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Abstract

A damage model for carbon-carbon orthotropic composite materials is intro-
duced with a special attention to the thermo-mechanical effects. The internal
variables of damage are identified from tension-compression tests according
to each fiber direction and from shear tests in each orthotropy plane. The
influence of the temperature is taken into account from typical experimen-
tal stress-strain curves given for different values of the temperature. The
finite element model was implemented in ABAQUS® using an implicit time
incremental scheme. Finally, a significant numerical simulation of a thermo-
mechanical loading with damage is presented.
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1. Introduction

During the last forty years, there has been a great expansion of 3D carbon-
carbon (C/C) composite materials such as AEROLOR®. Industry takes ad-
vantage of their high performance thermal and mechanical properties. The
C/C composites are an attractive choice for aeronautics (structural compo-
nents, aircraft brakes), in spatial applications (rocket thrust nozzles, hyper-
sonic vehicles), in the domain of nuclear fusion (7Tore Supra tokamak), etc.
Tests in a real-life situation are costly, limited and difficult to analyze, so the
prediction of the thermo-mechanical behavior of C/C materials by means of
numerical simulations is essential. On account of the strongly nonlinear rhe-
ology of these materials, the difficulty is to obtain reliable models associated
to robust numerical schemes.

A considerable amount of works has been carried out to model dam-
age processes for composite materials. The framework generally adopted is
provided by the theory of Thermodynamics of Irreversible Processes with
internal variables. Among these works, we find those from the ENS Cachan,
France, with a first model proposed in the early 1980s by Poss (1981). In the
1990s, intensive developments have been achieved by numerous researchers
such as Allix et al. (1993), Ladeveze et al. (1994), Gasser (1994), or Maire and
Chaboche (1997), Maire and Lesne (1997), Maire et al. (1996) at ONERA
(France). A hierarchical method of modelling was used for various compos-
ites such as SiC/SiC, C/SiC and C/C (Chaboche, 1997). More recently, in
order to study specific models for C/C composites, the concepts developed
in the previous works were considered by Pailhes et al. (2002), Siron (1996),
Moncel (1999) (LCTS, France). Let us also quote works on anisotropic dam-



age models for concrete within a non standard thermodynamic framework :
Ragueneau et al. (2008), Desmorat et al. (2010).

Nevertheless, most of the studies on 3D C/C materials are made at the
ambient temperature. In some applications, the composite material is sub-
jected to extreme thermal variations and high temperatures significantly af-
fect its mechanical properties. Experimental loading-unloading curves show
that the dependence with respect to the temperature of the elastic stiffness
and of the stress threshold may be important and strongly nonlinear. So it
is necessary to take into account the coupling of damage and temperature to
write the constitutive equations ; for example, the elastic stiffness will have
to depend not only on the damage history but also on the current tempera-
ture. Such a behavior with damage for a varying temperature seems difficult
to predict from existing works.

Our goal is to take into account the effect of the temperature on the in-
elastic behavior of 3D C/C by using an alternative approach. A mathemati-
cal framework of modelling is introduced having the following requirements
in view. (i) The identification of the mechanical properties needs loading-
unloading tests at different values of the temperature. (ii) The general model
has to supply identifiable specific constitutive equations which ezactly repro-
duce the available experimental stress-strain curves. (iii) One must be able to
associate an efficient approximation scheme compatible with the architecture
of standard nonlinear computational mechanics softwares.

An application is given from generic stress-strain curves corresponding
to experimental data available now from uniaxial loading-unloading tests.

Here, internal variables of damage are defined from the strain path and the



elastic stiffness is identified from the set « of the internal variables and the
temperature #. For this simplified model, an assumption of uncoupling of the
damage state according to the fiber directions is used. The irreversibility of
the evolution in the model is ensured by the fact that the rate of the internal
variables is proved to be nonnegative. The numerical solution was performed
using an implicit incremental scheme implemented in the commercial software
ABAQUS. The proposed approach of modelling is general enough so that one
can possibly specify more sophisticated constitutive equations from future
experimental diagrams for C/C under multiaxial thermo-mechanical loading.

The outline of the paper is as follows. Section 2 is devoted to AEROLOR®
type C/C composites and their main thermo-mechanical properties. We de-
fine, in the following section, a unidimensional model at a fixed temperature
from a convenient choice of a damage internal variable. In section 4, a typi-
cal stress-strain curve is considered representing loading-unloading cycles in
a uniaxial tensile test on a C/C material. Consistency of this model with the
given diagram typical of a damage behavior is proved. Again within a uni-
dimensional framework, the following section deals with the case where the
stress-strain curves depend on the temperature. Next, in section 6, we are in
a position to introduce a three-dimensional model of damage with changes in
temperature. The specific features of the C/C composites behavior are taken
into consideration: directional uncoupling of damage, tension-compression
difference of behavior, alternating shear. The next section concerns an im-
plicit time discretization of the model; we show that the nonlinearity at each
step in the incremental scheme is of projection type. In the final section, a

significant computational test is presented relative to the quasi-static evolu-



Figure 1: Architecture of the AEROLOR® material.

tion damage problem.

2. Presentation of the C/C composite

The AEROLOR® type composite materials are constituted from a tridi-
rectional weaving (Figure 1). In the z direction, the strands are spaced by
a pitch P, of 8 x 107* m. The other two directions are equivalent with
P, = P, =16 x 107* m. The strands oriented along z are made by assem-
bling 4 x 4 threads of 3000 carbon fibers. The strands oriented along = and y
consist of 2 x 4 threads. The mean diameter of a fiber is 6.5 x 107 m and the
fiber volume ratio is identical in all directions, in the order of 15. The woven
block is densified in liquid phase. Densification includes two low pressure

cycles and five high pressure cycles. Each densification cycle, except the last



one, is followed by a graphitization procedure. In the last high pressure cycle,
the material is heat treated at 1200 " C. The graphitization of the preceding
five cycles is performed at 2600 ° C. At the end of the elaboration process,
the virgin material is free of residual stresses. This point was experimentally
verified.

The main advantages of C/C composite materials are the following:

e a good resistance to thermal shocks, enabling their use up to tempera-

tures at almost 3500 ° C,

an extremely low density, between 1.5 and 2 depending on the quality of

the material, enabling substantial weight-saving compared to tungsten,

a high stiffness even at elevated temperatures,

a good ablation resistance: the refractory properties and the high sub-
limation latent heat of the carbon make it the best ablation material

known.

3. Unidimensional modelling at a fixed temperature

The study of a uniaxial tensile test on a C/C composite material with
loading-unloading cycles will allow us to bring out important features of the
concerned behavior with damage. In the present section, the temperature is
fixed; modelling tools are introduced in order to include large heat variations
further down. Stress o and mechanical strain ¢ are scalar quantities in this

unidimensional analysis.
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Figure 2: Uniaxial tensile test.

In the following, the quantities under study will be assumed to be smooth
enough so that computations make sense. For a mathematical study of the

damage problem, we refer to a forthcoming paper (Laborde, to appear).

3.1. Typical behavior of damage

Let us consider a stress-strain curve characteristic of the behavior of C/C
composite materials at a fixed temperature. In Figure 2, we present in di-
agram form a loading-unloading cycle for a uniaxial tensile test into the
longitudinal orthotropic direction z. Residual strains are assumed to be neg-
ligible in this first approach. Here ¢ denotes the longitudinal strain and o
stands for the uniaxial stress. In order to identify the main features of the
considered nonlinear behavior, we will study the case of a tensile test (o > 0)
in the following unidimensional analysis.

The line segment OA of the stress-strain curve corresponds to a linear
reversible behavior as long as € remains below some initial limit £° (possibly

equal to zero). The associated elastic stiffness is denoted E° and h° is the



initial stress threshold of damage. The arc of a curve AB points to the
nonlinear damage mechanism into play at this stage of loading. The stress
level hY at point A is brought to a new value h at point B. At the end of the
elastic unloading path BO, let us observe that no residual strain appears in
Figure 2. The current Young’s modulus £ is lesser than the intial one £
and a supplementary decreasing of the Young’s modulus will be possible only
when the stress will pass beyond the previous threshold A. The weakening
of the elastic stiffness is significant of damage phenomena. Figure 2 is a
simplified representation of an irreversible process.

During the history of deformations at the fixed temperature, the current
Young’s modulus F and stress threshold h are measurable quantities. We
put

h

a:E—eo (1)

where £, possibly equal to zero, is the intial limit of reversibility for strains.
Here, the terminology initial refers to a characteristic of the virgin (non
damaged) material : .

el = %. (2)
The definition of « is illustrated in Figure 2.

The quantities £/ and h can be identified as a function of the variable «
E=F(a), h=nh(«) (3)

from the given experimental stress-strain curve in Figure 2. Functions F («)
and h («) will be considered as data in the following modelling procedure, so

as the value &Y.



The Young’s modulus is assumed to be a differentiable, nonnegative and

decreasing function of the variable « :
E, <0, (4)

where the prime denotes a (partial) derivative with respect to the indexed
variable. We also suppose that the stress threshold is a differentiable, non-

negative and increasing function with respect to a as in Figure 2 :
hl, >0 (5)
A last hypothesis is the concavity of the function h. From the definition (1),

% (% - 60) _ 1 (6)

Such a condition will be discussed in the general case in section 5.1.

we deduce

The quantity o depends on the the history of deformations and defines
the state of irreversibility of the system. The parameter o will play the role
of an internal variable in the constitutive equations below. The value of «
determines the degradation of the elastic stiffness property of the material

during the loading process and « will be called the variable of damage.

3.2. Constitutive equations

From the definition of the internal variable a above, we are now in a
position to express the irreversible process considered in Figure 2. In the
previous subsection, the stress threshold h was introduced so that the stress

satisfies the admissibility criterion:

(o, a) <0, (7)

9



denoting ¢(0,a) = 0 — h(a) in tension (o > 0). Let us note that ¢ is
a convex function from the concavity property of the yield function h. By
taking into account the behavior of the internal variable illustrated in Figure

2, we can write

>0 and a=0 if ¢<0. (8)

The dot stands for a derivative with respect to the time ¢ (the loading pa-
rameter).

The elastic behavior is governed by the uniaxial Hooke’s law
o=Ea)e, (9)

in the framework of infinitesimal strains. By inverting the previous equality.

one obtains

e=CC(a)o, (10)

The rate of strain is obtained by differentiating equality (10) :
e=Co+e",
where the contribution of the damage is written
P = oa. (11)

By putting
eb =) (12)



we derive from (8):
A>0 and A=0 if p<0,

thanks to the fact that the Young’s modulus is a decrasing function from (4).
It follows that
(éDa —A Oé) = )‘ VQO

_(O9¢ Oe\ _ o,
VSO_<80'700{)_(17 ha)

for the gradient of function ¢ and

with the notation

A=C i, (13)

Let us observe that A > 0 since the yield limit is a strictly increasing function
from (5).

In short, the uniaxial constitutive equations are written :

e=Co+¢", (14a)
plo,a) <0, (14b)
(P, —Ad&) =\ Ve, (14c)
A>0, A=0 if ¢p<0. (14d)

In the following section, we will show that this specific model reproduces
exactly the given typical stress-strain diagram for a fixed temperature.
4. Consistency of the model

The representative experimental loading-unloading strain curve of Figure

2 illustrates different features of the behavior with damage. The aim is to

11



verify that the previous unidimensional model fits to such a stress-strain

diagram.

Proposition 1. Under the assumptions of section 3.1, let o, €, a be a given
state such that one has 0 < o < h(a). The stress rate response & in terms

of the strain rate ¢ is determined by the model (14) as follows.

(i) If o < h (elastic range) or if o = h and ¢ < 0 (elastic unloading), then
o= FEa)é a=0.
(ii) If o = h and ¢ > 0, then (damage range)
0d=FEr(a)s, a=¢,
where Ep = h., is the tangent modulus.

This result shows that the model (14) is relevant to represent the given

stress-strain diagram, as illustrated in Figure 3.

Remark 1. At this stage of the modelling procedure, the regularity of the
functions involved in the calculations has been not specified. Actually, the
correct notion of velocity is in fact given by the right-hand derivative in time:

dto : 1
0= lm (ot +h) ~o(t)).

= 1l
h—0, h>0
The existence of this quantity can be established in a suitable mathematical

framework. The following demonstration also implicitly uses the fact that:

dto 1 [ith
9= 1 /‘ s (t)dt,
2 Rl

= lim —
h—0, h>0 h
where ¢ corresponds to a weak notion of the derivation in time. For further

details, see Laborde (to appear).

12
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Figure 3: Stress rate response given by the 1D model for a fixed temperature: (a) in the

linear range, (b) for an irreversible loading.

PROOF. At the time ¢, there are three cases to consider.

(i) If o < h, then A = 0 according to (14d). On the one hand, one derives
from (14c) that ¢ = 0, and therefore that ¢ = C'¢ owing to (14a),
that is to say ¢ = F £. On the other hand, one has & = 0 thanks to
(14c¢) and to the fact that A # 0 according to hypotheses (4)(5).

(ii) If o = h, it follows & < h (using the condition of admissibility satisfied
by o at the later times ¢ + At such that At > 0). Let us first consider
the case where & < h. At times ¢ + At with At > 0, we will have ¢ < 0

and therefore (as in the case (i)):
c=FE¢ and =0 at t+4 At

By doing At — 0, the same holds true at the time ¢ (see Remark 1).

(iii) The case ¢ = h and & = h remains to examine. The multiplier A can

13



be eliminated between the two components of the vector equality (14c):

eP = oa.
It follows that
¢=Ch+Clha
by using (14a), then )
€= %(Ch).

We conclude that & = ¢, thanks to identity (6). Finally, we have
o=N4E.
That ends the proof.

Remark 2. The current value of the internal variable is linked to the strain
path as it can be seen from Proposition 1. There is no a precise method
for selecting an internal variable, see Lemaitre and Chaboche (1985), and
the choice is guided by the type of application under study. In the present
case, the objective is to define a more general model of behavior with damage
taking into account the influence of the temperature on the evolution of the
damage, see section 5. So, the previous choice a of the internal variable
is prefered for instance to a definition linked to the elasticity modulus F.
Let us also note that an analogous model was considered in Laborde and
Michrafy (1991) using another internal variable and without considering the

temperature.

14



5. Taking into account of the temperature

We now consider a loading on a C/C composite when the temperature is
varying. In the first subsection, constitutive equations are introduced where
the mechanical properties also depend on the temperature. Then, we study
the consistency of the proposed model with respect to typical stress-strain
curves given at different temperature values. The last subsection is devoted
to some comments on our options of modelling about the thermo-mechanical

coupling.

5.1. Constitutive equations

For large heat variations, the C/C composite mechanical properties de-
pend not only on damage, but also on the current temperature value (elastic
stiffness, stress threshold, possible residual strains). Indeed, stress-strain ex-
perimental curves show the nonlinear dependance of the elastic stiffness with
respect to the temperature, see section 8. Consequently, the current state
of damage itself depends on the history of the thermal loading. From the
modelling procedure introduced in the previous sections, we now propose an
attempt of damage-temperature coupling which is compatible with available
experimental data. The presentation is carried out within a unidimensional
framework before to consider the three-dimensional case in section 6. The
residual strains are still neglected, see Remark 4 below.

The experimental basis of modelling is represented by stress-strain curves
with loading-unloading cycles to a fixed temperature 6, for various values
of . The stress threshold curve depends on the temperature as well as

Young’s modulus. Simplified stress-strain curves are shown in Figure 4 for

15



two temperature values. In both cases, the mechanical loading process is
considered at the fixed temperature (f; or ). As previously, the Young’s
modulus is given by the secant stiffness.

The approach followed in section 3 can be used for each fixed value of the
temperature. Let us consider the stress-strain curve relative to a mechanical
loading process at the given temperature 6. At each stage of the process, let
us define as in section 3.1:

h

Oz=E—€0 (15)

from the current values of the elastic stiffness I/, the yield limit A and from
the initial limit of elasticity for strains € at the given temperature. As
previously, we can express I/ and h as a function of a. Here, these quantities

depend on the temperature:
E=F(a,0), h=h(a,0)

and &° = &Y (0).

From the definition (15), we deduce the two identities

O (h N\ . 0 (h o\ _

Such a condition expresses that a and € are independent variables in the
definition of functions h and FE. Equalities (16) can be considered as a
compatibility condition satisfied by the data h and E as a function of «
and 6. Conversely, the assumption (16) implies straightforwardly that

a:%(%-&). (17)

16
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Figure 4: Behavior under a mechanical loading at fixed temperature values 67 and 62: (a)

initial thresholds, (b) secant moduli.

According to the approach followed in section 3.2, the admissibility cri-

terion on the stress o is written as follows:
p(o,a,0) =0 — h(a,0) <0. (18)

In the uniaxial Hooke’s law, the elastic modulus is temperature-dependent

IIOW:

o= FEa,0) e. (19)

where ¢ represents the difference between the total strain and the thermal

strain, see section 6.2. The relation (19) can be written equivalently
e=CC(a,0) o. (20)

Similarly to the case of a fixed temperature, the nonnegative and differ-

entiable functions F (a, ), h («, 0) satisfy the following conditions :
E/, <0, h,>0 (21)

17



and A is still assumed be a concave function of the variable «.

We can write, similarly to (14):

E=Co+¢P+Bo (22a)
. 5 [O¥ Op

D_ — _

(67, —Adq)= A (60’ 8a> (22b)
<0, A>0, A=0 if ¢<0 (22¢)

by denoting B = Cj 0 and where A = C” h k!, is obtained as in (13). Quanti-
ties A, B and C' depend on 6. Relationships (22) represent a unidimensional

model of damage in the presence of a variable temperature.

5.2. Analysis of the model

Following the approach considered for a fixed temperature, let us now
examine the rate principle associated to the damage model (22) in relation

to a variation of temperature.

Proposition 2. Let o, e, a and a temperature value 6 be given such that
0 < o < h(a,0). Under the hypotheses of the section 5.1, the stress rate &
and the internal variable rate & can be expressed as a function of the strain
and temperature rates ¢ and 0 according to the following conditions.
(i) Ifo < h, then & =0 and 6 = E ¢ + E} < 0 (reversible range)
(ii) If o = h, then & = (¢ — %)™ and, moreover
e cither & =0 then ¢ = F ¢ + Ej ¢ # (unloading)
o or & >0 then & = Ep é + F 0 (damage range),

with the notations Ep = hl, and F = hjy — hl, (")}.

18



Let us observe in particular that the the evolution of the internal variable

obeys the condition

& >0 (23)

from the previous statement.

PrROOF. (i) If 0 < h, we derive from (22) that A = 0, so & = 0 from

the hypothesis (21), then ¢ = C' & + C) o 0. By inverting the latter

equation, one obtains

E, .
d:Eé-l—EeaH,
that is to say
G=FEé+E)ch. (24)

When ¢ = h and & < h, we find again & = 0. Moreover, equation
(24) is still true by using the same argument as in the study without
temperature, see the proof of Proposition 1, point (ii). Besides, the

equation ¢ =C o+ Cpo 0 implies the following inequality
E<Ch+C)ho,

from the conditions defining the present case and owing to the assump-

tions (21). In other words, one has:

d
.4
s_dt(Ch),

since & = 0. Tt follows that ¢ < & + & from the expression (17) of ¢.

We obtain finally

19



(iif) In the last case ¢ = h and ¢ = h, by eliminating the multiplier X in the

relation (22b), we find for a variable temperature
E=Ch+C ha+Chho,

i.e. &= %(Ch). Therefore, one obtains

é=c+é°, (25)
and the condition ¢ = h gives:
& = hjé — hpe® + hyb

Moreover, let us note that & > 0 from the constitutive equations (22)

and the hypotheses (21), so the relation (25) leads to
¢ > .

By gathering the cases (ii) and (iii), we conclude that

which completes the proof.

The rate principle formulated in Proposition 2 for a variable temperature
leads to
do d

= = S (B,6)2) (26

at each time. This equality can be derived of the compatibility condition (16).
In other words, the rate of residual strains is equal to zero as postulated in

section 3.1 and the constitutive relations (22) define an elastic damage model.

20



5.83. Comments

In the course of a given thermo-mechanical loading, damage and tem-
perature are coupled together in the evolution of the elastic stiffness. The
previous modelling induces a definite type of dependence of the damage pro-
cess on the temperature loading. Actually, Proposition 2 can be illustrated
by examinating the response given by the model when the temperature varies
from some value 6, to other one 8, and the strain remains fixed.

The first case is defined in Figure 5 where the initial maximum elastic
strains are equal to the same value €° for both given temperatures 6; and 0.
The starting stage (e, 07) is represented by the point A on the stress-strain
curve at temperature 0y, i.e. the stress is on the current damage threshold.
When the temperature comes into 65 from 6, for a given strain value €, we
have & = 0 according to Proposition 2 and the internal variable remains
equal to a = ¢ — €% at the final stage (¢, 02). The latter corresponds to the
point B on the curve at the temperature 65 in Figure 5. So the stress oy is
on the damage threshold corresponding to the new temperature.

For the same data, let us now consider a first state of the system (e, 0y)
strictly below the stress-strain curve at temperature 6;. Represented by
the point B in Figure 6, this state was preliminarily obtained by carrying
out an unloading step from the state (£4,04) on the loading curve at the
temperature #;. At point B, the internal variable and the secant stiffness

therefore are equal resp. to
a=¢cy—¢ and Ey = E(a,b;),

moreover the stress is such that oy = Fy € < h(a, 60;). When the temperature

varies from 6; to 05 at the constant strain value €, the response of the model

21



again must verify & = 0. The final state (g, 03) is represented in Figure 6 by
the point C without any variation of the internal variable. Then, the elastic

stiffness is equal to Fy = E(«, 6,) and
09 = Fy e < h(a,Qg).

The stress remains strictly below the limit of elasticity corresponding to the
final temperature.

The third case is presented in Figure 7 where the initial maximum elastic
strains ) and €9 are distinct. The initial stage A(e,01) corresponds to the
damage value a = ¢ — ¥ obtained by a monotonous loading at temperature
0, from the non-damaged state O as indicated in Figure 7. As previously,
the strain is fixed at the value € and the temperature comes into 6y from
0,. According to the Proposition 2, we have & = (—£%)" = 0 and the model

predicts the state (g, 09) associated with the point B such that
O'QZEQ g, EQZE(O{,QQ).

Finally, in Figure 8, we consider a starting point A(e,01) at the temper-
ature ¢, for which the damage value is zero. At the temperature 6, and for
a constant strain ¢, the damage at the final stage B is ay = ¢ — &9 and we
have here & = (—&")* > 0.

Anyway the model selects the response which minimizes the evolution of
the internal variable of damage o among the admissible responses to a given
thermo-mechanical loading. When the temperature varies continuously, this
type of behavior remains to be validated experimentally.

In this unidimensional study, the chosen internal variable allows us to

take into account the given typical stress-strain curves relative to a tensile

22
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Figure 5: Variation of the temperature from 6; to f2: (a) same strain threshold ° at 6;
and 6z, (b) stress response from A to B for a given strain state ¢ and for a variation of

temperature from 61 to 6.

test at various temperatures. Uniaxial compression-tension cycles can be
represented in the same way by introducing a new internal variable in com-

pression, see section 6.2.

6. Three-dimensional modelling

After reformulating the constitutive equations coming from the unidi-
mensional analysis, we will derive a three-dimensional model generalizing

the previous approach.

6.1. Uniaxial constitutive inequality

At a fixed temperature 6, the admissibility condition (18) allows us to

define the set K'(#) of the admissible pairs (o, a):
K(0) = {(7,0) : (7, 5,0) < 0}.
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Figure 6: Temperature variation in the elastic range: (a) the loading curves at 6; and 65,

(b) from the state A to B at temperature 61, then to the state C at the fixed strain e.
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Figure 7: (a) Initial strain thresholds £} and § at temperatures 6; and 6 respectively,

(b) loading path OAB where A represents a damaged state at 6.
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Figure 8: (a) Initial strain thresholds £} and ¢ at temperatures 6; and 6 respectively,

(b) loading path OAB where A represents a non-damaged state at 6;.

The stress threshold is a concave function with respect to a according to
(21), it follows that K () is a convex set.

Constitutive relations (22) are equivalent to the following property
(eP,—A &) normal to K(6) at (o,a)

in the sense of Convex Analysis, that is to say

eP(r—o)—Aa(B-a)<0
for any (7, 3) € K(0), and (o,a) € K(0).
In other words, relationships (22) are equivalent to the following stress-

strain relationship of inequality type

Co(r—o)+Aa(B—a)>(E+HO) (r—o0)
for any (7,03) € K(0), and (o,a) € K(0),

(27)

with the notations of section 5.1 and H = —B. Such an expression of the
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unidemensional model links the strain rate to the stress and internal variable

rates via the variation of temperature.

6.2. The general modelling framework

In this section, we propose a general expression of the behavior of a
C/C composite subjected to a thermo-mechanical loading in the frame-
work of infinitesimal strains and displacements. In order to take into accont
the orthotropic symmetry of the material, the reference axes in the three-
dimensional space R? are defined as the three directions of fibers. The strain
tensor € = {g;;} and the stress tensor 0 = {o;;} lie in the space S of the
symmetrical second order tensors, equipped with the usual inner product
0. = sz oij€ij. The tensor ¢ will represent the difference between the
total strains and the thermal strains, see Remark 3. The variable of damage
a will be defined from a number of scalar or tensorial unknown quantities
assigned to some irreversible properties of the material according to the fiber
directions as it will be illustrated later.

The previous unidimensional analysis led to inequality (27) which can be

generalized in the three-dimensional case as follows

Co:(r—o)+Aa.(f—a)
>(E+HO) : (r—0) (28)
for any (7,3) € K(0), and (o,a) € K(0).
We have denoted a. the inner product defined in the internal variable space.
The four order symmetrical tensor C' = C(«, #) of the elastic compliances is

a function of the damage state and is temperature dependent. It can also

depend on the stress state o in order to take into account the difference of
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behavior in tension or in compression. The evolution of the internal variable
is governed by a linear operator A = A(o,a,0) also depending on («,0)
and possibly on ¢ from the internal variable space into itself. Moreover,
H = H (o, «, ) stands for a second order symmetrical tensor concerning the
involvement of the temperature variation in the mechanical behavior. Finally,
K(0) is the convex set of the admissible pairs (o, ) at the temperature 6.

For the sake of simplicity, residual strains are neglected in the damage
model under study, see Remark 4 below. An extension of the mathematical
framework (28) is being examined to take into account residual strains. Nat-
urally, the identification of the flow rule of damage with residual strains will
need convenient experimental informations.

Let us also note that the rate inequality (28) can also be written in the
form of equalities analogous to (22) involving many multipliers. Finally,
the constitutive equations (28) define a general three-dimensional model of
irreversible behavior for damage problems in the presence of a temperature

variation.

Remark 3. Thermal strains " do not appear explicitly in the model (28).
The difference between the total strain and the mechanical strain can be

written for each orthotropic direction i :

55? = K(0)(0 — Or) 0y,
where k;(6) is the thermal dilatation coefficient of the material, g a refer-
ence temperature and 6 = {d;;} denotes the Kronecker tensor. The thermal
dilatation coefficient is determined by appropriate tests. In our problem,

the material damage due to mechanical loadings does not significantly mod-

ify the experimental value of this coefficient. Actually, thermal strains are
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taken into account in (28) by considering that the notation ¢ stands for the

difference between the total strain and the thermal strain.

6.3. An example

This framework of modelling can be particularized according to the avail-
able data in order to obtain identifiable specific constitutive relationships
from the given experimental loading-unloading curves. For instance, let us
consider an orthotropic behavior where no account is taken of :

- the directional coupling of damage (e.g. the elastic stiffness into a fiber
direction is not affected by a tensile load into another fiber direction),

- the possible presence of residual strains.

Experimental tests on C/C composites showed that:

- Poisson’s ratios are negligible,

- in fiber direction i, the Young’s modulus FE; is different in tension or in
compression (i = 1,2, 3),

- the shear moduli G;; are strongly dependent on the damage (i # j), see
Remark 4.

The Young’s modulus F; in tension (o;; > 0) will be denoted E;"; in com-
pression (o;; < 0), we will write £; = FE; . Similarly for the shear modulus,
we will have Gy = G;; it o0y >0, Gy = Gi_j otherwise. The matrix of
compliances C' = C'(«, 0) satisfies Co = ¢ with

1 .
S = g O and & = oTem oy (i # 7).

Let o be the internal variable lying in R%:

Oz={a;;,ai_j: igj}
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such that we have

Ef = Ef(a,0), Ef = E (ag,0),

(R (AR

ij = ij(oz+ ), Gy =Glag;,0).

i) i)

The admissibility criterion associated to a uniaxial tensile stress into the

fiber direction ¢ for a tension or compression loading is written:

- <0

+ _ + - _
@i =0i—hy <0 or ¢ =—0i — hy

I

where

hii = hi(af,0) >0 and h; =h;(a;,0) >0
are resp. the tension or compression stress threshold into direction 2. Simi-
larly, the criterion associated with the shear test in the plane (i, 7) is defined
as:

g0;;=aij—h;;§0 and ;= —0y; — h; <0,

%)

denoting

hi = hfi(af,0) >0 if 0y > 0,

hi; = hij(a;,0) > 0 otherwise.
The global admissibility condition at the temperature 6 is finally written:

90(0-7 a? 0) S 07

with

gpzmax{gozg,gpi_j : igj}.
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In the present particularization of the model (28), A = A(«,0) is a di-
agonal matrix. Refering to relations (22) obtained in the unidimensional

analysis, the first diagonal terms take the following form:

0 1 0

In this expression as in the following ones, the quantities F;, h; and «; are

indexed by 4+ or — depending on the sign of ;. In the same way, the last

three diagonal terms of A are written:

o 1 0
(aaij 2Gij) hi (3713%> '

The elastic moduli are assumed be differentiable, nonnegative and de-

creasing functions with respect to their corresponding internal variable :

OFE; 0G4
i 0 ij
80% <% 80@-

<0 (29)

by analogy with (21) for the Young modulus in the unidimensional case. In
the same way, the threshold h;; is a differentiable, nonnegative and increasing
function of «;; (compare to (21)) and we also suppose the concavity of h;;
with respect to a;.

Under the above assumptions, the thermodynamic consistency of the sim-
plified model of damage is ensured if the evolution of the internal variables
satisfies :

ai; > 0 (30)

from AppendixA. The property (30) derives from the application of Propo-
sition 2 to the uncoupled model under study, see inequality (23).
We have considered a directional uncoupling of the damage for the lack

of corresponding physical data. A first improvement is to consider a Young’s
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modulus into the direction of fiber 1 as follows
Ey = E(a1y,9),
where aj, represents an equivalent damage:
ayp = aq1 + a o + b ass.

Phenomenological constants a and b measure the influence of directions 2
and 3 on direction 1. According the available data, the proposed modelling
procedure can be used for more complex directional coupling effects.

The general framework (28) offers a flexibility of the modelling which
allows to consider more complex situations than in the present specific ap-
plication. That depends on the available experimental loading-unloading

curves.

Remark 4. Beyond the initial stress threshold of damage, characteristic
loading tests show that the shear moduli of the material are highly variable
with respect to the applied loading beyond the initial stress threshold of
damage. Macroscopic cracks appear in the matrix during the loading and
the strands do not bring the material back to its original state at unloading.
So residual strains are not negligible in shear planes, contrary to tension
and compression tests. No residual strain is considered in the damage model
with temperature studied in this subsection. But the knowledge of loading-
unloading curves in the shear planes makes possible to take into account

important residual strains in an extension of the model.
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7. The incremental scheme

Let us see how the previous modelling can be be exploited from a compu-
tational viewpoint. The model of damage defines the constitutive equations
to be combined with the equations of dynamics and the force/displacement
boundary conditions. We are interested in an implicit time discretization of
the finite element problem. Classically, in order to update the nodal force
vector in the (global) incremental equilibrium problem, the nonlinear con-
stitutive equations are treated locally (at each integration point). In this
section, we study a local (pointwise) implict incremental scheme to approxi-
mate the model of damage.

We have postulated a directional uncoupling of damage for the orthotropic
materials under consideration. So the discretization method for the three-
dimensional constitutive equations at a given point is reduced to a unidi-
mensional approximation problem in each fiber direction. We now consider
things in the unidimensional framework presented in section 6.1.

Let ¢, and ¢, be two consecutive discrete times of the loading path in
tension (i.e. o, > 0, 0,41 > 0) and At = ¢, — t, > 0. The discrete value
of a quantity ¢ at ¢, is denoted ¢, and its increment between ¢,, and ¢, is
written Aq¢ = gni1 — ¢ - Moreover, if the quantity ¢ depends on a and @,

we will use the convention:

Gn+1/2 = q(om;s Onyr).
The initial data satisfy the conditions

g9 = C (an, 0y) 00, 00 < h (v, o).
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The step by step scheme is formulated as follows at the discrete time

(tpe1). Let e,,.1 be given, the trial stress o’ is defined by the relation
Cht1/2 ol =¢eup (31)

and ,, 0, as well as a,, are known at this stage such that e, = (Co),.
Then, 0,41 and o, are computed from ¢! according to the following two

cases (Figure 9).

If ot < hyq1/2, then
Qpy1 = Qp,y Oppl = 0. (32a)
If O'T > hn+1/2, then

Uny1 = (€ — sty Opg1 = Py (32b)
One can verify that the projection type algorithm (32) implies
ent1 = (C0), 4,
at each step (compare to (20)) and, moreover
Qpt1 = O

The following statement shows how the algorithm is connected to the

damage model.

Proposition 3. The step by step method (32) is equivalent to the following
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variational inequality relative to the unknowns (opy1, Oni1)

Chni1y2 Ao (T — 0py1)

+ (Cn+1 - Cn—|—1/2) (Rhg)ns1 (B — any1)
> Ae (T — opi1) (33)
- (Cn+1/2 - Cn) On (7' - 0n+1)
for any (7-7 6) € K(en—l-l)a

with (O'n_|_1, O{n+1> S K(QTH—I)

The above variational inequality corresponds to an implicit type time dis-
cretization of the inequality (27) obtained from the constitutive relations
Glowinski et al. (1976). As a matter of fact, we see in the inequality (33)

that
Cni1 = Cpyipz = Cf (Gny1,0n41) Acy,
Cosip=Co = Cy (anfusr) A0

for some intermediate values

&n-l—l € [Ofn,Oén+1], 9n+1 € [97179714—1]7

thanks to the mean value theorem. In that sense, the step by step scheme will
be said consistent to the uniaxial damage model with variable temperature.
At t,,+1, the discrete inequality (33) relies the incremental stress 0,11 and the
internal variable a1 to the strain £, 1 (computed by an iterative procedure

in the context of the incremental finite element problem).

PROOF. Let us first check that the algorithm is derived from the variational

inequality when the temperature is fixed.
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A — The case without temperature variation.

If 6,41 = 0,, the discrete inequality (33) can be simplified as follows

Chn Ao (T — 0py1)
+(Crar = Cp) (A )nga (B — 1)
> Ae(T — 0py1) (34)
for all (7,53) € K41,

with (Un+17 Oén_|_1> S Kn—|—1~

Moreover, the definition (31) of the trial stress o becomes
CnO'T = E&np+1- (35)
Then, the discrete inequality (34) can be written:

Cr(Onsr — ") (T = ony1)
+(Cn+1 - Cn)(hh&)n—kl(ﬁ - an—|—1> Z 0
for any (7, 3) € Kny1,

with (O’n+1, Oén_|_1) € Ky

by using the recurrence hypothesis (C'o), = e,. This is the formulation
of a condition of normality with respect to the convex set K. So

there is a multiplier A\ such that

(Cn(JT - Un-l—l) ) _(Cn—f—l - Cn)(hh;)n—i—l)

= A\ a_QO’ o¢ (37a)
0o’ O« ntl

Oni1 <0, AN>0, AXgp =0, (37h)
where the gradient of ¢ is equal to (1, —(hL )ns1)-
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To derive the step by step scheme from this system of complementarity,

we proceed by recurrence. At the step n = 0, we put Cy 09 = €9. At

the step (n + 1), assuming that C, o, = &,, there are two possibilities.

(i)

Either ¢,.1 < 0, so we have AX = 0 according to (37b). Then
the equation (37a) on the one hand gives 0,11 = ¢’ and, on the
other hand C),,, = C,. The equality F,.; = FE, implies that
ant1 = a, because the function F(«) is strictly decreasing by
assumption (4). Moreover, from definition (35) of o, it follows

that (Co)py1 = €np1. Finally, we observe that o < h, since

Pnt1 < 0.

Or ¢py1 =0, i.e. 01 = hyyq, then one derives from (37):
Cn(UT — ont1) = AA = (Cpp1 — Cp)linga. (38)
This relation leads to
(Co)ps1 = Cro?,

hence (Co)py1 = €p41 thanks to the definition (35) of of. Tt
follows that €,41 = (Ch)ny1 = aui1 + €54y by definition of the

functions F(«a) and h(«), i.e.:
Qpt1 = Ep41 — €2+1~
It remains to verify that
ol > hy,. (39)

It is sufficient to consider the relation (38) and to take into account

the fact that AX > 0 together with the assumptions of monoticity
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on functions F and h. On the one hand, we see that AC' > 0,
therefore Aa > 0 and then Ah > 0. On the other hand, one has

ol — 0,41 > 0 with 0,11 = hyy1, hence finally (39).

B — The problem with a temperature variation.
At the step (n + 1), the trial stress ol defined by (31) satisfies the

following identity
Cn+1/2(0n+1 - UT> = C'n—|—1/2A0' + (Cn+1/2 - Cn)an — Ac.

where we have used the recurrence hypothesis (Co), = &,. The equality

(33) is then equivalent to

Cn+1/2(0n+1 - UT)(T - 0n+1)

H(Cnt1 = Crgry2) (Bl )ny1 (B — ayr) > 0
for any (7,8) € Kyi1,
with (o, a) € Kpy1.

As above, there is therefore A\ such that

(Cn+1/2(0T - 0n+1) ) —(Cn+1 - Cn+1/2)(hh;)n+1)

_an(2292) )
0o’ O« il

(i) If ¢ny1 <0, then AX = 0 and it results from (40) that
On+1 = O'T.
Moreover, we have C), 11 = Cp41/2 and therefore

Apy1 = Qp
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since the quantity C(«,0,,1) is strictly increasing with respect to

a according to the assumption (21). As in the Part A, this gives
Ent+l = (CU)nH-
Finally, the condition ¢, < 0 is written
0" < hyyajo
(i) If wpy1 =0, it results from (40)

Cn+1/2(UT — Ony1)

(41)
= A\ = (Cn—l—l - Cn—|—1/2>hn+1:

whence
Cn+1/2UT = n—|—1hn+1
since 0,11 = hyy1. Thanks to the definition (31) of o7, it follows
that e,41 = (Ch)py1 and
_ 0
Qpy1 = Ep41 — €n+17
see Part A. Let us now check that
UT > hn+1/2~

The condition AX > 0 together with the relation (41) ensures
that, on the one hand ()41 — Cj41/2 > 0, therefore Aa > 0 and
hps1—hny1/2 > 0. On the other hand ol — 0,41 > 0 and therefore

0T > hy11, hence the assertion.

Conversely, we can prove that (0,41, an41) defined by the scheme (32) is

solution to the variational inequality (33) by using similar arguments.
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Remark 5. The mathematical analysis of the convergence of the incremen-

tal procedure when At — 0 is beyond the scope of this study.

8. Simulations of damage in a quasi-static loading

A first numerical example is presented in this section from the simplified

orthotropic model introduced in section 6.3.

8.1. Computation methodology

The problem of quasi-static evolution is discretized in an implicit way
owing to the projection algorithm (32). The algorithmic strategy for the
finite element problem was implemented by using the commercial software
ABAQUS® (in the user subroutine Umat), see Figure 10.

For the specific model of section 6.3, the behavior of the material 3D
C-C is identified from tension, compression and shear uniaxial quasi-static
loadings at different temperatures. The numerical example below is relative
to a uniaxial tensile test. In Figure 11, each loading curve requires five
experimental tests from which an average curve of behavior is built. The
uncertainties are less than 10%. The resulting stress-strain curves were coded
in a tabular form for three values of the temperature. In the data tables
obtained from the experimental curves of Figure 11, about twenty pair (¢,0)
are given for each curve from the origin to the failure point, see Tables 1 and
2. The postfailure is not taking into account in this present work.

The initial strain thresholds are zero in the present case. Therefore the
internal variable associated to each of these monotonous uniaxial loading is
equal to the corresponding current state of longitudinal elongation €. So

the identification of the yield function and of the elastic stiffness is directly
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derived from the relations h(a, 0) = o and E(a,0) = o/¢ respectively. The
sign of the uniaxial stress o is taking into account for evaluating the yield
function and the elastic stiffness. For a computed value o and for a given
temperature ¢, the value of h is obtained from the tables by a double inter-
polation with respect to a and 6. Then F(«,6) is derived from h(a,#). The
values of the initial stiffness Fjy are experimental data given in Tables 1 and
2. The step of calibration were coded in the subroutine Umat of ABAQUS.

The identification is automatic and requires no work to make input data.

8.2. A numerical example

Let © be the reference configuration of the deformable body in the three-
dimensional space and u = (u;) the displacement field of particles z = (z;)
in € within the context of the infinitesimal strains theory. In the following

uniaxial tension-compression test, the initial geometry is the unit cube
Q={r=(2;):0<x; <1},
subjected to the displacement boundary conditions:

u; = 0 on the face {x; =0},
us = 0 on the face {zy =0},

ug =0 on the face {x3 =0},

and u; is prescribed at each step on the face {z; = 1}. The complementary
boundary conditions are of null force type and the body forces are neglected.
The values of the material constants are directly calculated from the given

experimental stress-strain curves, see section 8.1. For this uniaxial test, a
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coarse mesh of heigh-node bilinear isoparametric elements is used. The con-
vergence tolerance in residual forces is equal to 0.5% and 1% in displacement.

The incremental thermo-mechanical loading includes eight stages pre-
sented in Figure 11. During the stage 1, a displacement of 32 x 107% m
is prescribed into the normal direction on the face {x; = 1}, whereas the
temperature is fixed at 2750 " C. The displacement condition is applied in
an incremental way. The final solution is independent of the value of the
incrementation step. It is represented in Figure 11 by the point 1 which is
clearly located on the experimental tension curve.

The stage 2 consists of maintaining the previous fixed displacement while
the body is progressively cooled down to 2500 ° C, with a resultant position
on the corresponding experimental load curve.

During the stage 3, the deformable solid is unloaded by an prescribed dis-
placement U; = 20 x 10~% m while maintaining the temperature at 2500 ° C.
The incremental solution is a straight line passing through the origin of the
axes and the state 2, the slope of which corresponds to the damage value at
the previous stage.

During the stage 4, the temperature is again increased to 2750 ° C with
the same prescribed displacement. The state 4 is on the unloading path
obtained in the first stage.

The stage 5 consists of unloading the body by a zero displacement con-
dition again in the direction 1 at 2750 " C.

The first five stages were performed according to imposed displacements
generating tension stresses. In the following three stages, a pressure is applied

to the face {x1 = 1} of the cube, thus generating compression stresses.
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During the stage 6, a pressure of 186 x 10° Pa is applied whereas the
temperature goes back to 2500 ° C. As the experimental data for compression
at 2500 ° C are not available, the final and intermediary solutions are obtained
by interpolation based on the data known at 2200 ° C and 2750 ° C.

The stage 7 consists of maintaining the previous pressure level and of
increasing the temperature up to 2750 ° C. The solution obtained is localized
on the experimental compression curve performed at 2750 ° C.

Finally, the last stage relieves the load with the pressure progressively
dropping to zero, whilst the temperature is held at 2750 ° C. Unloading is
performed according to a straight line passing through the origin.

The results obtained confirm the fact that this numerical modelling ap-

proach is able of reproducing exactly the experimental data considered.

9. Conclusion

To our knowledge, this work is an original mathematical modelling at-
tempt for the coupling of damage and temperature in thermostructural com-
posites. This approach leads to a flexible and efficient numerical methodology
for simulating the experimental behavior of 3D C/C composites. The model

is well-adapted to a computational treatement.
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1. At increment n are known: {&,, on, au, 05}

2. At increment n + 1 are known: {41, 6,41} hence:

Ae =cepy1 —€n; E:—_'.]/Q = E+(‘M:{797L+1) ) E;+]/2 =E (ay,0n41) -
3. Prediction phase.
If (0y, > 0) then
E, 1/2
T _ /s + . _nt .
ot =g ot By p Asy Enppp =By g

hn-H/‘Z = h+(0‘;r,76n,+1) ;o Q= O‘j; 5 52+1 = 50’+(071,+1) .
If (7.0, <0) then
T _ e . _ .
o =B et Bappp =B

b . . 0 _ _0-—
hn,+1/2 =h7(,,0h11); an=ay; Ept1 =€ (Ony1) -
end If

else

Acs Eppp=E )

Pgrjp = b7 (g Oni1) s an =0y 5 ey =" (Onga) .
If (67 .0, < 0) then
T _ et . _ .
o =E panits Bunp =Bl

hn+1/2 = h+(o‘j{79n+1) P Qg = O‘I ; 597,-}-1 = 50’+(0n+1) .
end If

end If

4. Correction phase.

If (o] < [hps1/2]) then
Qp41 = Qp Opt+1 = UT 5 Dn+1 = Eu+1/2 5
else

— 0 . — .
Qpiy1 = Ep+l — €n+l 3 Onp+1 = h(an,+ly 971,+1) )

Dy = h,(o‘n+17 en-H)
end If

Figure 10: Incremental algorithm for the 3D damage model.
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Table 1: Data table for the tension test.

Table 2: The compression test.

2500 °C 2750 °C 2200 °C 2750 °C
=0 =0 =0 =0
E° =25 GPa E° =12GPa E° = 69 GPa E° =59 GPa
e (%) | o (MPa) || £ (%) | o (MPa) e (%) | o (MPa) || ¢ (%) | o (MPa)
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.19 | 44.700 0.17 19.133 0.02 14.270 0.04 | 22.253
0.38 | 84.270 0.34 | 36.191 0.04 | 28.034 0.08 | 42.511
0.57 | 119.024 || 0.51 | 51.294 0.06 | 41.300 0.12 | 60.887
0.76 | 149.274 | 0.67 | 64.562 0.08 | 54.077 0.16 | 77.498
0.95 | 175.332 || 0.84 76.115 0.11 66.373 0.20 | 92.459
1.14 | 197.511 1.01 86.074 0.13 78.199 0.24 | 105.884
1.33 | 216.124 || 1.18 | 94.557 0.15 | 89.561 0.28 | 117.888
1.52 | 231.481 1.35 | 101.685 0.17 | 100.469 | 0.32 | 128.586
1.71 | 243.898 || 1.52 | 107.579 0.19 | 110.933 | 0.36 | 138.094
1.89 | 253.684 | 1.68 | 112.357 0.21 | 120.959 | 0.39 | 146.526
2.08 | 261.154 || 1.85 | 116.141 0.23 | 130.558 || 0.43 | 153.998
2.27 | 266.619 || 2.02 | 119.050 0.25 | 139.738 || 0.47 | 160.625
2.46 | 270.393 || 2.19 | 121.205 0.27 | 148.508 || 0.51 | 166.521
2.65 | 272.787 || 2.36 | 122.724 0.29 | 156.876 || 0.55 | 171.802
2.84 | 274.114 || 2.53 | 123.729 0.32 | 164.851 || 0.59 | 176.582
3.03 | 274.686 | 2.69 | 124.339 0.34 | 172.443 || 0.63 | 180.977
3.22 | 274.816 || 2.86 | 124.674 0.36 | 179.659 || 0.67 | 185.101
3.41 | 274.817 || 3.03 | 124.854 0.38 | 186.508 || 0.71 | 189.071
3.60 | 275.000 | 3.20 | 125.000 0.40 | 193.000 || 0.75 | 193.000
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Figure 11: Uniaxial computational test.
AppendixA. Thermodynamic consistency of the model

Let us write into the framework of the Irreversible Processes Thermody-
namics, the simplified (uncoupled) damage model with temperature. The

stress response given by model specified in section 6.3 is written
o= De (A1)

in the absence of residual strains. The operator D of the elastic stiffness

moduli is here diagonal :

oi = Fiey, 0ij=2G¢e; fori#j.
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The operator D depends on « and 0, as also on sge;; where the sign of a

quantity 1 is denoted

+1  if¢ >0,
sgY =

—1 elsewhere

Constitutive equations (A.1) are written equivalently

ow
o=po (A.2)

where p is the density independent of ¢ and a. The notation

ow ([ ow
Oe N 86@'

stands for the gradient of w with respect to €. The thermodynamic potential

w is defined as

w:%{%D5:€+w} (A.3)

where @ is a given function of («, #). The specific free energy (Helmotz) w
is a differentiable and convex function with respect to e.
The force variable a associated to « is defined from the gradient of w with

respect to a as follows, see Germain et al. (1983):

ow
@=—pe (A.4)

The process is thermodynamically admassible if
d>0 (A.5)

by denoting d = a . & the dissipation. In the present case, one has

N 280&5'6 Ox na
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that is to say

1 ok .. O0E; .\ ,
d:_§§i:{aa;~ O‘ii"‘aai—i aii}gii

oG oG Ow (4.6)
S T D b 00
dag;

i<j Oay;

The choice of w in the expression of the free energy (A.3) determines

the force variable a from (A.4). Let us suppose that w is a nonincreasing

differentiable function with respect to «

£ .
ij -
Ow
— <0 AT
(‘304;—; - (A7)
Under the assumptions (29) and (A.7), the inequality of dissipation (A.5)
becomes
at>0

%)

by taking into account the expression (A.6) of the dissipation.
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