positive derivative at zero. Indeed, recall that this derivative is h k (x, 0) and it should be positive since one cannot go at infinite speed even when there is no congestion. This creates a singularity in the integrand in (1.6) which, in turn, makes the Euler-Lagrange equation of the dual extremely degenerate. Because of the anisotropic feature of the problem, the kind of degeneracies we are facing is even worse than the one in [START_REF] Brasco | Congested traffic dynamics, weak flows and very degenerate elliptic equations[END_REF]. Indeed, the prototypical equation of [START_REF] Brasco | Congested traffic dynamics, weak flows and very degenerate elliptic equations[END_REF] was

-div (|∇u| -1) q-1 + ∇u |∇u| = f, with q = p = p/(p -1)
, whereas here we shall rather deal with anisotropic equations of the form

- 2 i=1 ∂ i (|∂ i u| -δ i ) q-1 + ∂ i u |∂ i u| = f,
which, in contrast with the isotropic case, degenerates in an unbounded set of values of the gradient. Even in the less degenerate case where all the δ i 's are zero, the previous equation (refered to as the pseudo q-Laplacian equation in [START_REF] Belloni | The pseudo p-Laplace eigenvalue problem and viscosity solutions as p → ∞[END_REF]) is more delicate than its isotropic counterpart, which has been much more studied and for which more regularity results are available.

The paper is organized as follows. In Section 2, we investigate some relationship between (1.1) and (1.6) in a similar way as in [START_REF] Brasco | Congested traffic dynamics, weak flows and very degenerate elliptic equations[END_REF]. In Section 3, we formulate the optimality conditions for (1.6) in terms of the solutions of the dual and emphasize the kind of PDEs realistic anisotropic models of congestion lead to. Section 4 is devoted to some regularity results for such degenerate anisotropic elliptic PDEs. In this final section, we shall work in any dimension d.

Relationship with Beckmann problem

We consider again problems (1.1) and (1.6), our aim is to emphasize some precise connections between those two problems. We assume that Ω is an open bounded connected subset of R 2 with a Lipschitz boundary, that (1.5) holds and that there is a neighbourhood U of Ω such that each function H k is Carathéodory on U × R + , convex nondecreasing in its second argument with H k (x, 0) = 0 a.e. x ∈ U and satisfies for some λ > 1 the growth condition (1.4), for a.e. x ∈ U and every m ∈ R + .

For Q ∈ Q p (f + , f -), let us define the vector-measure σ Q by:

Ω F dσ Q := L 1 0 F (γ(t)) • γ(t) dt dQ(γ), for every F ∈ C(Ω, R 2 ), (2.1)
where we recall that L = W 1,∞ ([0, 1], Ω) has full mass for Q. For u ∈ C 1 (Ω), we then have by the very definition of

Q(f + , f -) Ω ∇u • dσ Q = L u(γ(1)) -u(γ(0)) dQ(γ) = Ω u df, i.e. -div σ Q = f := f + -f -. Now for ϕ ∈ C(Ω) with ϕ ≥ 0, let us observe that Ω ϕ d(σ Q • v k ) = L 1 0 ϕ(γ(t)) γ(t) • v k dt dQ(γ) ≤ L 1 0 ϕ(γ(t)) ( γ(t) • v k ) + dt dQ(γ) = Ω ϕ dm Q k , i.e. for k = 1, . . . , 4, one has σ Q • v k ≤ m Q k in the sense of measures. Since Q ∈ Q p (f + , f -), this implies that σ Q ∈ L p (Ω, R 2 ) and thus (σ Q • v k ) + ≤ m Q k a.e. in Ω.
(2.2)

Note then that the assumption (1.5) asserting that Q p (f + , f -) is not empty implies that -div σ = f can be solved in L p (Ω, R 2 ), so that the zero-mass signed measure f belongs to the dual of W 1,q (Ω), where q = p/(p -1) is the conjugate exponent of p. The existence of solutions to (1.6) directly follows; as for the existence of solutions to (1.1), it follows from the same arguments as in [START_REF] Baillon | From discrete to continuous Wardrop equilibria[END_REF] or [START_REF] Carlier | Optimal transportation with traffic congestion and Wardrop equilibria[END_REF].

Theorem 2.1. Under the assumptions above, we have

inf (1.1) = inf (1.6). Proof. Let Q ∈ Q p (f + , f -), since H k is nondecreasing in its second argument, we deduce from (2.2) that Ω 4 k=1 H k (x, m Q k ) dx ≥ Ω 4 k=1 H k (x, (σ • v k ) + ) dx,
and since -div

(σ Q ) = f := f + -f -, we immediately get inf (1.1) ≥ inf (1.6).
For the converse inequality, we shall use Moser's flow argument (see [START_REF] Dacorogna | On a partial differential equation involving the Jacobian determinant[END_REF][START_REF] Moser | On the volume elements on a manifold[END_REF]), together with some standard regularization as follows. Let σ be a solution of (1.6), extend it by 0 outside Ω, let then ρ ∈ C ∞ c (R 2 ) be a positive function, supported in the unit ball B 1 and such that

R 2 ρ = 1. For ε 1 so that Ω ε := Ω + ε B 1 U , we set ρ ε (x) := ε -2 ρ(ε -1 x) and σ ε := ρ ε * σ. By construction, we thus have that σ ε ∈ C ∞ (Ω ε ) and -div σ ε = f ε + -f ε - in Ω ε , σ ε = 0, on ∂Ω ε , (2.3) 
where

f ε ± = ρ ε * (f ± 1 Ω ) + ε. Now comes Moser's flow construction: for t ∈ [0, 1] and x ∈ Ω ε , we set g ε (t, x) := (1 -t) f ε -(x) + t f ε + (x)
, since σ ε and g ε are smooth and the latter is bounded from below by ε > 0, one may define the flow X ε of the vector field

v ε := σ ε /g ε , i.e. Ẋε t (x) = v ε (t, X ε t (x)) = σ ε (X ε t (x)) (1 -t) f ε -(X ε t (x)) + t f ε + (X ε t (x)) , X ε 0 (x) = x, (t, x) ∈ [0, 1] × Ω ε .
Since by construction g ε satisfies the continuity equation

∂ t g ε + div (g ε v ε ) = 0, with initial datum g ε (0, •) = f ε -and v ε is smooth, we have X ε t # f ε -= g ε (t, •) for every t ∈ [0, 1]. Let then L ε := W 1,∞ ([0, 1], Ω ε ) and consider the measure Q ε on L ε defined by Q ε := Ωε δ X ε • (x) df ε -(x).
We then have e

t# Q ε = X ε t # f ε -= g ε (t, •) for every t ∈ [0, 1] and in particular e 0# Q ε = f ε - and e 1# Q ε = f ε + . (2.4)
Now let us define σ Q ε and m Q ε k as in (2.1) and (1.3) respectively, by using testfunctions that are now defined on Ω ε . For every ϕ ∈ C(Ω ε ), by the definition of Q ε , the fact that X ε t # f ε -= g ε (t, •) and that v ε g ε = σ ε and by using Fubini's formula, we then have

Ωε ϕ dm Q ε k = Ωε 1 0 ϕ(X ε t (x)) (v ε (t, X ε t (x)) • v k ) + dt df ε -(x) = 1 0 Ωε ϕ(y) (v ε (t, y) • v k ) + d(X ε t # f ε -)(y) dt = 1 0 Ωε ϕ(y) (v ε (t, y) • v k ) + g ε (t, y) dy dt = Ωε ϕ(y) (σ ε (y) • v k ) + dy, so that m Q ε k = (σ ε •v k ) + .
A similar computation (with a vector valued test-function) similarly shows that σ Q ε = σ ε . Now, let us remark that the definitions of m Q k and σ Q are invariant by arbitrary injective reparameterization of curves. In particular, if for any Lipischitz curve γ, we denote by γ its constant speed reparametrization and if we denote by Q the push forward of Q through the map γ → γ, we have

m Q k = m Q k and σ Q = σ Q . Arguing as in [8, Lemma 2.8], the uniform L p bound on σ Q ε = σ Q ε = σ ε implies that the family of Borel measures Q ε on C([0, 1], R 2
) is tight and thus admits a (not relabeled) subsequence that * -weakly converges to some measure Q. Observe that this limit Q is a probability measure, since the total mass of Q ε equals that of f ε + i.e. 1 + ε and, arguing again as in [8, Lemma 2.8], one can show that Q(L) = 1 (more precisely for fixed ε > 0, one proves exactly as in [START_REF] Carlier | Optimal transportation with traffic congestion and Wardrop equilibria[END_REF]Lemma 2.8

] that Q(L ε ) = 1 so that Q(L) = lim ε↓0 + Q(L ε ) = 1). Moreover, thanks to the * -weak convergence of Q ε to Q, passing to the limit in (2.4) gives Q ∈ Q(f + , f -). We finally remark that m Q ε k = m Q ε k = (σ ε • v k ) + converges strongly in L p to (σ • v k ) + and 
then, thanks to the same semicontinuity argument as in [8, Lemma 2.9], we have

m Q k ≤ (σ • v k ) + in the sense of measures. This implies that m Q k ∈ L p i.e. Q ∈ Q p (f + , f -). Using the monotonicity of H k , we obtain Ω 4 k=1 H k (x, m Q k (x))dx ≤ Ω 4 k=1 H k (x, (σ(x) • v k ) + )dx = inf(1.6)
and thus we can finally infer inf (1.1) ≤ inf (1.6).

Remark 2.2. The convexity assumption on the H k 's is essential for the existence of minimizers, but it played no role in the proof that inf (1.1) = inf (1.6) where only monotonicity matters.

Remark 2.3. Note that with the previous proof, we have in fact also shown slightly more precise results. Firstly

Q solves (1.1) =⇒ σ Q solves (1.6).
Secondly, if in addition each function H k is increasing in its second argument, it easily follows from inequality (2.2) that we have the equivalence

Q solves (1.1) ⇐⇒ σ Q solves (1.6) and m Q k = (σ Q • v k ) + , k = 1, . . . , 4.
Lastly, we have also shown how to build a minimizing sequence for (1.1) from a regularization of a solution σ of (1.6) thanks to Moser's flow method. Also notice that if σ and f + and f -are regular enough, so that the flow can be defined (in the Ambrosio-Di Perna-Lions sense [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF][START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF], for instance), there is no need to do such a regularization. By the way, the regularity of σ will be addressed in section 4.

Link with anisotropic elliptic PDEs

To shorten notations, let us set

H(x, σ) := 4 k=1 H k (x, (σ • v k ) + ), (3.1) 
which can also be written in the separable form H(x, σ) = H 1 (x, σ 1 ) + H 2 (x, σ 2 ), where

H 1 (x, σ 1 ) = H 1 (x, σ 1+ ) + H 3 (x, σ 1-), H 2 (x, σ 2 ) = H 2 (x, σ 2+ ) + H 4 (x, σ 2-).
The dual problem of (1.6) then reads sup

u∈W 1,q (Ω) Ω u df - Ω H * (x, ∇u) dx , (3.2) 
and since f = f + -f -has zero mean, we may as well restrict the optimization in (3.2) to zero-mean W 1,q (Ω) functions. Here q = p = p/(p -1). As usual, H * (x, •) denotes the Legendre transform of H(x, •) and it is separable as well

H * (x, z) = H * 1 (x, z 1 ) + H * 2 (x, z 2
). Let us recall that in congestion models the functions H k (x, •) are the primitives of functions h k (x, •), where h k (x, m) represents the time per unit of length to move at x in the direction v k when the intensity of traffic in this direction is m. The functions h k therefore represent a sort of anisotropic metric that captures the congestion effect through some relationship between time per unit of length and mass per unit of length. Having this interpretation in mind, it is reasonable to assume that h k (x, •) are continuous increasing functions on R + which satisfy some p -1 growth condition (so that (1.4) holds) and that h k (x, 0) > 0 (the metric is everywhere positive even when there is no traffic). This implies that H is strictly convex in its second variable (hence, by duality H * is C 1 ) but not differentiable on the axes of coordinates, more precisely, the subdifferentials of H 1 (x, .) and H 2 (x, .) are intervals having 0 in their interior. The Legendre transforms H * 1 (x, .) and H * 2 (x, .) therefore vanish on such intervals which makes the Euler-Lagrange equation of (3.2) degenerate close to the axes of coordinates.

Recall that by standard convex duality (see [START_REF] Ekeland | Convex analysis and Variational problems[END_REF] for example), the values min (1.6) and max (3.2) coincide and the primal-dual optimality conditions characterize the minimizer (unique by strict convexity) σ of (1.6) by

σ(x) = ∇H * (x, ∇u(x)), a.e. x ∈ Ω
where u is a solution of (3.2). This is equivalent to the requirement that u is a weak solution of the Euler-Lagrange equation:

-div ∇H * (x, ∇u) = f, in Ω, ∇H * (x, ∇u) • ν Ω = 0, on ∂Ω, (3.3) 
in the sense that

Ω ∇H * (x, ∇u(x)) • ∇ϕ(x) dx = Ω ϕ(x) df (x), for every ϕ ∈ W 1,q (Ω).
Let us note that eventhough u is non unique, σ is.

A prototypical example is h k (x, m) = a k (x) m p-1 + δ k with δ k > 0 and the weights a k are smooth and bounded away from zero. A direct computation then gives

H * 1 (x, z 1 ) = b 1 (x) q (z 1 -δ 1 ) q + + b 3 (x) q (-z 1 -δ 3 ) q + , and 
H * 2 (x, z 2 ) = b 2 (x) q (z 2 -δ 2 ) q + + b 4 (x) q (-z 2 -δ 4 ) q + ,
where b k = a

-1 p-1 k
. In this case (3.3) takes the form

-∂ 1 b 1 (∂ 1 u -δ 1 ) q-1 + -b 3 (-∂ 1 u -δ 3 ) q-1 + -∂ 2 b 2 (∂ 2 u -δ 2 ) q-1 + -b 4 (-∂ 2 u -δ 4 ) q-1 + = f. (3.4)
Observe that in the symmetric homogeneous case, i.e. when δ 1 = δ 3 , δ 2 = δ 4 and a k ≡ 1, the previous simplifies to

-∂ 1 (|∂ 1 u| -δ 1 ) q-1 + ∂ 1 u |∂ 1 u| -∂ 2 (|∂ 2 u| -δ 2 ) q-1 + ∂ 2 u |∂ 2 u| = f.
Since H * 1 (x, z 1 ) and H * 2 (x, z 2 ) vanish whenever z 1 ∈ [-δ 3 , δ 1 ] and z 2 ∈ [-δ 4 , δ 2 ] respectively, any u whose gradient belongs to the rectangle [-δ 3 , δ 1 ] × [-δ 4 , δ 2 ] solves the previous equation with f = 0. Hence, there is no hope to recover estimates on the second derivatives of u or even oscillation estimates on ∇u from (3.4). The best one can hope for is that u is Lipschitz. However, we shall see in the next section how to obtain some regularity results directly for the vector field σ = (σ 1 , σ 2 ) that solves (1.6), i.e.

σ 1 = b 1 (∂ 1 u -δ 1 ) q-1 + -b 3 (-∂ 1 u -δ 3 ) q-1 + , σ 2 = b 2 (∂ 2 u -δ 2 ) q-1 + -b 4 (-∂ 2 u -δ 4 ) q-1 + .
Typical traffic congestion problems are two-dimensional, however degenerate equations of the form (3.4) may arise in other contexts, as in the relaxation of some nonconvex variational problems. For this reason, in the next section we will actually work in arbitrary dimension d.

Regularity 4.1 A general result

Let q ≥ 2, Ω be an open bounded subset of R d , F : Ω×R d → R d and G : R d → R d be some continuous vector fields such that there exist ν > 0 and µ ≥ 0 such that for every (x, z) and (y, w) in Ω × R d , one has

|F (x, z)| ≤ µ|z| q-1 , (4.1) 
(F (x, z) -F (x, w)) • (z -w) ≥ ν |G(z) -G(w)| 2 , (4.2) 
|F (x, z) -F (x, w)| ≤ µ |G(z)| q-2 q + |G(w)| q-2 q |G(z) -G(w)|, (4.3) 
F (•, z) is differentiable for every z and satisfies

|∇ x F (x, z)| ≤ µ |G(z)| 2q-2 q (4.4) |∇ x F (x, z) -∇ x F (x, w)| ≤ µ |G(z)| q-2 q + |G(q)| q-2 q |G(z) -G(w)| (4.5) |∇ x F (x, z) -∇ x F (y, z)| ≤ µ |x -y| |G(z)| 2q-2 q (4.6)
Let finally f ∈ W 1,p loc (Ω) with p = q and let us consider the equation

-div F (x, ∇u) = f. (4.7) 
Using Nirenberg's method of incremental ratios, we then get the following result.

Theorem 4.1. Let q ≥ 2, p = q , f ∈ W 1,p loc (Ω), F and G be vector fields that satisfy conditions (4.1)-(4.6) above and let u ∈ W 1,q loc (Ω) be a local weak solution of (4.7). Then G := G(∇u) ∈ W 1,2 loc (Ω).

Proof. To shorten notations, set

F := F (• , ∇u(•)) (note that F ∈ L p loc (Ω) and G ∈ L 2 loc (Ω) thanks to (4.1)
) and denote by τ h ϕ := ϕ(• + h) the translate of the function ϕ by the vector h. Let ϕ ∈ W 1,p (Ω) be compactly supported in Ω and

h ∈ R d \ {0} be such that |h| < dist(supp(ϕ), R d \ Ω), we then have Ω τ h F -F |h| • ∇ϕ dx = Ω τ h f -f |h| ϕ dx. (4.8) 
Let

ω ω 0 Ω, let ξ ∈ C ∞ c (Ω) be such that supp(ξ) ⊂ ω 0 , 0 ≤ ξ ≤ 1 and ξ = 1 on ω and h ∈ R d \ {0} such that |h| ≤ r 0 < 1 2 dist(ω 0 , R d \ Ω).
In what follows, c will denote a nonnegative constant that does not depend on h, but may vary from one line to another. We then insert the test function

ϕ = ξ 2 |h| -1 (τ h u -u),
into (4.8). Using the fact that u ∈ W 1,q loc (Ω), f ∈ W 1,p loc (Ω) and Hölder's inequality and defining ω := ω 0 + B(0, r 0 ), we get

|h| -2 Ω (τ h F -F) • ξ 2 (τ h ∇u -∇u) + 2 ξ ∇ξ (τ h u -u) ≤ ∇f L p (ω ) ∇u L q (ω ) .
Let us now write the left-hand side of the previous inequality as the sum of four terms I 1 + I 2 + I 3 + I 4 , where

I 1 := |h| -2 Ω ξ 2 (F (x + h, ∇u(x + h)) -F (x + h, ∇u(x)) • (τ h ∇u -∇u), I 2 := |h| -2 Ω (F (x + h, ∇u(x + h)) -F (x + h, ∇u(x)) • ∇ξ ξ (τ h u -u), I 3 := |h| -2 Ω (F (x + h, ∇u(x)) -F (x, ∇u(x)) • ∇ξ ξ (τ h u -u),
and

I 4 := |h| -2 Ω (F (x + h, ∇u(x)) -F (x, ∇u(x)) • (τ h ∇u -∇u) ξ 2 .
Thanks to (4.2), the first term satisfies satisfies:

I 1 ≥ ν ξ |h| -1 (τ h G -G) 2 L 2 . (4.9)
As for the second term, if q > 2 using (4.3) and Hölder's inequality with exponents 2, q and 2q q-2 yields

|I 2 | ≤ |h| -2 Ω |ξ∇ξ ||τ h u -u| |τ h G -G| |τ h G| q-2 q + |G| q-2 q ≤ c ∇ξ L ∞ |h| -1 (τ h u -u) L q (ω 0 ) ξ|h| -1 (τ h G -G) L 2 ω 0 |G| 2 + |τ h G| 2 q-2 2q ≤ c ξ |h| -1 (τ h G -G) L 2 ,
and if q = 2, simply using Cauchy-Schwarz inequality, we similarly obtain:

|I 2 | ≤ c ξ |h| -1 (τ h G -G) L 2 .
We now come to the term I 3 . Thanks to (4.4), we have

|h| -1 |F (x + h, ∇u(x)) -F (x, ∇u(x))| ≤ µ |G| 2q-2 q ∈ L p loc ,
using again Hölder's inequality and the fact that |h| -1 (τ h u -u) L q (ω 0 ) is bounded independently of h, we get |I 3 | ≤ C. To handle the last term we first write

F (x + h, ∇u(x)) -F (x, ∇u(x)) |h| = 1 0 ∇ x F (x + sh, ∇u(x)) h |h| ds.
By defining

Φ h (x) := 1 0 ∇ x F (x + sh, ∇u(x)) -∇ x F (x + (1 + s)h, ∇u(x + h)) |h| h |h| ds,
and rearranging terms, we can rewrite

I 4 = Ω ξ 2 τ h ∇u • Φ h dx - Ω τ h ξ 2 -ξ 2 |h| τ h ∇u • 1 0 ∇ x F (x + (1 + s)h, ∇u(x + h)) h |h| ds dx.
Thanks to (4.4), we get a bound on the absolute value of the second term exactly as we did for the term I 3 . To treat the remaining term, using (4.5) and (4.6), we first have

|Φ h | ≤ 1 0 |∇ x F (x + sh, ∇u) -∇ x F (x + (1 + s)h, ∇u)| |h| ds + 1 0 |∇ x F (x + (1 + s)h, ∇u) -∇ x F (x + (1 + s)h, τ h ∇u)| |h| ds ≤ µ |G| 2q-2 q + |h| -1 |τ h G -G| |G| q-2 q + |τ h G| q-2 q
.

Proceeding as for the term I 2 , we obtain

|I 4 | ≤ c (1 + ξ|h| -1 (τ h G -G) L 2 ).
Putting all the estimates together, we then get

ξ τ h G -G h 2 L 2 ≤ c 1 + ξ τ h G -G h L 2
, from which we can finally infer

τ h G -G h 2 L 2 (ω) ≤ c,
for some constant c depending on q, f W 1,p , u W 1,q and the distance between ω and ∂Ω, but not on h. This finally proves the desired result, namely that G ∈ W 1,2 loc (Ω).

Applications

We shall now apply Theorem 4.1 to our model equation

- d i=1 ∂ i (|∂ i u| -δ i ) q-1 + ∂ i u |∂ i u| = f, (4.10) 
which corresponds to

F (z) = (F 1 (z 1 ), . . . , F d (z d )), with F i (z i ) := (|z i | -δ i ) q-1 + z i |z i | , in (4.7 
). We then define

G(z) = (G 1 (z 1 ), . . . , G d (z d )), with G i (z i ) := (|z i | -δ i ) q 2 + z i |z i | ,
and again we assume that q ≥ 2. It is immediate to check that condition (4.1) holds and since F does not depend on x, (4.4), (4.5), (4.6) are straightforward. As for (4.2) and (4.3), we have the following.

Lemma 4.2. Let F and G be defined as above with q ≥ 2, then for every (z, w) ∈ R d × R d , the following inequalities hold,

|F (z) -F (w)| ≤ (q -1) |G(z)| q-2 q + |G(w)| q-2 q |G(z) -G(w)|, (4.11) 
and

(F (z) -F (w)) • (z -w) ≥ 4 q 2 |G(z) -G(w)| 2 . (4.12)
Proof. First recall (see for instance [START_REF] Lindqvist | Notes on the p-Laplace equation[END_REF]), that for any (a, b) ∈ R 2 , one has

|a| q-2 a -|b| q-2 b ≤ (q -1) |a| q-2 2 + |b| q-2 2 |a| q-2 2 a -|b| q-2 2 b . (4.13) Taking a = (|z i |-δ i ) + z i /|z i | and b = (|w i |-δ i ) + w i /|w i |, in the previous inequality, we thus get |F i (z i ) -F i (w i )| ≤ (q -1) |G(z)| q-2 q + |G(w)| q-2 q |G i (z i ) -G i (w i )|,
and then (4.11) directly follows.

We shall now prove that for every i and z i , w i in R, there holds

(F i (z i ) -F i (w i ))(z i -w i ) ≥ 4 q 2 (G i (z i ) -G i (w i )) 2 , (4.14) 
from which (4.12) will directly follow. First note that (4. 

(F i (z i ) -F i (w i ))(z i -w i ) = (|z i | -δ i ) q-1 (|z i | - z i |z i | w i ) ≥ (|z i | -δ i ) q = G i (z i ) 2 .
As for the case |z i | > δ i and |w i | > δ i , again taking a = (|z i | -δ i ) + z i /|z i | and b = (|w i | -δ i ) + w i /|w i | in the following inequality (for which we again refer to [START_REF] Lindqvist | Notes on the p-Laplace equation[END_REF])

(|a| q-2 a -|b| q-2 b)(a -b) ≥ 4 q 2 |a| q-2 2 a -|b| q-2 2 b 2 , we get 4 q 2 (G i (z i )-G i (w i )) 2 ≤ (F i (z i )-F i (w i ))(z i -w i )-δ i (F i (z i )-F i (w i )) z i |z i | - w i |w i | .
We then observe that we then obtain the following Sobolev regularity for the (unique) minimizer. Proof. By duality, we know that σ is related to any solution of the dual problem u through the componentwise relation is in W 1,2 loc (Ω) and we obtain the desired result exactly as in [START_REF] Brasco | Congested traffic dynamics, weak flows and very degenerate elliptic equations[END_REF], by observing that

(F i (z i )-F i (w i )) z i |z i | - w i |w i | = (|z i | -δ i ) q-1 + (|w i | -δ i ) q-1 1 - z i w i |z i w i | ≥ 0,
σ i = (|∂ i u| -δ i ) q-1 + ∂ i u |∂ i u| , i = 
σ i = |G i | q-2 q G i .
Let us observe that when d = 2 (the case which is relevant for applications to network congestion), the previous result implies that σ ∈ L s loc for every s > 1. As shown recently in [START_REF] Brasco | On certain anisotropic elliptic equations arising in congested optimal transport: local gradient bounds[END_REF], this higher integrability result is still valid for d ≥ 2 and can be proved without appealing to the Sobolev result of Corollary 4.3, by proving directly that any solution of the dual problem has a gradient in L s loc , for every s > 1. We point out that the proof in [START_REF] Brasco | On certain anisotropic elliptic equations arising in congested optimal transport: local gradient bounds[END_REF] requires f to be in L ∞ loc , an hypothesis which is not directly comparable with that of Corollary 4.3.

Remark 4.4. The previous Sobolev result can be easily generalized to equations with weights such as

- d i=1 ∂ i b i (x)(|∂ i u| -δ i ) q-1 + ∂ i u |∂ i u| = f,

which finally proves ( 4 . 1 p

 41 [START_REF] Ekeland | Convex analysis and Variational problems[END_REF].If we go back to the variational problem of Beckmann type:inf σ∈L p (Ω) Ω d i=1 |σ i (x)| p + δ i |σ i (x)| dx : -div σ = f (4.15)

Corollary 4 . 3 .if q = 2 ,

 432 If q ≥ 2 and f ∈ W 1,p loc (Ω) then the solution σ of (4.15) belongs to the Sobolev space W 1,r loc (Ω), any value < 2, if q > 2 and d = 2, dq dq-(d+q)+2 , if q > 2 and d > 2.

1 , 2 +

 12 . . . , d.Since u ∈ W 1,p (Ω) is a weak solution of the Euler-Lagrange equation (4.10), it follows from Theorem 4.1 and Lemma 4.2 that the vector field whose components areG i := (|∂ i u| -δ i ) q ∂ i u |∂ i u| , i = 1, . . . , d,

In particular, the fact that the travelling time functions on arcs [x, x + εv k ] scale like ε h k (x, m/ε) and that the discrete measures f Gε + and f Gε -weakly converge to some f + and f -.

Interestingly, the connection with the Monge-Kantorovich theory was realized much later by Robert McCann.
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as well as to non symmetric equations of the form

and finally to equations of the form (3.4) which both have weights and are nonsymmetric.