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Simulation of Local Instabilities during Crack Propagatiarithe Ductile-Brittle
Transition Region

Geralf Huttet, Uwe Mihlich, Meinhard Kuna

Freiberg University of Mining and Technology, Institute of Mechanics and Fluid Dynamics, Lampadiusstr. 4, 09596 Freiberg, Germany

Abstract

The crack propagation for a cohesive zone model within an elastic-plastic material under small-scale yielding conditions is simu-
lated numerically. The resulting crack growth resistance curves show local instabilities, so-called pop-ins even for homogeneous
cohesive properties if the cohesive strength lie@cantly close to the maximum stress of the corresponding blunting solution.

The formation of secondary cracks and unloading zones in front of the actual crack tip is identified as the underlying mechanism.

It is found that the shape of the cohesive law has a considerable influence on the crack arrest behavior. Furthermore, requirements
to the mesh resolution are derived.

Keywords: cohesive zone model, small-scale yielding, pop-in, crack arrest

1. Introduction why mostly the initiation of these local instabilities is attributed
to microstructural inhomogeneities such as inclusions or seg-

In fracture mechanical experiments with typical engineerregations of embrittling chemical components. The inhomo-
ing metals in the ductile-brittle transition region, i.e. for low geneities are sometimes termed as “local brittle zones”.
temperatures ardr dynamic loading, often sudden but lim-  Firrao et al. (1993) and Neimitz, Galkiewicz, and Dzioba
ited displacement jumps are observed which are accompanigfieimitz et al., 2010; Dzioba et al., 2010) reported the for-
by a load drop as depicted schematically in figure 1. Thismation of secondary cracks in front of the main crack tip in
the context of pop-ins. A corresponding micrograph is de-
picted in figure 2. Neimitz, Galkiewicz, and Dzioba as well as
Sumpter (1991b) draw a close interrelationship between pop-
ins and plastic deformations at the crack tip.

F

main crack

Figure 1: Load-displacement curve during pop-in

behavior is induced by a locally unstable crack propagation

and termed as “pop-in” (ASTM E1290-88 2008). Pop-ins

have been reported e.g. for steels (Ripling et al., 1982; Singh

and Banerjee, 1991; Neimitz et al., 2010; Dzioba et al., 2010),

armco iron (Srinivas et al., 1989), welded joints (Sumpter,

1991a,b), aluminum alloys (Firrao et al., 1993) or ductile cast /
iron (Kobayashi and Yamada, 1994).

In many cases, these local instabilities are ascribed to the ini-
tiation and arrest of cracks propagating with a cleavage mech-
anism. In general, the loads at which pop-ins occur scatter
considerably for several samples of the same material. That is
Figure 2: Secondary crack in the cross-section of a specimen of
a ferritic-bainitic steel from an experiment interrupted shortly
before the presumed pop-in (Neimitz et al., 2010)

secondary crack
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motivated the modeling by means of locally fluctuating materi tA
properties. For instance, the works of Tvergaard, Needleman .
and co-workers (Tvergaard and Needleman, 1993; Gao et al.,
1996; Needleman and Tvergaard, 2000) or Kabir et al. (2007)
can be cited out of this group.

The latter research group applied a cohesive zone model with
locally fluctuating strength within an elastic-plastic bulk mate-
rial. However, they also obtained pop-ins for their first compu- Eeon ED.
tations withhomogeneousohesive properties. Likewise, Lin
et al. (1999) as well as Li and Siegmund (2004) observed lo-

cal instabilities with cohesive zone models of homogeneous M. 5(:’5
strength within elastic-plastic material. The reasons of the oc-
currence of pop-ins was not investigated further. Figure 3: Bi-linear traction-separation law

Siegmund and Needleman (1997) simulated the crack propa-
gation in a CCT-specimen under impact loading also by means
of a homogeneous cohesive zone model within viscoplastidhe dimensionless shape paramater[0, 1] describes the ini-
material. For increased plastic contributions they observetlation of softening with respect to the critical separatiin
crack arrest accompanied by the formation of secondary loadFhe bi-linear relation has the advantage that despite its simplic-
ing zones around the crack tip. The formation of secondarity the efects of the influence of the shape of the cohesive law
cracks has been observed for cohesive zone models within coan the predicted crack growth resistance can be investigated by
straint metal layers by Lin et al. (1997). The decrease of th&arying the only dimensionless shape parametéfrnot speci-
loading capacity due to a priori existent secondary cracks haféed otherwise the shape parameter is sett 00.24 which lies
been extensively studied in the literature, e.g. by Tomokazin the region of typical cohesive laws.
and Yasufumi (1977), Smith (1988) and Siegmund and Brocks The unloading branch in the softening region in figure 3 ex-
(2000). presses the irreversible character of the material separation pro-
The objective of the present study is to further investigate theess and is quantified by a damage variable
pop-in behavior predicted by a cohesive zone in plastic bulk
material and to gain deeper insight into the underlying mecha- Eth
nism. To exclude possiblgfects of the geometry and viscosity D=1- Econ (3)
the limit case of small-scale yielding is simulated and the bulk
material is modeled as rate independent. Requirements to thg ratio between slo th of the cohesive law and its initial
mesh resolution are derived. A special focus is drawn on thgalueEgp.

influence of the shape of the cohesive law. Following the publications of Tvergaard and Hutchinson
(1992, 1994, 1996) reference values for the normalization are
2. Problem Formulation defined as

2.1. Boundary-Value Problem 1 (Ko 2

Following the approach of Tvergaard and Hutchinson (1992, Ko = vETo, Ro = 3T (O._Y) : (4)
1994, 1996), the crack propagation under mode | is investi-
gated by means of a cohesive zone under plane strain smatthereby the ternE’ = E/(1 — v?) abbreviates ¥unc's modu-
scale yielding conditions. As pop-ins are highly dynamic pro-jys under plane strain conditions. The vaKigis the fracture
cesses inertia iS taken intO account. The bulk material iS d%ughness Of the Cohesive mode| within a pure'y e|astic mate-
scribed by an isotropic hypoelastic-plastic formulation for largeria| and the lengttRy scales with the size of the plastic zone.

strains withJ,-yield surface and isotropic hardening. A one- The intrinsic length contained within the initial slofg&on of
parametric power law of hardening is utilized, so that it pro-cohesive law is described by

vides an uniaxial response between true stress and logarithmic
strain of E/

o/E <oy 0 Rt = S ®)
E =

ov/E(o/oy)N else

A bi-linear cohesive law as depicted in figure 3 is used
whereby the traction refers to the actual configuration. The
work of separatiol’ is related to the critical crack opening to
displacemend. and the cohesive strengthvia

The factor two is incorporated for convenience as the results in

'section 4 show.

Although dynamic simulations are performed the loading has

be applied quasi-statically ensuring that the crack propaga-

tion and arrest during pop-in are not influenced by changes of
L 1 the magnitude of loading. Consequently, the time elastic waves

Io= ft ds = 5&5(:, (2) need to pass characteristic distances of the problem has to be

0 small compared to the time scale of loading = Klmax/K..



This applies especially to the slower shear waves which propas spatially discretized with a mesh as shown in figure 5. The

gate with speeds requiring radius is chosen with = 30 (K["®/ Ko)?Ro wherebyK " de-
notes the maximum loading. In order to avoid volumetric lock-
Ro L . .
. <T7L. (6) ing in the plastic zone and for performance reasons quadrilat-

eral elements with bilinear shape functions and reduced inte-
gratiort are used. Due to the symmetry, only one half of the
2.2 Measure of Crack Extension problem needs to be discretized. A region of wih= 6.5Rg

: . o is fine-meshed with equilateral elements of edge lengtBec-
In classical fracture mechanics, the crack tip is assumed

&%n 4 is dedicated to the determination of the necessary mesh
ideally sharp, so that the crack length is defined uniquely. HOWFefsqu;ion I natl y
e

ever, this is not the case for the employed cohesive zone mod
where the softening region has a finite extension.
In the present study the crack tip is defined as center of the T Ky
sof_tening zone, whereby the. damgge_ varidbles chosen as \\\\\"Illll
weight as depicted schemaucally in figure 4a. Thus, the in- \\
crease of the crack length is computed as \\\\\\\\\\\ \\\||||||, ////////
N\ N

\ \
- N
Aa= | Ddx. @) \\\\\\\\\\\\ 777
of \\\g\\\\\&%\\%&mﬂ%%%%f/éffff

W77,
Thereby, without loss of generality it is assumed that the crack \ \\\\\\\\\\\\ ’”/////////Zﬁ//f//“
propagates along the positixedirection starting ak = 0. If a ' 'ﬁ ! /‘“‘“‘
secondary crack occurs, the smeared definition (7) incorporates ""1 “
the extension of the secondary crack as sketched in figure 4b.
In any case, the results obtained witlfeient possible defini- Ao
tions of crack growth dfer considerably only in the stadium of
crack initiations. Besides, definition (7) has the advantage to be
defined as well for cohesive laws approaching the traction-free

state only asymptotically.
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Do Ay Figure 5: Finite element mesh of (a) whole model and (b) near
1 : | the crack tip

The cohesive elements available in Abaqus implement con-
stitutive laws defined in terms of nominal tractions. However,

—4—»—>—4—»4- for the present study a true stress formulation is desired. The
employed implementation is outlined in Appendix A.

(b) In section 2.1 it was pointed out that quasi-static conditions

are present if the time stress waves need to pass characteristic

Figure 4: Smeared measure of crack extension for (a) softeningisiances of the problem is short compared to the characteris-
atthe primary crack tip and (b) growth of a secondary crack tic time scale of loading. For the introduced FE-model of finite

extent this applies to the outer radifg of the model thus im-

posing the stronger requiremeiy/cs < 7.
3. Numerical Implementation

3.1. FE-Model 1The default value of the software of an hourglasfirstiss of (6% of the

. . . largest eigenvalue of the elementfstess is employed. For a sample computa-
The described boundary value problem is solved with th&ign fully integrated, hybrid elements were employed instead. Thereinces

commercial FE-code Abaqus. A boundary layer of radlgs were negligible.
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The following computations are performed with implicit time

without softening inertia need not be taken into account for this

integration. In the initial stadium the crack propagates stably smvestigation.
that as initial condition the nodal velocities are set to zero. The Under these circumstances the only intrinsic length is con-

mass density is specified so that valueRgfcs = 1/30,0007,
are obtained. This choice guaranteesiisiently small inertia

tained within the initial slope of the cohesive law as defined in

forces during stable crack propagation but does not lead to tofunctional interrelationship

small time increments in the instable region. So the computa-
tions require several hundred to a few thousand time increments

each.

3.2. Fracture Mechanical Evaluation

max
Ty

gy

K E

equation (5). Dimensional considerations allow to specify the
= f( ,—, (11)
oy VRinit 0y

N, v)
for the maximum ligament stresg;™.
The two limit cases for small respectively large dimension-

During the dynamic process of pop-in the loading of the proqggg loading, / ((TY "_Ranit) can be identified. For small stress

cess zone, expressed by the dynamic stress intensity fagtor
differs from the applied loadinig,. A dimensional analysis for

intensity factors the bulk material remains elastic. As the whole
problemis linear then the maximum stress is proportion&jto

the linear-elastic far-field shows, that the interrelationship bezng occurs at the crack tip. Under these conditions the energy

tween both values can only have the structure

Kig = k(Aa/c, ) K . 8)

Thereby it was taken into account, that for the quasi-static load-
ing under consideration the problem cannot depend on time ex-

plicitly. The connecting factok (Aa/c, v) is termed thainiver-
sal function of crack tip speed he strictly monotonic function
k (A&) equals unity forAa = 0 and vanishes atA&RLeicu speed
Aa = cg. During crack propagation the crack tip loadikg,
corresponds to the crack growth resistance:
Kr = Kig. 9)
As the crack growtlAa(t) has to be determined anyway and the
loadingK; is known, equation (8) allows to extract the current
resistanc&r comfortably. The smeared crack length definition
(7) leads to smootha(t) curves that can be reliablyftirenti-

ated numerically. In oder to shorten the complicated analytical

expression, Freund (1989) proposed the approximation

1- Aa/CR
V1 - Aa/cs

which is used in the following.

k(A&) ~ (10)

4. Necessary Mesh Resolution

release rate of the elastic far-field equals the cohesive work at
the crack tip leading to the maximum ligament stress of

K
VRinit '

For large Ioading$<|/((ry m) — oo the intrinsic length
becomes negligibly small compared to the size of the plastic
zone so that the sketched problem approaches the blunting so-
lution asymptotically. Thus, in the intermediate range between
these two limit cases for increasing loading the location of max-
imum stress moves from the crack tip towards a position in front
of the tip.

max __
o T

(12)

4

bl
2
32
S
S

K;=(2.0,2.9,3.3,4.2,
6.4,10.3,15.2) oy vV Rinit

0 N 1 1

La/(T)oy) 2 3

First of all, the admissible element size for an accurate so-
lution of the boundary value problem declared in section 2.JFigure 6: Transition from the elastic to the blunting solatio
has to be determined. Especially the point of damage initianormal stresses,, in the ligament for a linear cohesive law
tion within the cohesive zone, i.e. when the maximum streséN = 0.1,v = 0.3, A = 0.12507y/E Rit)

oz normal to the crack plane in the ligament reaches the

cohesive strengtlr Tor the first time, needs to be resolved. The evolution of the stresses in the ligament with the load-
For these considerations the softening behavior of the tractionng for the linear cohesive law has been investigated numeri-
separation law does not need to be taken into account. This caally by means of the described finite element model. Within
be accomplished by choosing a cohesive strength larger thahe fine meshed region around the crack tip an element size of
the maximum ligament stresg® of the corresponding blunt- A = 0.1250y/E Ryt is used. The normal stresseg, in the

ing solution. The latter has been investigated extensively (e.digament are plotted in figure 6 for a set of parameters and show
Rice, 1968; Rice and Johnson, 1970; McMeeking, 1977) yieldthe transition from the linear to the blunting solution.

ing maximum stresses ef)}** = 3...50vy depending on the The increase of the maximum stres§™ in the ligament
hardening properties. As no instable crack propagation occumsith the loading in the dimensionless form (11) is depicted

4



in figure 7. The diagram also incorporates the linear solutiorthe following computations which turned out to be an appropri-
(12) and the corresponding blunting solutioff** as asymp-  ate choice.

tote. The loading point when the maximum stre§$* departs

from the crack tip to a local maximum in front of it for the first

time is marked byx. 5. Results
linear 5.1. Crack Growth Resistance Curves
4 . ’
solution . A typical computed crack growth resistance curve is depicted
in figure 8. It shows an oscillatory behavior, i.e. after the dy-
3 L
g* E = (333, 500, 750, 1000) oy 3 T T T T T T
~
%
83 2
S
2
1 o
g
0 - McMeeking (1977), E = 3330y >
0 10 1} .
Kr1/(oy vV Rinit) - K, A=020,
e , A =026
Figure 7: Maximum stresg2 in the ligament for a linear — KE/ A= (1)0 ¢
cohesive law as function of dlmenS|onIess loading (marked by 0 ! ! : : : =
x: oM™ as local maximum in front of crack tip for the first time; 0 1 2 3 4 5 6
N=0.1,v=0.3,A=0.1250v/E Rnit) Aa/Ry

Ssmax has a value of about Figure 8: Snap-through in crack growth resistance curve

As figure 7 shows the stre
3.6,E/oy =333,N=0.1,v=0.3,1=0.24)

oM ~ 70%. .. 80%¢c ™ when the maximum occurs in front (9/0Y =
of the crack tip for the first time. In this range the solution
hardly difers from the linear one (12). In the dimensionlessnamic propagation the crack arrests and further loading is nec-
form the corresponding loa is only slightly higher and thus  @ssary in order to drive the crack again. The coarse mesh with
amounts to abouK|/((rY m) ~ o"/gy. The position A = 104¢ does not resolve the local instabilities and the steep
Xmax Of the maximum stress scales willioy. Hence, in the initial tearing, thus confirming the considerations in section 4.
transition region the mesh needs to be fine enough to resolve IN principle, it would be possible that the crack arrest is in-
local fields changing within a distance 8foy = K2/(E'cry) duced by waves reflected at the artificially introduced boundary
so that the element size has to be chosen with at radiusAg. The crack tip velocityAa during instable crack
propagation is plotted in figure 9 and indicates a crack arrest

A< o 2 Ve (13) after about 0047, . This span is short compared to the time
oy gt Ag/c ~ 0.00257 the faster longitudinal elastic waves of speed
o ) ) ¢ need to reach the boundary. Consequently, the crack arrest
For the bi-linear cohesive law this can be rearranged to is inherent to the problem. The reflections only cause the small
& disturbance during the forth crack arrest in the curve for the fine
A <05 O_—Y/léc- (14)  meshin figure 8.

The evolution of the damage variallein the ligament as
Thereby, it was taken into account that the maximum stresdepicted in figure 10 shows, that the pop-in occurs when the
oge equals the cohesive strength at the transition point. first point becomes completely damaged. However, this point
Consequently, in the transition region the elements need tdoesnot lie atthe crack tip butn front of it. When in this re-
be considerably smaller than the critical cohesive opefing gion the cohesive zone completely has lost its stress-carrying
However, as figure 7 shows the loads to reach higher ligacapacity it forms a secondary crack. The latter shields the plas-
ment stresses after the transition rapidly increase and so do#es zone of the main crack tip leading to elastic unloading within
the position of the maximum stress. Thus, for higher cohesivéhis region. The missing contribution of this zone to the plastic
strengths the requirements to the mesh resolution are less stridissipation results in decreasing crack growth resistance. Sub-
This applies also to the linear and nearly linear range belovgequently, the secondary crack tip begins to blunt inducing the
the transition point where the stresses around the crack tip vasame behavior in front of its own tip. The work required for
over distances scaling wifR,;; only. the plastic deformation of the formed crack tip is responsible
Since the whole parameter range including the transition refor the anew increasing crack growth resistance. This mecha-
gion is to be investigated, an element size 0.26. is used for  nism repeats. The residual plastic strains in the wake behind the

5
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Figure 9: Crack tip velocity during first instable propagatio
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Figure 11: Equivalent plastic strain in the wake behind the cu
rent crack tip (depicted with respect to the reference configura-
tion; E/ocy = 333,N = 0.1,v = 0.3, /oy = 3.6,1 = 0.24,
A=0.26)

A =026) Aajnstap Of the instability as well as its amplitude decrease with
increasingl. Additionally, larger values oft cause a delayed
damage initiation, i.e. a higher value at the intersection with

K the ordinate axis in figure 12. This has the consequence that
0.8 =L = (0.96,1.34,1.54, for high values of the shape parameter the first pop-in occurs

Ko

1.79,1.87,1.89, 1.90) already at the load level of the steady-state toughK&ssRe-
0.6 ferring to Tvergaard and Hutchinson (2008) the latter is defined
a as maximum value of the crack growth resistance curve. In con-
trast, for low values oft the load can be further increased after
0.4 the first crack arrest.
0.2
2
0 | | | |
0.1 0.2 0.3 0.4 0.5
z/Ro =1
= i

Figure 10: Damage evolution in the ligament before the first ~ 1 |

pop-in (¢/oy = 3.6,E/oy = 333,N =0.1,v = 0.3,2 = 0.24,

A=026) e =012

77777 A=0.24
————= A=0.72
. . s L I — A =10.89
current crack tip as depicted in figure 11 attest to the periodic 0 s ‘
behavior. 0 1 2

However, after the formation of the secondary crack the next

AG/RO

local instability occurred already before a further crack was in-
duced. Apparently, partly softening in front of the secondaryFigure 12: Crack growth resistance curves fdfaient values

crack tip and unloading of the surrounding material i§isient

of the cohesive shape parametg-/oy = 3.6, E/oy = 333,

for a locally decreasing crack growth resistance. Nevertheles®) = 0.1,v = 0.3,A = 0.246)
the plastically deformed ligament between primary and sec-

ondary crack, the so-called stretch zone, persists until several Figure 13a shows that the steady-state toughkigsis only
periods of the mechanism have been passed.

In the following the influence of several parameters is inVeSye gfect of A on Adinsiab is @lmost independent of the cohe-

tigated.

5.2. Influence of the Shape of the Cohesive Law

moderately influenced by the shape parameter. Conversely,

sive strengtlv-"as figure 13b indicates. In addition, the period
Aanstaptends to zero if the value dfis increased towards unity.
The reason for the dependency of the peth@gsiap 0N the

First of all, the shape parameteis varied. The crack growth shape parametaris that a higher value of means that the soft-

resistance curves obtained foffdrent values are depicted in ening region of the traction-separation relation becomes steeper
figure 12 and show a strong dependence. So the periodiciiy favor of a smaller initial slope. But the faster the cohesive

6
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S) ferent cohesive strength&(ocy = 333,N = 0.1, v = 0.3,
< A =0260)
0 "
0 A 1 suficiently close to the maximum stress of the corresponding
(b) blunting solution.

) ) It was found that the necessary element size in order to re-
Figure 13: (a) Steady-state fracture toughriégsand (b) peri-  solve the damage initiation scales with the width of the linear
odicity Aainsiap @s function of the shape paramete(E/ov = jpitial region of the cohesive law. Presumably, the same restric-
333,N=01,v=03,A=026c) tion applies to the softening range which controls the formation

of secondary cracks.
i Parameter studies have shown, that in contrast to the fracture
ughness the crack jump width during pop-in and the possible
rther loading capacity is considerably influenced by the shape
parameter of the cohesive law. Hence, the latter should be fitted
to experiments addressing these material properties.

. . . ) The fact that all numerical simulations have been performed
In the following the cohesive strengthis varied relative to  \yith homogeneous material properties implies that local brittle
the initial yield s.tress.-Y. The resulting crack growth resistance ,nes are not inevitably necessary for pop-ins. Rather, this phe-
curves are depicted in figure 14. As expected, the steady-stafgmenon is determined by the mean material properties as well.
fracture toughnesg® increases with higher ratias/oy. The  owever, in the simulations the pop-ins appeared only in that
figure shows, that. mterm_ed@te instabilities can be obse_rved #8nge where the steady-state toughness strongly depends on the
soon as the plastic contribution to the crack growth resistancgqhesive strength. This is in accordance with the experimental
exceeds about 20 to 30 %. observations that already small fluctuations of the local strength

lead to significant scatter of the loads at which pop-ins occur.
6. Discussion In the following the results of the present study are compared
to those reported in the literature. Simulations of crack prop-
The present study dealt with the simulation of mode | crackagation with a cohesive zone model under small-scale yield-
growth using a bi-linear cohesive zone model under small-scalimg have been performed by a number of authors (Tvergaard
yielding conditions. It was found that for several parameterand Hutchinson, 1992, 2008; Tvergaard, 2010; Lin and Cornec,
sets local instabilities occur, the so-called pop-ins. The result$996; Lin, 1996; Wei and Hutchinson, 1997; Niordson, 2001).
indicate that softening in front of the crack tip is responsible forFor static simulations using a tri-linear cohesive law with wide
pop-ins. For a cohesive law with linear initial region the binaryplateau, Tvergaard and Hutchinson (Tvergaard and Hutchinson,
information whether damage initiates at or in front of the crackl992, 2008; Tvergaard, 2010) observed an instable point, i.e. a
tip depends on the cohesive strength and the properties of thecal maximum in the R-curves, for some parameter sets. How-
bulk material only but for dimensional reasons not on the valuever, behind this point they found an asymptotically decreasing
of the initial slope (see section 4). Thus, it stands to reasorgrack growth resistance without further local maxima. In the
that under small scale yielding a pop-in mechanism is predictedresent study the limit case of quasi-static loading is consid-
by all cohesive zone models with linear initial range and arered so that an influence of the mass density on the computed
immediately following softening, if the cohesive strength liesR-curves is excluded. Hence, the results should be comparable
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zone softens the faster the damaging region in front of the crac
tip forms a secondary crack and unloading zones that shield iég
predecessor. <

5.3. Influence of the Cohesive Strength
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Figure 15: Steady-state toughnéS$ in comparison with data from literatur&(oy = 333,N = 0.1,v = 0.3)

to those of Tvergaard and Hutchinson in principle. Possibly, If the employed model is used to describe the ductile-brittle
the cohesive law employed by these authors leads to less prtransition of an engineering metal the cohesive zone repre-
nounced instabilities. For their investigations Tvergaard andgents the cleavage mechanism. In this context the term duc-
Hutchinson used an element size/of 106, within the pro- tile is covered by the model in the sense of a relevant plas-
cess zone. Figure 8 shows, that with this mesh resolution thiééc contribution of the matrix material to the crack growth re-
present model exhibits a similar asymptotic behavior. Lin andsistance. For the experiments of Neimitz, Galkiewicz, and
Cornec (Lin and Cornec, 1996; Lin, 1996) simulated the crackDzioba cited in the introduction in the corresponding temper-
growth only “until the applied K ... almost ceases to increase”.ature region the values of the lower shelf toughness and yield

Wei and Hutchinson (1997) as well as Niordson (2001) invesstress ar&, = 25...35 MPant® andoy = 300...400 MPa
t|ga‘[ed the same pr0b|em but emp|oyed amEEian-type ap- (DZiOba et a.l., 2010) so that the reference |ength amounts to
proach to compute the steady-state fracture toughness directfjo = 0.4...1.4mm. In the simulations the extension of the
However, by exc'uding the non_sta‘[ionary terms a priori the}ﬁtretch zone at fOI’mation Of a Secondary CraCk ”es in the range
would not have been able to resolve possible instabilities. ~ Of several to some ten percentRf depending on the value of

Performing dynamic simulations under large-scale yieldingthe shape parameter. This is in accordance with the micrograph

with a cohesive law of exponential type Siegmund and Needlege'JiCtG(j in figure 2.

man (1997) substantiated a crack arrest independent of wave
reflections. As in the present study these authors observed Ié-cknowledgments

cally instable crack propagation already for moderate plastic , , . L
contributions to the crack growth resistance. The financial support of this investigation by the Deutsche

In f 15 th ted steadhatioMract tough Forschungsgemeinschaft (German Science Foundation) under
h Tigure € computed steady-state lracture tougnness, ., -+ ky 92@14-1 is gratefully acknowledged. The authors

values are plotted in comparison with data from literature. Irihank the student Mr. A. Burgold for his great commitment in
addition to the curve for the cohesive law with a wide plateau

. i . enerating the finite element meshes for the present study.
(marked bya in the figure), Tvergaard and Hutchinson (1992)g 9 P y
published the steady-state toughnesses obtained with a cohesive
law with narrower plateau and a slightly refined mesh (markedreferences
by v in the figure). Especially the latter is in good accordant':eAbaqus’ 2009. Abaqus Theory Manual v6.9. ABAQUS, Inc. and Dassault Sys-
with the results of the present study. Only the data of Lin temes.
and Cornec (1996) ffer considerably. Figure 15 indicates a ASTM E1290-08!, 2008. Standard Test Method for Crack-Tip Opening Dis-

; _placement (CTOD) Fracture Toughness Measurement.

tr.end towards higher togghne§s values for more compact C.Othioba, I., Gajewski, M., Neimitz, A., 2010. Studies of fracture processes in
sive laws, "e_' those W'th a wider plateau. All curves eXh'b!t Cr-Mo-V ferritic steel with various types of microstructures. Int. J. Pres.
the asymptotic behavior discussed by Tvergaard and Hutchin- ves. Pip. 87 (10), 575-586.
son that the toughness becomes arbitrarily large if the cohesiVerao, D., Doglione, R., llia, E., 1993. Thickness constraint loss by delamina-

~ ; ; . g§X tion and pop-in behavior. In: Hackett, E. M., Schwalbe, K., Dodds, R. (Eds.),
Strengtho- approaCheS the maximum Ilgament str of Constraint Hects on Fracture. No. 1171 in ASTM STP. pp. 289-305.

th.e ?SSO.Ciate(_j blunting solution resulting in a high sensitivityrreung, L. B., 1989. Dynamic Fracture Mechanics. Cambridge University
within this region. Press.



Gao, X., Shih, C., Tvergaard, V., Needleman, A., 1996. Cairdtigfects on Tvergaard, V., Needleman, A., 1993. An analysis of the brittle-ductile transition
the ductile-brittle transition in small scale yielding. J. Mech. Phys. Solids. in dynamic crack growth. Int. J. Fracture. 59 (1), 53-67.
44 (8), 1255-1282. Wei, Y., Hutchinson, J. W., 1997. Steady-state crack growth and work of frac-
Kabir, R., Cornec, A., Brocks, W., 2007. Simulation of quasi-brittle fracture of  ture for solids characterized by strain gradient plasticity. J. Mech. Phys.
lamellaryTiAl using the cohesive model and a stochastic approach. Comp. Solids. 45 (8), 1253-1273.
Mater. Sci. 39 (1), 75-84.
Kobayashi, T., Yamada, S., 1994. Evaluation of static and dynamic fracture
toughness in ductile cast iron. Metall. Mater. Trans. A. 25 (11), 2427 ‘2437-Appendix A. Cohesive Elements
Li, W., Siegmund, T., 2004. An analysis of the indentation test to determine the
interface toughness in a weakly bonded thin film coating - substrate system.

Acta. Mater. 52 (10), 2989-2999. The cohesive zone is implemented by linear elements which
Lin, G., 1996. Numerical investigation of crack growth behavior using a cohe-include a priori the symmetry condition as depicted in fig-
sive zone model. Dissertation, TU Hamburg-Haburg. ure A.16. The according shape functions are

Lin, G., Cornec, A., 1996. Characteristics of crack resistance: Simulation with
a new cohesive model. Mat.-wiss. u. Werkitech. 27 (5), 252-258, in Ger-
man; results in part also published By | w |

Lin, G., Kim, Y.-J., Cornec, A., Schwalbe, K. H., 1997. Fracture toughness of [
a constrained metal layer. Comp. Mater. Sci. 9 (1-2), 36—47.

Lin, G., Meng, X.-G., Cornec, A., Schwalbe, K.-H., 1999. THeet of strength
mis-match on mechanical performance of weld joints. Int. J. Fracture. 96 (1),
37-54.

McMeeking, R. M., 1977. Finite deformation analysis of crack-tip opening in
elastic-plastic materials and implications for fracture. J. Mech. Phys. Solids.
25 (5), 357-381.

Needleman, A., Tvergaard, V., 2000. Numerical modeling of the ductile-brittle
transition. Int. J. Fracture. 101 (1), 73-97. Figure A.16: Linear cohesive element for symmetric sepamati

Neimitz, A., Galkiewicz, J., Dzioba, I., 2010. The ductile-to-cleavage transition
in ferritic Cr-Mo-V steel: A detailed microscopic and numerical analysis.

Eng. Fract. Mech. 77 (13), 2504-2526. 1 1 2o

Niordson, C. F., 2001. Analysis of steady-state ductile crack growth along a _ —_=(1_ _ =70
laser weld. Int. J. Fracture¥ 111 (1), 53X69. ’ 9% Na(0) = 2 (d+m), No(%0) = 2 (=n), n= Wo (A1)

Rice, J. R., 1968. A path independent integral and the approximate analysis of
strain concentration by notches and cracks. J. Appl. Mech. 35 (2), 379-38@Here and in the following the subscripto(defers to the value

Rice, J. R., Johnson, M. A., 1970. The role of large crack tip geometry changegg o nroperty with respect to the reference configuration. For a
in plane strain fracture. In: Kanninen, M. F. (Ed.), Inelastic Behavior of ", \ . . . .
Solids. McGraw-Hill, New York, pp. 641-672. single integration point the contribution of a single element to
Ripling, E., Mulherin, J., Crosley, P., 1982. Crack arrest toughness of two higithe nodal forces of both nodes is equal and takes the value
strength steels (AISI 4140 and AlSI 4340). Metall. Mater. Trans. A. 13 (4),
657—664. y oy 1 ,
Siegmund, T., Brocks, W., 2000. Modeling crack growth in thin sheet aluminum Pi=P,= EWt with  t = t(2um, D) . (A.2)
alloys. In: Halford, G. R., Gallagher, J. P. (Eds.), Fatigue and Fracture Me-

chanics: 31st Volume. No. 1389 in ASTM STP. pp. 475-485. : - PP .
Siegmund, T., Needleman, A., 1997. A numerical study of dynamic crackThe tractiont depends on twice the mid-point displacement

growth in elastic-viscoplastic solids. Int. J. Solids. Struct. 34 (7), 769-787. Um = 1/2 (U1 + Up) from the symmetry line and internal vari-
Singh, U., Banerjee, S., 1991. On the origin of pop-in crack extension. Actaables as the damagein the present case,

Metall. Mater. 39 (6), 1073-1084. _ , Ny Such cohesive elements can be implemented by modifying
Smith, L. K., 1988. Macrocrack-multiple defect interaction considering elas- tandard element that it contributes th me nodal for

tic, plastic and viscoplasticfiects. Masterthesis, Faculty of the School of a standard eleme ,SO a _CO . utes gsa € nodal forces

Engineering, Air Force Institute of Technology. (A.2) under all possible load histories. For this task, four-noded
Srinivas, M., Malakondaiah, G., Rama Rao, P., 1989. On ‘apparent pop-in’ durgluadrilaterals with reduced integration as shown in figure A.17

ing ductile fracture toughness testing being related to the yield-point phexzgme into operation. First of all, symmetric element defor-

nomenon in armco iron. Scripta. Metall. Mater. 23 (9), 1627-1632. . . i it i i .
Sumpter, J. D. G., 1991a. Pop-in and crack arrest in an HY80 weld. Fatigué.natlons’ i.e.uy = u/“ and Uy = —Uy fori = 1,2, are en-
Fract. Eng. M. 14 (5), 565-578. forced in order to ensure that the integration points remain at
Sumpter, J. D. G., 1991b. Pop-in fracture: observations on load drop, displac¢ghe symmetry plane. Under these constraints, the shape func-
ment increase, and crack advance. Int. J. Fracture. 49 (3), 203-218.  tjgng of the two remaining nodés= 1, 2 for the x- respective
Tomokazu, M., Yasufumi, I., 1977. Pop-in behavior induced by interaction of =~ .
cracks. Eng. Fract. Mech. 9 (1), 17-24. y-displacements are

Tvergaard, V., 2010. feect of pure mode I, 1l or Il loading or mode mixity

on crack growth in a homogeneous solid. Int. J. Solids. Struct. 47 (11-12), 2o
o1 161y X B N0, Y0) = NiGo) and N/(x6,0) = N(0). (A3)
Tvergaard, V., Hutchinson, J. W., 1992. The relation between crack growth

resistance and fracture process parameters in elastic-plastic solids. J. Meelﬂhe Corresponding contributions to the nodal forces have the
Phys. Solids. 40 (6), 1377-1397.

Tvergaard, V., Hutchinson, J. W., 1994fféct of T-stress on mode | crack value
growth resistance in a ductile solid. Int. J. Solids. Struct. 31 (6), 823—-833.

Tvergaard, V., Hutchinson, J. W., 1996fféct of strain-dependent cohesive P* = whdlo 5_N|X g a—le - dho (A.4)
zone model on predictions of crack growth resistance. Int. J. Solids. Struct. i X 9% Xy ay - XX :
33 (20-22), 3297-3308. y Y P

Tvergaard, V., Hutchinson, J. W., 2008. Mode lffezts on interface delamina- Vv (9Ni i
tion. J. Mech. Phys. Solids. 56 (L), 215-229. PP =whdjoy—-+0 way |~ dworyy (A.5)



Y I Wo |
I I
T Ll __ Mok d__ ho
I
I

spatially continuous description. Abaqus regularizes the solu-
tion by introducing mesh dependent softening. For this purpose
the program calculates a characteristic leddgtf™ from the el-
ement dimensions. In the case of the considered rectangular
elements with widtiwp and heighty and reduced integration,
this quantity takes the valueg'®™ = v/howo. Abaqus calculates

the dissipated work of failure under the stress-strain curve as
I, = I'®eM/L¢eM which is connected to the desired work of sep-
aration by the factor element heidlt So the material property

to be handed over to the progranT®™ = W /ho I'o.

Figure A.17: Four-noded quadrilateral with reduced integra
under symmetric deformation

The brackets have to be evaluated at the integration point so
that the terms connected to shear stresses vanish. Furthermore,
d denotes the out-of-plane thickness of the elementtand

ho + un, the intermediate height in the actual configuration.

Comparing equations (A.2) and (A.5) shows that if the thick-
ness of the plane element is chosen wita 1/2 (with respect
to unit thickness of the remaining model), the stregscan be
identified as the cohesive tractitnrhe horizontal nodal forces
PX need to vanish.

In order to obtain the desired traction-separation law, the
Hasuin-constitutive law, an orthotropicfiective stress-type
damage model originally intended for fiber-reinforced compos-
ites (Abaqus, 2009) is utilized. The material axes are aligned
with the direction of cohesive separation and thas$dn-
numbers are set to zero. Under the applied constraints the prin-
cipal axes of loading cannot rotate, so that the hypoelastic for-
mulation can be integrated to

t=(1- D)Eﬁ'emlog(l + II_mI . (A.6)
0

Here and in the following the superscript €} denotes
equivalent properties of the cohesive elements (which have no
physical meaning). A comparison of (A.6) with the desired
traction-separation law implies two measures. Firstly, the el-
ement height needs to be chosen whth > §. such that
log (1 + um/hg) ~ um/hg. Secondly, this allows to identify the
Young's modulus in direction of separaticEﬁ'e”‘ of the cohe-
sive element aE)‘;'em/ho = Econ. In the computations, values
ho/6c = 50 are used. In addition, it has to be ensured that the
horizontal nodal forces (A.4) vanish. Ao¥ng's modulusES'e™
equal to zero would be no problem in principal but is excluded
by the input preprocessor of Abaqus. For all computations, a
value of ES®™ = 10 °ER, is used. Possible couplings due to
out-of-plane constraints are avoided by using plane stress ele-
ments.

The last aspect is concerned with the damage evolution law.
The utilized Hisuin-damage model originally is intended for a
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