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The governing equilibrium equations for strain gradient elastic thin shallow shells are derived, considering non-linear strains and linear constitutive strain gradient elastic relations. Adopting Kirchhoff's theory of thin shallow structures, the equilibrium equations, along with the boundary conditions, are formulated through a variational procedure. It turns out that new terms are introduced, indicating the importance of the cross-section area in bending of thin plates. Those terms are missing from the existing strain gradient shallow thin shell theories. Those terms highly increase the stiffness of the structures. When the curvature of the shallow shell becomes zero, the governing equilibrium for the plates are derived.

1.Introduction.

, Yang et al [2002].

The theory of gradient strain elasticity has been applied to many mechanics problems

in plasticity and dislocation, [START_REF] Aifantis | Update on a class of gradient theories[END_REF], [START_REF] Fleck | Strain gradient plasticity[END_REF][START_REF] Fleck | A phenomenological theory for strain gradient effects in plasticity[END_REF][START_REF] Fleck | Strain gradient plasticity: theory and experiment[END_REF]. Further applications of the strain gradient elasticity theories have appeared in lifting various singularities in fracture problems, [START_REF] Altan | On some aspects in the special theory of gradient elasticity[END_REF] and around concentrated forces like the Flamant problem, [START_REF] Lazar | A note on line forces in gradient elasticity[END_REF].

In the present work the bending Kirchhoff's plate theory will be discussed into the context of a simplified strain gradient elasticity theory, where new terms, depending not only on the moment of inertia of the cross-section but also on the area of the cross-section are introduced. Those terms highly increase the stiffness of the plate.

The author, [START_REF] Lazopoulos | a microstructure dependent Timoshenko beam model based on a modified couple stress theory[END_REF], has already studied the behavior of thin strain gradient elastic beams using the proposed procedure. Terms of the same type have been introduced in bending of beams by Yang et al. [2006] and their theory has been applied to various bending problems, Lam et al [1985], Park & Gao [2008], Ma et al [2008]. Nevertheless, that couple stress theory does not include a substantial part of the strain gradient theory that is the increase of the higher order derivatives in the governing equilibrium equations. Those terms are necessary for the development of boundary layers which are characteristic of the strain gradient elasticity applications.

Furthermore [START_REF] Yang | Couple stress based strain gradient theory for elasticity[END_REF] ends up with a symmetric stress tensor assuming zero couple moment, Eq.( 27). This requirement is an additional condition which is not derived by any principle of mechanics. Further, couple stresses and symmetric stress tensor is not compatible. In fact the present theory bridges the theories bending theories presented by Papargyri et al [2003] and [START_REF] Yang | Couple stress based strain gradient theory for elasticity[END_REF] in a consistent way including not only the higher order derivatives in the governing equilibrium equations, necessary for the development of boundary layers missing from the theory of [START_REF] Yang | Couple stress based strain gradient theory for elasticity[END_REF], but also the terms depending upon the cross-section area missing from the theory of Papargyri et al. [2003], that highly increase the stiffness of the thin beam when the beam thickness reduces. The governing equilibrium equation for the thin plate with the corresponding boundary conditions will be derived through a variational approach for plate bending problems.

Geometrically nonlinear deformations of a shallow thin shell.

Adopting Kirchhoff's theory for thin shallow shells along with the nonlinear strain tensor, a simple version of Mindlin's strain gradient elastic constitutive relations is recalled, introducing a geometrically nonlinear theory of elasticity with microstructure, a micro-elasticity theory equipped with two additional constitutive coefficients, apart from the Lame΄ constants is used. The intrinsic bulk length g and the directional surface energy length l k are the additional constitutive parameters.

Hence, the strain energy density function, for the present geometrically nonlinear case, is expressed by, where, e ij denotes Green's (or Lagrangean) strain and ijk e the nonlinear strain gradient respectively, with ( )
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, the finite displacement field. The present form of the strain energy density function is the simplest one for the strain gradient elasticity problems including surface energy density, see [START_REF] Vardoulakis | Linear Micro-elasticity[END_REF].

If the shallow shell is described by the middle surface in its initial shape by the function ( ) 
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where, (x,y) is the horizontal plane and w(x,y) is the vertical displacement of the point lying on the middle surface. 
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For the present study we consider a thin plate of thickness h shown in Therefore, the variation of the strain energy δU of the plate is defined by,

( )dv e S e S U V ijk ijk ij ij ∫∫∫ + = δ δ δ (6)
It is pointed out that in the existing theories for thin structures into the context of strain gradient elasticity, the contribution of the e zij terms does not exist Papargyri et al [2003,2008], [START_REF] Park | Bernoulli-Euler beam model based on a modified couple stress theory[END_REF], [START_REF] Yang | Couple stress based strain gradient theory for elasticity[END_REF]. In the present theory, those terms are quite important for thin structures when the thickness of the thin structures is comparable to the bulk intrinsic length of the material. In this case the variation of the strain energy density is expressed by, 
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with E Young's modulus, ν Poisson's ratio and G shear modulus. 
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Hence the principle of virtual work, Eq.( 9), becomes: 
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Hence, the equilibrium equations are expressed by, Further, proceeding to the description of the boundary conditions, the following change of the cartesian variables (x,y) to the polar ones (r,s) are defined by the geometrical conditions,
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where, ( )

m l,
are the direction cosines of the normal vector ν . Likewise, Let us point out that in the already existing theories of thin plates into the context of strain gradient elasticity, the contribution of the e zij terms does not exist. The present theory includes those terms that are quite important for small thickness when the thickness is comparable to the intrinsic length of the material.

Further, the variation of the strain energy of the plate is defined by, ( )
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It is recalled that the stresses and the couple stresses after the replacement of the Lame' constants with the modulus of Elasticity E and Poisson's ratio ν become,
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and the bending moments and hyper-moments become, see Fig. 2, 
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Further, we recall the geometrical conditions, 
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Hence, Eq.( 17) yields, Fig. 3 Forces, moments and hyper-moments on the boundary 
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The variational equation ( 18) yields the governing equilibrium equation,
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And the corresponding boundary conditions, Performing the algebra, the equilibrium equation (20) becomes,
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Where, the flexural rigidity D the plate is given by, ( )
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The corresponding classical boundary conditions are expressed by, 
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Likewise, the non-classical boundary conditions are, ( 
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where, h is the thickness of the plate. The classical case with g=0 is given by, (36)

For the square plate, we get, ( ) thicknesses, when the intrinsic length g is comparable to the thickness.
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4.Conclusion-further research

Theory of thin strain gradient elastic plates is presented including new terms involving only the thickness (area of the cross-section) and not the moment of inertia of the cross-section. Those terms are important for thin plates because exhibit high increase of the stiffness of the plates. The present theory might be the basis for the 
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 1 Fig.1The geometry of the plate bending under the action of the distributed transversal loads p(x,y), the edge moments
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  the thin shallow shell, the external forces are the body forces prescribed per unit area of the (x,y) plane and their components in the x,y, z directions are denoted by, Z Y X , , correspondingly. The traction per unit length of the boundary C is composed by the forces R x , R y , R z , acting along the x,y,z directions respectively and the double forces R xx , R yy , R xxy , R yxy . Further, the moments the gradient elasticity, are also applied to the boundary. Therefore the principle of virtual work gives,
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  Fig.2 Stress resultants, moments and hyper-moments

  15) Moreover, the variation of the work of the external forces is, various external loading is shown on Fig.3. According to the principle of virtual work, .
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  simply supported rectangular plate. Consider a simply supported rectangular plate with sides a and b along the x and y directions, subjected to lateral distributed load p. The present example is similar to the one presented by Papargyri et al [2008]. The classical boundary conditions are, w=0, M xx =0 , at x=0, a (30) w=0, M yy =0 , at y=0, b Further, the non-classical boundary conditions, Eqs.(21d-f) are defined by , w yy =0, at x=0,a (31) w xx =0, at y=0,b Finaly the boundary conditions are defined in the compact form by, w=0, w xx =w yy =0, at x=0,a and y=0,b. transversal load p in a similar form, through Fourier series, we get
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 4 Fig.4. Variation of the relative plate displacement with respect to g/h and g/a
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  study of behavior of thin films, thin shells and generally the stability of thin structures.

	xy yy xx zyy M M yyy xyy zxx yxx xxx		( ( ( ) yy xx w v w D D yyy xyy yxx xxx	) ( ) ( ( ) x x x w xyy xxy xxx v D w D l w D l yy y yxx yy x xxx yy xx xx y yyy w xx xy xx yy l w yy xx x xyy	y w l w	) ( ) ( ( ) yxy y xxx y xyy w v D w D l w D l xx xx yy yy	yyy yxx	w w	yxx yyy	) )
	xxx	g	1	Ez	w ,		xxx	w ,	xyy	l	x	1	Ez	w ,	xx	w ,	yy
	yxx	g	1	Ez	w ,		yxx	w ,		yyy	l	y	1	Ez	w ,	xx	w ,	yy
	zxx	g	1	E	w ,	xx		w ,	yy				
	xyy	g	1	Ez	w ,		xyy	w ,		xxx	l	x	1	Ez	w ,	yy	w ,	xx
	yyy	g	1	Ez	w ,	yyy	w ,	yxx	l	y	1	Ez	w ,	yy	w ,	xx
	zyy	g	1	E	w ,		yy		w ,	xx				

Appendix

Computation of the in-plane stresses. 

Computation of the moments and hyper-moments w
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