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In the present paper, the problem of detecting the critical notch angle, i.e. the angle providing the minimum failure load, for brittle or quasi-brittle structures containing either edge or center Vnotches is investigated. The expression of the generalized fracture toughness is obtained according to Finite Fracture Mechanics. It is shown that a critical angle is always present: its value depends, through the brittleness number, on both material and geometric characteristics. Thus, the crack is not the most dangerous configuration. The result is supported by experimental results presented in the Literature.

Introduction

Many experimental results [START_REF] Carpinteri | Stress-singularity and generalized fracture toughness at the vertex of re-entrant corners[END_REF][START_REF] Seweryn | Brittle fracture criterion for structures with sharp notches[END_REF][START_REF] Strandberg | Fracture at V-notches with contained plasticity[END_REF][START_REF] Carpinteri | A finite fracture mechanics approach to structures with sharp V-notches[END_REF] concerning three-point bending (TPB) and tensile tests on V-notched brittle or quasi-brittle material specimens, show that the failure load does not increase monotonically as the notch opening angle ω increases, but it has a minimum in correspondence of a critical angle ω c . The problem of determining ω c was investigated in [START_REF] Carpinteri | On the most dangerous V-notch[END_REF] for what concerns an edge V-notched semi-infinite slab and it is here extended to a center V-notched infinite slab under remote tensile load, when the notch is subjected to mode I loading. Four different criteria based on a discrete crack advancement [START_REF] Seweryn | Brittle fracture criterion for structures with sharp notches[END_REF][START_REF] Leguillon | Strength or toughness? A criterion for crack onset at a notch[END_REF][START_REF] Pugno | Quantized fracture mechanics[END_REF][START_REF] Cornetti | Finite fracture mechanics: a coupled stress and energy failure criterion[END_REF] are taken into account. Despite their predictions slightly differ from each other, all the approaches detect the minimum, whose value depends on the brittleness number s (Carpinteri, 1982): the larger s (i.e. the larger the fracture toughness and/or the smaller the tensile strength and/or the smaller the notch depth), the larger the ω c expected. A final comparison between theoretical predictions and experimental data confirms the validity of the present analysis.

Analysis of semi-infinite edge and center V-notched slabs and different Finite Fracture mechanics criteria

The generalized stress intensity factor (SIF) K I * related to an edge V-notched semi-infinite slab or to a center V-notched infinite slab under remote tensile load σ (Fig. 1) can be expressed, by means of dimensional analysis, as [START_REF] Carpinteri | Stress-singularity and generalized fracture toughness at the vertex of re-entrant corners[END_REF]:
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where a is the notch depth in the edge notch case and half of its length in the centre notch case, λ is the solution of the eigen-equation derived by Williams (1952) and β is the shape function, which depends only on the notch angle ω. Values of β related to the two considered geometries can be found tabulated in [START_REF] Dunn | Stress intensities at notch singularities[END_REF] and they are plotted in Fig. 2 (note that they are modified according to the different definition of the generalized stress-intensity factor here adopted i.e.,
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, xy being the reference system centred at the Vnotch tip (Fig. 1)). They differ by a factor 1.12 for ω=0°, while they coincide for ω=180°.

The generalized SIF K I * is the coefficient of the dominant term of the stress field at the notch tip and it is expected to be the governing failure parameter within brittle structural behaviour. In other words, failure is supposed to take place whenever [START_REF] Carpinteri | Stress-singularity and generalized fracture toughness at the vertex of re-entrant corners[END_REF]:
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K Ic * being the generalized fracture toughness. A theoretical justification of this fracture criterion (Eq. ( 2)) may be given in the framework of Finite Fracture Mechanics (FFM). According to FFM, fracture does not propagate continuously but by finite crack extensions ∆, leading to the following general relationship [START_REF] Carpinteri | A finite fracture mechanics approach to structures with sharp V-notches[END_REF][START_REF] Carpinteri | On the most dangerous V-notch[END_REF] 
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where ξ(ω) is a dimensionless function depending on the fracture criterion used, while K Ic and σ u are the fracture toughness and tensile strength, respectively. It is interesting to notice that also other approaches in the Literature [START_REF] Sih | Sharp notch fracture strength characterized by critical energy density[END_REF][START_REF] Lazzarin | A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp v-shaped notches[END_REF]) may be grouped into the expression provided by Eq. (3).

Different critical distances ∆ and ξ(ω) functions, according to different FFM approaches, are summarized in Table 1: they refer to the average stress (LS) criterion [START_REF] Seweryn | Brittle fracture criterion for structures with sharp notches[END_REF], the average energy (LE) criterion [START_REF] Pugno | Quantized fracture mechanics[END_REF]Taylor et al., 2005), the coupled point stress and average energy (PSLE) criterion [START_REF] Leguillon | Strength or toughness? A criterion for crack onset at a notch[END_REF], and the coupled average stress and average energy (LSLE) criterion [START_REF] Cornetti | Finite fracture mechanics: a coupled stress and energy failure criterion[END_REF].

The energy-based criteria all involve a dimensionless coefficient µ, depending on the notch angle ω, which rises from the evaluation of the SIF for a short crack of length e at the V-notch, [START_REF] Hasebe | A crack originating from a triangular notch on a rim of a semi-infinite plate[END_REF]. Accurate values of µ can be found tabulated either in [START_REF] Philipps | Crack tip stress intensity factors for a crack emanating from a sharp notch[END_REF] or, in the present notation, in [START_REF] Carpinteri | On the most dangerous V-notch[END_REF]. It increases from unity, when ω = 0°, up to 1.12 √π, when ω = 180°. On the other hand, the constant c appearing according to the LE criterion is equal to 1.12.
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Observe that the critical distances related to the LS and LE criteria are material properties, while ∆ becomes a structural parameter, depending, through λ and µ, also on the notch opening angle ω, for what concerns the coupled criteria.

Inserting Eqs.

(1) and (3) into Eq. ( 2), yields:
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where σ f is the remote stress at failure and α is the dimensionless notch depth
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The brittleness number s=K Ic /(σ u √a) was introduced by Carpinteri (1981a,b). It shows, in a synthetic way, that brittleness is more a structural property rather than a material one: structural failure is brittle not only for low toughness and high tensile strength materials (i.e., brittle materials), but also for large specimen sizes. According to its definition, low brittleness numbers generally correspond to brittle structural behaviours. In the present case, i.e. infinite or semi-infinite slabs, the characteristic structural size a coincides with the notch depth, the only relevant size in the problem.

Discussion on the critical angle

The critical notch angle could de determined by deriving Eq. ( 4) with respect to ω and imposing the stationary condition. The following relationship is obtained:
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By evaluating the derivatives λ', β' and ξ', the inverse of Eq. ( 6) is plotted in Figs. 3 and4, for the two geometries considered, providing the value of the critical notch opening angle ω c for a given α (or s) value. As it can be observed, in both the cases, ω c depends through s both on the material and the geometry. It is evident that the crack is the most dangerous V-notch (ω c =0°) only for extremely large notches and/or very brittle materials (i.e., low fracture toughness and/or high tensile strength).

All the FFM criteria are able to catch the minimum, although their predictions slightly differ from each other. Particularly, the PSLE approach generally provides the lowest ω c values, while the highest ω c values are obtained through the LSLE criterion. Eventually, observe that, for a given α, higher predictions are expected for what concerns the center-notch case.

The problem could also be analyzed from the opposite point of view, that is by varying α (i.e., s), and keeping ω fixed in Eq. ( 4). For the sake of clarity, only the results obtained by applying the LSLE approach to the semi-infinite edge-notched slab are plotted in Fig. 5. It is evident that the minimum failure load is provided by the edge crack case only for α → ∞ (s → 0), whereas it corresponds to the flat edge for α → 0 (s → ∞). In the intermediate cases, the minimum failure load is provided by a V-notch of amplitude ω c ranging from 0° up to 180° as α decreases from infinite to zero. In Fig. 5 also the envelope has been drawn, i.e. the line that is tangent to all the diagrams plotted keeping ω fixed, which provides the minimum achievable relative failure stress for each relative notch depth α. The graphic related to the center-notch case is very similar. Furthermore, the use of different FFM criteria, from a qualitative point of view, does not affect the results.

Comparison with experimental data

In this section, a comparison between experiments and theoretical predictions by different FFM criteria is performed. In the case of finite geometries, by means of dimensional analysis, Eq. ( 4) can be rewritten as:
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where ω cr P and π cr P are the failure loads for a notch opening angle equal to ω and 180°, respectively, h is the specimen height and l its length. The shape function f replacing β, depends now not only on the amplitude but also on the relative notch depth and the slenderness ratio. Indeed, this latter dependence is practically negligible for TPB specimens with l/h>8 and for tensile specimens with l/h>2 (Tada et al., 1985). The brittleness number now recovers the usual expression s=K Ic /(σ u √h). It is important to point out that, if the notch and the ligament depths are sufficiently large with respect to the finite crack extension ∆, the functions ξ(ω) obtained for infinite geometries and reported in Table 1 could be also applied to finite geometries (Eq. ( 7)), without loosing of generality [START_REF] Seweryn | Brittle fracture criterion for structures with sharp notches[END_REF][START_REF] Carpinteri | A finite fracture mechanics approach to structures with sharp V-notches[END_REF].

All the experimental data here considered [START_REF] Carpinteri | Stress-singularity and generalized fracture toughness at the vertex of re-entrant corners[END_REF][START_REF] Seweryn | Brittle fracture criterion for structures with sharp notches[END_REF][START_REF] Strandberg | Fracture at V-notches with contained plasticity[END_REF][START_REF] Carpinteri | A finite fracture mechanics approach to structures with sharp V-notches[END_REF] share the following common features:

-The samples contain a sharp edge V-notch: the notch radius is small enough not to affect the results. Moreover, specimens referring to TPB tests show a slenderness ratio l/h~4, while, for tensile tests, l/h>2.

-The loading is applied in mode I and fracture is of a brittle character.

-The presence of a critical angle ω c rises from the evaluated failure loads, which do not increase strictly monotonically as a function of the notch opening angle ω.

TPB tests on V-notched PMMA specimens carried out by [START_REF] Carpinteri | Stress-singularity and generalized fracture toughness at the vertex of re-entrant corners[END_REF], for instance, show the minimum failure load for ω c ~45° (Fig. 6a). Similar results (ω c ~40°) are obtained by [START_REF] Seweryn | Brittle fracture criterion for structures with sharp notches[END_REF], testing double-edge notched tension (DENT) PMMA samples (Fig. 6b). [START_REF] Strandberg | Fracture at V-notches with contained plasticity[END_REF] performed tests on single edge notched tension (SENT) specimens made of soft annealed tool steel at -50°C. Although, in this case, the cracked specimens are the ones providing the minimum failure load, this lowest value, according to the Author himself, is due to the pre-cracking procedure carried out to manufacture the cracked specimen and to a crack depth deviating by +16% from that related to the other tested geometries. For this reason, the fracture toughness value (as well as that of the tensile strength) was obtained from a best fit procedure in [START_REF] Strandberg | Fracture at V-notches with contained plasticity[END_REF]. The same will obviously apply in the present study (Table 2). Moreover, since the failure load slightly decreases by passing from 30° to 60° and afterwards it increases monotonically with ω, ω c ~60° can be regarded as a minimum (Fig. 6c). Eventually, TPB tests carried out on polystyrene specimens [START_REF] Carpinteri | A finite fracture mechanics approach to structures with sharp V-notches[END_REF] do not show a significant difference between the failure loads for the 60°notch sample and the 120°-notch sample (Fig. 6d) and the presence of a minimum between these two cases can be supposed.

The structural properties, for all the experiments here considered, are reported in Table 2. As it can be observed by evaluating the square ratio of the fracture toughness to the tensile strength, PMMA ((K Ic /σ u ) 2 ≈ 0.26-0.32 10 -3 m) is more brittle than the other two materials ((K Ic /σ u ) 2 ≈ 0.90 10 -3 m).

The dimensions of the TPB and DENT PMMA specimens are quite similar and sensibly larger than those related to the other tests. Moreover, the same occurs for what concerns the dimensionless notch depth a/h, which is equal to 0.40-0.50, 0.16 and 0.10 for PMMA, steel and polystyrene samples, respectively. All these considerations can be synthesized by referring to the values assumed by the brittleness number s (Table 2), which shows that the structural response was really brittle for PMMA specimens, and less brittle for the other material specimens.

In Fig. 6 there are reported the FFM predictions by means of Eq. ( 7). Shape functions f are obtained either numerically [START_REF] Sinclair | Path independent integrals for computing stress intensity factors at sharp notches in elastic plates[END_REF] or by exploiting those already evaluated, as done for steel samples [START_REF] Strandberg | Fracture at V-notches with contained plasticity[END_REF]: in this case, however, the shape function related to the crack-case has been re-calculated (Tada et al., 1985). As it can be seen, a good agreement is generally found between experimental data and theoretical predictions. The highest values for the relative failure loads are provided by the PSLE criterion: its predictions slightly differ from those obtained by the other FFM criteria, which result to be very close. Notice that the LSLE approach always provides the lowest values.

These behaviours also reflect on the critical angle ω c value. For smaller s, although the difference between the theoretical predictions related to different notched geometries with 0°<ω<60° is not so significant (Figure 6), all the FFM criteria are able to catch the minimum (Table 2) and similar results are obtained. While for DENT PMMA samples the theoretical critical value ω c is close to the experimental one, for TPB PMMA specimens is lower. Note anyway, that no specimens with notch amplitude comprised between 0° and 45° were tested in [START_REF] Carpinteri | Stress-singularity and generalized fracture toughness at the vertex of re-entrant corners[END_REF]).

For higher s (steel and polystyrene), the ω c predictions according to different FFM approaches slightly differ, especially those provided by the PSLE criterion. Observe from Table 2 that the general trend obtained in Fig. 3 (i.e., the semi-infinite edge-notched geometry) is coherently recovered. Furthermore the minimum is more marked (Figure 6): referring to TPB tests on polystyrene specimens and to the LSLE criterion predictions (which always result to be the closest to the experimental values), for instance, the difference between the failure loads for the 0°-notch sample and for the 87°-notch sample (which provides the minimum, Table 2) is approximately 4%.

Eventually, taking into account the same test and the same criterion, Eq. ( 7) has been plotted in Fig. 7 by varying ω and keeping s fixed. It can be thought that different curves refer to specimens with the same geometry of the polystyrene samples tested in [START_REF] Carpinteri | A finite fracture mechanics approach to structures with sharp V-notches[END_REF], for which s=0.236, but with different material properties. It is clear that, also for finite geometries, there exists a critical notch angle ω c , whose position moves from 0° to 180° as the brittleness number s increases. For less brittle structural behaviours, the minimum is more pronounced. On the other hand, for very large s values (i.e. ductile structural behaviours), the FFM predictions provide failure loads higher than that for plain specimens and therefore unacceptable, despite the failure load at the minimum is always lower than π cr P .

Conclusions

The presence of a critical angle providing the minimum failure load, in brittle or quasi-brittle structures containing edge and center re-entrant corners, is investigated. The study concerns both infinite and finite geometries, under different loading conditions. It is shown that a critical angle always exists and is more pronounced for large s values (i.e. relatively ductile materials and/or small structural sizes), while it becomes almost imperceptible for small s values: only in this case the crack tends to become the most dangerous configuration.
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Table 1: Different critical distances ∆ and ξ functions and according to different FFM criteria.

Table 2. Structural properties related to the experimental data considered and critical angle values ω c obtained experimentally and through different FFM criteria.

(*) For DENT specimens h denotes half of the total height 
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Fig. 6 :

 6 Fig. 6: Relative failure load P cr ω /P cr π vs. notch opening angle ω (degrees) for different experimental tests: a) TPB, PMMA b) DENT, PMMA c) SENT, steel d) TPB, polystyrene. Experimental data (asterisks) and predictions related to different FFM criteria: LS (dashed line), LE (continuous thin line), PSLE (dotted line) and LSLE (continuous thick line). Circles represent the minimum relative failure load according to the LSLE criterion.

Fig. 7 :

 7 Fig. 7: Relative failure load P cr ω /P cr π vs. notch opening angle ω (degrees), according to the LSLE criterion, for increasing values of the brittleness number s. Results refer to specimens possessing the same geometry of the polystyrene samples tested in (Carpinteri et al. 2008), here represented by the s=0.236 curve. The thick line represents the locus of the minima.
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