
HAL Id: hal-00734539
https://hal.science/hal-00734539

Submitted on 23 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of Local Instabilities during Crack
Propagation in the Ductile-Brittle Transition Region

Geralf Hütter, Uwe Mühlich, Meinhard Kuna

To cite this version:
Geralf Hütter, Uwe Mühlich, Meinhard Kuna. Simulation of Local Instabilities during Crack Prop-
agation in the Ductile-Brittle Transition Region. European Journal of Mechanics - A/Solids, 2011,
�10.1016/j.euromechsol.2010.12.013�. �hal-00734539�

https://hal.science/hal-00734539
https://hal.archives-ouvertes.fr


Accepted Manuscript

Title: Simulation of Local Instabilities during Crack Propagation in the Ductile-Brittle
Transition Region

Authors: Geralf Hütter, Uwe Mühlich, Meinhard Kuna

PII: S0997-7538(10)00151-8

DOI: 10.1016/j.euromechsol.2010.12.013

Reference: EJMSOL 2668

To appear in: European Journal of Mechanics / A Solids

Received Date: 20 July 2010

Revised Date: 21 December 2010

Accepted Date: 22 December 2010

Please cite this article as: Hütter, G., Mühlich, U., Kuna, M. Simulation of Local Instabilities during Crack
Propagation in the Ductile-Brittle Transition Region, European Journal of Mechanics / A Solids (2011),
doi: 10.1016/j.euromechsol.2010.12.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.euromechsol.2010.12.013


 

Simulation of Local Instabilities during Crack Propagation in the Ductile-Brittle
Transition Region

Geralf Hütter∗, Uwe Mühlich, Meinhard Kuna

Freiberg University of Mining and Technology, Institute of Mechanics and Fluid Dynamics, Lampadiusstr. 4, 09596 Freiberg, Germany

Abstract

The crack propagation for a cohesive zone model within an elastic-plastic material under small-scale yielding conditions is simu-
lated numerically. The resulting crack growth resistance curves show local instabilities, so-called pop-ins even for homogeneous
cohesive properties if the cohesive strength lies sufficiently close to the maximum stress of the corresponding blunting solution.
The formation of secondary cracks and unloading zones in front of the actual crack tip is identified as the underlying mechanism.
It is found that the shape of the cohesive law has a considerable influence on the crack arrest behavior. Furthermore, requirements
to the mesh resolution are derived.

Keywords: cohesive zone model, small-scale yielding, pop-in, crack arrest

1. Introduction

In fracture mechanical experiments with typical engineer-
ing metals in the ductile-brittle transition region, i.e. for low
temperatures and/or dynamic loading, often sudden but lim-
ited displacement jumps are observed which are accompanied
by a load drop as depicted schematically in figure 1. This

F

u

pop-in

Figure 1: Load-displacement curve during pop-in

behavior is induced by a locally unstable crack propagation
and termed as “pop-in” (ASTM E1290-08ε1, 2008). Pop-ins
have been reported e.g. for steels (Ripling et al., 1982; Singh
and Banerjee, 1991; Neimitz et al., 2010; Dzioba et al., 2010),
armco iron (Srinivas et al., 1989), welded joints (Sumpter,
1991a,b), aluminum alloys (Firrao et al., 1993) or ductile cast
iron (Kobayashi and Yamada, 1994).

In many cases, these local instabilities are ascribed to the ini-
tiation and arrest of cracks propagating with a cleavage mech-
anism. In general, the loads at which pop-ins occur scatter
considerably for several samples of the same material. That is
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why mostly the initiation of these local instabilities is attributed
to microstructural inhomogeneities such as inclusions or seg-
regations of embrittling chemical components. The inhomo-
geneities are sometimes termed as “local brittle zones”.

Firrao et al. (1993) and Neimitz, Galkiewicz, and Dzioba
(Neimitz et al., 2010; Dzioba et al., 2010) reported the for-
mation of secondary cracks in front of the main crack tip in
the context of pop-ins. A corresponding micrograph is de-
picted in figure 2. Neimitz, Galkiewicz, and Dzioba as well as
Sumpter (1991b) draw a close interrelationship between pop-
ins and plastic deformations at the crack tip.

main crack

secondary crack

Figure 2: Secondary crack in the cross-section of a specimen of
a ferritic-bainitic steel from an experiment interrupted shortly
before the presumed pop-in (Neimitz et al., 2010)

The assumption of local brittle zones as reason for pop-ins
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motivated the modeling by means of locally fluctuating material
properties. For instance, the works of Tvergaard, Needleman
and co-workers (Tvergaard and Needleman, 1993; Gao et al.,
1996; Needleman and Tvergaard, 2000) or Kabir et al. (2007)
can be cited out of this group.

The latter research group applied a cohesive zone model with
locally fluctuating strength within an elastic-plastic bulk mate-
rial. However, they also obtained pop-ins for their first compu-
tations withhomogeneouscohesive properties. Likewise, Lin
et al. (1999) as well as Li and Siegmund (2004) observed lo-
cal instabilities with cohesive zone models of homogeneous
strength within elastic-plastic material. The reasons of the oc-
currence of pop-ins was not investigated further.

Siegmund and Needleman (1997) simulated the crack propa-
gation in a CCT-specimen under impact loading also by means
of a homogeneous cohesive zone model within viscoplastic
material. For increased plastic contributions they observed
crack arrest accompanied by the formation of secondary load-
ing zones around the crack tip. The formation of secondary
cracks has been observed for cohesive zone models within con-
straint metal layers by Lin et al. (1997). The decrease of the
loading capacity due to a priori existent secondary cracks has
been extensively studied in the literature, e.g. by Tomokazu
and Yasufumi (1977), Smith (1988) and Siegmund and Brocks
(2000).

The objective of the present study is to further investigate the
pop-in behavior predicted by a cohesive zone in plastic bulk
material and to gain deeper insight into the underlying mecha-
nism. To exclude possible effects of the geometry and viscosity
the limit case of small-scale yielding is simulated and the bulk
material is modeled as rate independent. Requirements to the
mesh resolution are derived. A special focus is drawn on the
influence of the shape of the cohesive law.

2. Problem Formulation

2.1. Boundary-Value Problem
Following the approach of Tvergaard and Hutchinson (1992,

1994, 1996), the crack propagation under mode I is investi-
gated by means of a cohesive zone under plane strain small-
scale yielding conditions. As pop-ins are highly dynamic pro-
cesses inertia is taken into account. The bulk material is de-
scribed by an isotropic hypoelastic-plastic formulation for large
strains withJ2-yield surface and isotropic hardening. A one-
parametric power law of hardening is utilized, so that it pro-
vides an uniaxial response between true stress and logarithmic
strain of

ε =















σ/E σ < σY

σY/E (σ/σY)1/N else
. (1)

A bi-linear cohesive law as depicted in figure 3 is used,
whereby the tractiont refers to the actual configuration. The
work of separationΓ0 is related to the critical crack opening
displacementδc and the cohesive strength ˆσ via

Γ0 =

δc
∫

0

t dδ =
1
2
σ̂δc . (2)

t

σ̂

δλδc δc

Ecoh ED
coh

Figure 3: Bi-linear traction-separation law

The dimensionless shape parameterλ ∈ [0, 1] describes the ini-
tiation of softening with respect to the critical separationδc.
The bi-linear relation has the advantage that despite its simplic-
ity the effects of the influence of the shape of the cohesive law
on the predicted crack growth resistance can be investigated by
varying the only dimensionless shape parameterλ. If not speci-
fied otherwise the shape parameter is set toλ = 0.24 which lies
in the region of typical cohesive laws.

The unloading branch in the softening region in figure 3 ex-
presses the irreversible character of the material separation pro-
cess and is quantified by a damage variable

D = 1−
ED

coh

Ecoh
(3)

as ratio between slopeED
coh of the cohesive law and its initial

valueEcoh.
Following the publications of Tvergaard and Hutchinson

(1992, 1994, 1996) reference values for the normalization are
defined as

K0 =
√

E′Γ0 , R0 =
1
3π

(

K0

σY

)2

. (4)

Thereby the termE′ = E/(1− ν2) abbreviates Young’s modu-
lus under plane strain conditions. The valueK0 is the fracture
toughness of the cohesive model within a purely elastic mate-
rial and the lengthR0 scales with the size of the plastic zone.
The intrinsic length contained within the initial slopeEcoh of
cohesive law is described by

Rinit =
E′

2Ecoh
. (5)

The factor two is incorporated for convenience as the results in
section 4 show.

Although dynamic simulations are performed the loading has
to be applied quasi-statically ensuring that the crack propaga-
tion and arrest during pop-in are not influenced by changes of
the magnitude of loading. Consequently, the time elastic waves
need to pass characteristic distances of the problem has to be
small compared to the time scale of loadingτL = Kmax

I /K̇I .
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This applies especially to the slower shear waves which propa-
gate with speedcs requiring

R0

cs
≪ τL . (6)

2.2. Measure of Crack Extension
In classical fracture mechanics, the crack tip is assumed as

ideally sharp, so that the crack length is defined uniquely. How-
ever, this is not the case for the employed cohesive zone model
where the softening region has a finite extension.

In the present study the crack tip is defined as center of the
softening zone, whereby the damage variableD is chosen as
weight as depicted schematically in figure 4a. Thus, the in-
crease of the crack length is computed as

∆a =

∞
∫

0

D dx . (7)

Thereby, without loss of generality it is assumed that the crack
propagates along the positivex-direction starting atx = 0. If a
secondary crack occurs, the smeared definition (7) incorporates
the extension of the secondary crack as sketched in figure 4b.
In any case, the results obtained with different possible defini-
tions of crack growth differ considerably only in the stadium of
crack initiations. Besides, definition (7) has the advantage to be
defined as well for cohesive laws approaching the traction-free
state only asymptotically.

 

 D ∆a

1

x

softening region

(a)

 

 D ∆a

1

x

(b)

Figure 4: Smeared measure of crack extension for (a) softening
at the primary crack tip and (b) growth of a secondary crack

3. Numerical Implementation

3.1. FE-Model
The described boundary value problem is solved with the

commercial FE-code Abaqus. A boundary layer of radiusA0

is spatially discretized with a mesh as shown in figure 5. The
radius is chosen withA0 = 30 (Kmax

I /K0)2R0 wherebyKmax
I de-

notes the maximum loading. In order to avoid volumetric lock-
ing in the plastic zone and for performance reasons quadrilat-
eral elements with bilinear shape functions and reduced inte-
gration1 are used. Due to the symmetry, only one half of the
problem needs to be discretized. A region of widthB0 = 6.5R0

is fine-meshed with equilateral elements of edge length∆. Sec-
tion 4 is dedicated to the determination of the necessary mesh
resolution.

A0A0

KI

(a)

B0

∆initial
crack tip

(b)

Figure 5: Finite element mesh of (a) whole model and (b) near
the crack tip

The cohesive elements available in Abaqus implement con-
stitutive laws defined in terms of nominal tractions. However,
for the present study a true stress formulation is desired. The
employed implementation is outlined in Appendix A.

In section 2.1 it was pointed out that quasi-static conditions
are present if the time stress waves need to pass characteristic
distances of the problem is short compared to the characteris-
tic time scale of loading. For the introduced FE-model of finite
extent this applies to the outer radiusA0 of the model thus im-
posing the stronger requirementA0/cs≪ τL .

1The default value of the software of an hourglass stiffness of 0.5% of the
largest eigenvalue of the element stiffness is employed. For a sample computa-
tion fully integrated, hybrid elements were employed instead. The differences
were negligible.
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The following computations are performed with implicit time
integration. In the initial stadium the crack propagates stably so
that as initial condition the nodal velocities are set to zero. The
mass density is specified so that values ofR0/cs = 1/30, 000τL
are obtained. This choice guarantees sufficiently small inertia
forces during stable crack propagation but does not lead to too
small time increments in the instable region. So the computa-
tions require several hundred to a few thousand time increments
each.

3.2. Fracture Mechanical Evaluation

During the dynamic process of pop-in the loading of the pro-
cess zone, expressed by the dynamic stress intensity factorKId,
differs from the applied loadingKI . A dimensional analysis for
the linear-elastic far-field shows, that the interrelationship be-
tween both values can only have the structure

KId = k (∆ȧ/c, ν) KI . (8)

Thereby it was taken into account, that for the quasi-static load-
ing under consideration the problem cannot depend on time ex-
plicitly. The connecting factork (∆ȧ/c, ν) is termed theuniver-
sal function of crack tip speed. The strictly monotonic function
k (∆ȧ) equals unity for∆ȧ = 0 and vanishes at Rayleigh speed
∆ȧ = cR. During crack propagation the crack tip loadingKId

corresponds to the crack growth resistance:

KR = KId . (9)

As the crack growth∆a(t) has to be determined anyway and the
loadingKI is known, equation (8) allows to extract the current
resistanceKR comfortably. The smeared crack length definition
(7) leads to smooth∆a(t) curves that can be reliably differenti-
ated numerically. In oder to shorten the complicated analytical
expression, Freund (1989) proposed the approximation

k (∆ȧ) ≈
1− ∆ȧ/cR
√

1− ∆ȧ/cs
(10)

which is used in the following.

4. Necessary Mesh Resolution

First of all, the admissible element size for an accurate so-
lution of the boundary value problem declared in section 2.1
has to be determined. Especially the point of damage initia-
tion within the cohesive zone, i.e. when the maximum stress
σmax
ϕϕ normal to the crack plane in the ligament reaches the

cohesive strength ˆσ for the first time, needs to be resolved.
For these considerations the softening behavior of the traction-
separation law does not need to be taken into account. This can
be accomplished by choosing a cohesive strength larger than
the maximum ligament stressσmax

bl of the corresponding blunt-
ing solution. The latter has been investigated extensively (e.g.
Rice, 1968; Rice and Johnson, 1970; McMeeking, 1977) yield-
ing maximum stresses ofσmax

bl = 3 . . .5σY depending on the
hardening properties. As no instable crack propagation occurs

without softening inertia need not be taken into account for this
investigation.

Under these circumstances the only intrinsic length is con-
tained within the initial slope of the cohesive law as defined in
equation (5). Dimensional considerations allow to specify the
functional interrelationship

σmax
ϕϕ

σY
= f

(

KI

σY
√

Rinit
,

E
σY
,N, ν

)

(11)

for the maximum ligament stressσmax
ϕϕ .

The two limit cases for small respectively large dimension-
less loadingKI/

(

σY
√

Rinit

)

can be identified. For small stress
intensity factors the bulk material remains elastic. As the whole
problem is linear then the maximum stress is proportional toKI

and occurs at the crack tip. Under these conditions the energy
release rate of the elastic far-field equals the cohesive work at
the crack tip leading to the maximum ligament stress of

σmax
ϕϕ =

KI
√

Rinit
. (12)

For large loadingsKI/
(

σY
√

Rinit

)

→ ∞ the intrinsic length
becomes negligibly small compared to the size of the plastic
zone so that the sketched problem approaches the blunting so-
lution asymptotically. Thus, in the intermediate range between
these two limit cases for increasing loading the location of max-
imum stress moves from the crack tip towards a position in front
of the tip.

0

1

2

3

4

0 1 2 3

σ
ϕ
ϕ
/
σ
Y

x/(J/σY)

KI = (2.0,2.9, 3.3, 4.2,

6.4, 10.3, 15.2) σY

√

Rinit

Figure 6: Transition from the elastic to the blunting solution:
normal stressesσϕϕ in the ligament for a linear cohesive law
(N = 0.1, ν = 0.3,∆ = 0.125σY/E Rinit)

The evolution of the stresses in the ligament with the load-
ing for the linear cohesive law has been investigated numeri-
cally by means of the described finite element model. Within
the fine meshed region around the crack tip an element size of
∆ = 0.125σY/E Rinit is used. The normal stressesσϕϕ in the
ligament are plotted in figure 6 for a set of parameters and show
the transition from the linear to the blunting solution.

The increase of the maximum stressσmax
ϕϕ in the ligament

with the loading in the dimensionless form (11) is depicted
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in figure 7. The diagram also incorporates the linear solution
(12) and the corresponding blunting solutionσmax

bl as asymp-
tote. The loading point when the maximum stressσmax

ϕϕ departs
from the crack tip to a local maximum in front of it for the first
time is marked by×.

0

1

2

3

4

0 10

σ
m
a
x

ϕ
ϕ

/
σ
Y

KI/(σY

√

Rinit)

E = (333, 500, 750, 1000) σY

linear
solution

McMeeking (1977), E = 333 σY

Figure 7: Maximum stressσmax
ϕϕ in the ligament for a linear

cohesive law as function of dimensionless loading (marked by
×: σmax

ϕϕ as local maximum in front of crack tip for the first time;
N = 0.1, ν = 0.3,∆ = 0.125σY/E Rinit)

As figure 7 shows the stressσmax
ϕϕ has a value of about

σmax
ϕϕ ≈ 70%. . .80%σmax

bl when the maximum occurs in front
of the crack tip for the first time. In this range the solution
hardly differs from the linear one (12). In the dimensionless
form the corresponding loadKI is only slightly higher and thus
amounts to aboutKI/

(

σY
√

Rinit

)

≈ σmax
bl /σY . The position

xmax of the maximum stress scales withJ/σY . Hence, in the
transition region the mesh needs to be fine enough to resolve
local fields changing within a distance ofJ/σY = K2

I /(E
′σY)

so that the element size has to be chosen with

∆ ≪

(

σmax
bl

σY

)2
σY

E′
Rinit . (13)

For the bi-linear cohesive law this can be rearranged to

∆ ≪ 0.5
σ̂

σY
λδc . (14)

Thereby, it was taken into account that the maximum stress
σmax
ϕϕ equals the cohesive strength ˆσ at the transition point.

Consequently, in the transition region the elements need to
be considerably smaller than the critical cohesive openingδc.
However, as figure 7 shows the loads to reach higher liga-
ment stresses after the transition rapidly increase and so does
the position of the maximum stress. Thus, for higher cohesive
strengths the requirements to the mesh resolution are less strict.
This applies also to the linear and nearly linear range below
the transition point where the stresses around the crack tip vary
over distances scaling withRinit only.

Since the whole parameter range including the transition re-
gion is to be investigated, an element size∆ = 0.2δc is used for

the following computations which turned out to be an appropri-
ate choice.

5. Results

5.1. Crack Growth Resistance Curves

A typical computed crack growth resistance curve is depicted
in figure 8. It shows an oscillatory behavior, i.e. after the dy-

0

1

2

3

0 1 2 3 4 5 6

K
/
K

0
∆a/R0

KI , ∆ = 0.2 δc
KR, ∆ = 0.2 δc
KR, ∆ = 10 δc

Figure 8: Snap-through in crack growth resistance curve
(σ̂/σY = 3.6, E/σY = 333,N = 0.1, ν = 0.3,λ = 0.24)

namic propagation the crack arrests and further loading is nec-
essary in order to drive the crack again. The coarse mesh with
∆ = 10δc does not resolve the local instabilities and the steep
initial tearing, thus confirming the considerations in section 4.

In principle, it would be possible that the crack arrest is in-
duced by waves reflected at the artificially introduced boundary
at radiusA0. The crack tip velocity∆ȧ during instable crack
propagation is plotted in figure 9 and indicates a crack arrest
after about 0.0004τL. This span is short compared to the time
A0/c ≈ 0.0025τL the faster longitudinal elastic waves of speed
c need to reach the boundary. Consequently, the crack arrest
is inherent to the problem. The reflections only cause the small
disturbance during the forth crack arrest in the curve for the fine
mesh in figure 8.

The evolution of the damage variableD in the ligament as
depicted in figure 10 shows, that the pop-in occurs when the
first point becomes completely damaged. However, this point
doesnot lie at the crack tip butin front of it. When in this re-
gion the cohesive zone completely has lost its stress-carrying
capacity it forms a secondary crack. The latter shields the plas-
tic zone of the main crack tip leading to elastic unloading within
this region. The missing contribution of this zone to the plastic
dissipation results in decreasing crack growth resistance. Sub-
sequently, the secondary crack tip begins to blunt inducing the
same behavior in front of its own tip. The work required for
the plastic deformation of the formed crack tip is responsible
for the anew increasing crack growth resistance. This mecha-
nism repeats. The residual plastic strains in the wake behind the
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∆
ȧ
/
c R

∆t/τL

dynamic crack propagation

Figure 9: Crack tip velocity during first instable propagation
(E/σY = 333, N = 0.1, ν = 0.3, σ̂/σY = 3.6, λ = 0.24,
∆ = 0.2δc)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

D

x/R0

KI

K0

= (0.96, 1.34, 1.54,

1.79, 1.87, 1.89, 1.90)

Figure 10: Damage evolution in the ligament before the first
pop-in (σ̂/σY = 3.6, E/σY = 333,N = 0.1, ν = 0.3, λ = 0.24,
∆ = 0.2δc)

current crack tip as depicted in figure 11 attest to the periodic
behavior.

However, after the formation of the secondary crack the next
local instability occurred already before a further crack was in-
duced. Apparently, partly softening in front of the secondary
crack tip and unloading of the surrounding material is sufficient
for a locally decreasing crack growth resistance. Nevertheless,
the plastically deformed ligament between primary and sec-
ondary crack, the so-called stretch zone, persists until several
periods of the mechanism have been passed.

In the following the influence of several parameters is inves-
tigated.

5.2. Influence of the Shape of the Cohesive Law

First of all, the shape parameterλ is varied. The crack growth
resistance curves obtained for different values are depicted in
figure 12 and show a strong dependence. So the periodicity

0.01

0.018

0.03

0.056

R0

initial crack tip

Figure 11: Equivalent plastic strain in the wake behind the cur-
rent crack tip (depicted with respect to the reference configura-
tion; E/σY = 333,N = 0.1, ν = 0.3, σ̂/σY = 3.6, λ = 0.24,
∆ = 0.2δc)

∆ainstab of the instability as well as its amplitude decrease with
increasingλ. Additionally, larger values ofλ cause a delayed
damage initiation, i.e. a higher value at the intersection with
the ordinate axis in figure 12. This has the consequence that
for high values of the shape parameter the first pop-in occurs
already at the load level of the steady-state toughnessKss

R . Re-
ferring to Tvergaard and Hutchinson (2008) the latter is defined
as maximum value of the crack growth resistance curve. In con-
trast, for low values ofλ the load can be further increased after
the first crack arrest.

0

1

2

0 1 2

K
R
/
K

0

∆a/R0

λ = 0.12
λ = 0.24
λ = 0.72
λ = 0.89

Figure 12: Crack growth resistance curves for different values
of the cohesive shape parameterλ (σ̂/σY = 3.6, E/σY = 333,
N = 0.1, ν = 0.3,∆ = 0.2δc)

Figure 13a shows that the steady-state toughnessKss
R is only

moderately influenced by the shape parameter. Conversely,
the effect of λ on ∆ainstab is almost independent of the cohe-
sive strength ˆσ as figure 13b indicates. In addition, the period
∆ainstabtends to zero if the value ofλ is increased towards unity.

The reason for the dependency of the period∆ainstab on the
shape parameterλ is that a higher value ofλmeans that the soft-
ening region of the traction-separation relation becomes steeper
in favor of a smaller initial slope. But the faster the cohesive
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Figure 13: (a) Steady-state fracture toughnessKss
R and (b) peri-

odicity ∆ainstab as function of the shape parameterλ (E/σY =

333,N = 0.1, ν = 0.3,∆ = 0.2δc)

zone softens the faster the damaging region in front of the crack
tip forms a secondary crack and unloading zones that shield its
predecessor.

5.3. Influence of the Cohesive Strength

In the following the cohesive strength ˆσ is varied relative to
the initial yield stressσY . The resulting crack growth resistance
curves are depicted in figure 14. As expected, the steady-state
fracture toughnessKss

R increases with higher ratios ˆσ/σY . The
figure shows, that intermediate instabilities can be observed as
soon as the plastic contribution to the crack growth resistance
exceeds about 20 to 30 %.

6. Discussion

The present study dealt with the simulation of mode I crack
growth using a bi-linear cohesive zone model under small-scale
yielding conditions. It was found that for several parameter
sets local instabilities occur, the so-called pop-ins. The results
indicate that softening in front of the crack tip is responsible for
pop-ins. For a cohesive law with linear initial region the binary
information whether damage initiates at or in front of the crack
tip depends on the cohesive strength and the properties of the
bulk material only but for dimensional reasons not on the value
of the initial slope (see section 4). Thus, it stands to reason,
that under small scale yielding a pop-in mechanism is predicted
by all cohesive zone models with linear initial range and an
immediately following softening, if the cohesive strength lies

0

1

2

3

0 1 2 3

K
R
/
K

0

∆a/R0

σ̂/σY = 3.0
σ̂/σY = 3.3

σ̂/σY = 3.5
σ̂/σY = 3.7

Figure 14: Equilibrium crack growth resistance curves for dif-
ferent cohesive strengths (E/σY = 333, N = 0.1, ν = 0.3,
∆ = 0.2δc)

sufficiently close to the maximum stress of the corresponding
blunting solution.

It was found that the necessary element size in order to re-
solve the damage initiation scales with the width of the linear
initial region of the cohesive law. Presumably, the same restric-
tion applies to the softening range which controls the formation
of secondary cracks.

Parameter studies have shown, that in contrast to the fracture
toughness the crack jump width during pop-in and the possible
further loading capacity is considerably influenced by the shape
parameter of the cohesive law. Hence, the latter should be fitted
to experiments addressing these material properties.

The fact that all numerical simulations have been performed
with homogeneous material properties implies that local brittle
zones are not inevitably necessary for pop-ins. Rather, this phe-
nomenon is determined by the mean material properties as well.
However, in the simulations the pop-ins appeared only in that
range where the steady-state toughness strongly depends on the
cohesive strength. This is in accordance with the experimental
observations that already small fluctuations of the local strength
lead to significant scatter of the loads at which pop-ins occur.

In the following the results of the present study are compared
to those reported in the literature. Simulations of crack prop-
agation with a cohesive zone model under small-scale yield-
ing have been performed by a number of authors (Tvergaard
and Hutchinson, 1992, 2008; Tvergaard, 2010; Lin and Cornec,
1996; Lin, 1996; Wei and Hutchinson, 1997; Niordson, 2001).
For static simulations using a tri-linear cohesive law with wide
plateau, Tvergaard and Hutchinson (Tvergaard and Hutchinson,
1992, 2008; Tvergaard, 2010) observed an instable point, i.e. a
local maximum in the R-curves, for some parameter sets. How-
ever, behind this point they found an asymptotically decreasing
crack growth resistance without further local maxima. In the
present study the limit case of quasi-static loading is consid-
ered so that an influence of the mass density on the computed
R-curves is excluded. Hence, the results should be comparable
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Figure 15: Steady-state toughnessKss
R in comparison with data from literature (E/σY = 333,N = 0.1, ν = 0.3)

to those of Tvergaard and Hutchinson in principle. Possibly,
the cohesive law employed by these authors leads to less pro-
nounced instabilities. For their investigations Tvergaard and
Hutchinson used an element size of∆ = 10δc within the pro-
cess zone. Figure 8 shows, that with this mesh resolution the
present model exhibits a similar asymptotic behavior. Lin and
Cornec (Lin and Cornec, 1996; Lin, 1996) simulated the crack
growth only “until the applied K ... almost ceases to increase”.

Wei and Hutchinson (1997) as well as Niordson (2001) inves-
tigated the same problem but employed an Eulerian-type ap-
proach to compute the steady-state fracture toughness directly.
However, by excluding the non-stationary terms a priori they
would not have been able to resolve possible instabilities.

Performing dynamic simulations under large-scale yielding
with a cohesive law of exponential type Siegmund and Needle-
man (1997) substantiated a crack arrest independent of wave
reflections. As in the present study these authors observed lo-
cally instable crack propagation already for moderate plastic
contributions to the crack growth resistance.

In figure 15 the computed steady-state fracture toughness
values are plotted in comparison with data from literature. In
addition to the curve for the cohesive law with a wide plateau
(marked byN in the figure), Tvergaard and Hutchinson (1992)
published the steady-state toughnesses obtained with a cohesive
law with narrower plateau and a slightly refined mesh (marked
by H in the figure). Especially the latter is in good accordance
with the results of the present study. Only the data of Lin
and Cornec (1996) differ considerably. Figure 15 indicates a
trend towards higher toughness values for more compact cohe-
sive laws, i.e. those with a wider plateau. All curves exhibit
the asymptotic behavior discussed by Tvergaard and Hutchin-
son that the toughness becomes arbitrarily large if the cohesive
strengthσ̂ approaches the maximum ligament stressσmax

bl of
the associated blunting solution resulting in a high sensitivity
within this region.

If the employed model is used to describe the ductile-brittle
transition of an engineering metal the cohesive zone repre-
sents the cleavage mechanism. In this context the term duc-
tile is covered by the model in the sense of a relevant plas-
tic contribution of the matrix material to the crack growth re-
sistance. For the experiments of Neimitz, Galkiewicz, and
Dzioba cited in the introduction in the corresponding temper-
ature region the values of the lower shelf toughness and yield
stress areK0 = 25. . .35 MPa m0.5 andσY = 300. . .400 MPa
(Dzioba et al., 2010) so that the reference length amounts to
R0 = 0.4 . . .1.4 mm. In the simulations the extension of the
stretch zone at formation of a secondary crack lies in the range
of several to some ten percent ofR0 depending on the value of
the shape parameter. This is in accordance with the micrograph
depicted in figure 2.
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Appendix A. Cohesive Elements

The cohesive zone is implemented by linear elements which
include a priori the symmetry condition as depicted in fig-
ure A.16. The according shape functions are

w

X
u1

u2

Figure A.16: Linear cohesive element for symmetric separation

N1(x0) =
1
2

(1+ η) , N2(x0) =
1
2

(1− η) , η =
2x0

w0
. (A.1)

Here and in the following the subscript ( )0 refers to the value
of a property with respect to the reference configuration. For a
single integration point the contribution of a single element to
the nodal forces of both nodes is equal and takes the value

Py
1 = Py

2 =
1
2

wt with t = t (2um,D) . (A.2)

The tractiont depends on twice the mid-point displacement
um = 1/2(u1 + u2) from the symmetry line and internal vari-
ables as the damageD in the present case,

Such cohesive elements can be implemented by modifying
a standard element so that it contributes the same nodal forces
(A.2) under all possible load histories. For this task, four-noded
quadrilaterals with reduced integration as shown in figure A.17
come into operation. First of all, symmetric element defor-
mations, i.e. ui

x = ui+2
x andui

y = −ui+2
y for i = 1, 2, are en-

forced in order to ensure that the integration points remain at
the symmetry plane. Under these constraints, the shape func-
tions of the two remaining nodesi = 1, 2 for thex- respective
y-displacements are

Nx
i (x0, y0) = Ni(x0) and Ny

i (x0, y0) =
2y0

h0
Ni(x0) . (A.3)

The corresponding contributions to the nodal forces have the
value

Px
i = whd

[

σxx
∂Nx

i

∂x
+ σxy

∂Ny
i

∂y

]

IP

= dhσxx (A.4)

Py
i = whd

[

σxy
∂Ny

i

∂x
+ σyy

∂Ny
i

∂y

]

IP

= dwσyy (A.5)
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Figure A.17: Four-noded quadrilateral with reduced integration
under symmetric deformation

The brackets have to be evaluated at the integration point so
that the terms connected to shear stresses vanish. Furthermore,
d denotes the out-of-plane thickness of the element andh =
h0 + um the intermediate height in the actual configuration.

Comparing equations (A.2) and (A.5) shows that if the thick-
ness of the plane element is chosen withd = 1/2 (with respect
to unit thickness of the remaining model), the stressσyy can be
identified as the cohesive tractiont. The horizontal nodal forces
Px

i need to vanish.
In order to obtain the desired traction-separation law, the

Hashin-constitutive law, an orthotropic effective stress-type
damage model originally intended for fiber-reinforced compos-
ites (Abaqus, 2009) is utilized. The material axes are aligned
with the direction of cohesive separation and the Poisson-
numbers are set to zero. Under the applied constraints the prin-
cipal axes of loading cannot rotate, so that the hypoelastic for-
mulation can be integrated to

t = (1− D)Eelem
y log

(

1+
um

h0

)

. (A.6)

Here and in the following the superscript ( )elem denotes
equivalent properties of the cohesive elements (which have no
physical meaning). A comparison of (A.6) with the desired
traction-separation law implies two measures. Firstly, the el-
ement height needs to be chosen withh0 ≫ δc such that
log(1+ um/h0) ≈ um/h0. Secondly, this allows to identify the
Young’s modulus in direction of separationEelem

y of the cohe-
sive element asEelem

y /h0 = Ecoh. In the computations, values
h0/δc = 50 are used. In addition, it has to be ensured that the
horizontal nodal forces (A.4) vanish. A Young’s modulusEelem

x
equal to zero would be no problem in principal but is excluded
by the input preprocessor of Abaqus. For all computations, a
value ofEelem

x h = 10−9 ER0 is used. Possible couplings due to
out-of-plane constraints are avoided by using plane stress ele-
ments.

The last aspect is concerned with the damage evolution law.
The utilized Hashin-damage model originally is intended for a

spatially continuous description. Abaqus regularizes the solu-
tion by introducing mesh dependent softening. For this purpose
the program calculates a characteristic lengthLelem from the el-
ement dimensions. In the case of the considered rectangular
elements with widthw0 and heighth0 and reduced integration,
this quantity takes the valueLelem=

√
h0w0. Abaqus calculates

the dissipated work of failure under the stress-strain curve as
Γε = Γ

elem/Lelem, which is connected to the desired work of sep-
aration by the factor element heighth0. So the material property
to be handed over to the program isΓelem=

√
w0/h0Γ0.
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