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Abstract

Three-dimensional elastic solutions are obtained for a functionally graded thick cir-

cular plate subject to axisymmetric conditions. We consider a isotropic material where

the Young modulus depends exponentially on the position along the thickness, while

the Poisson ratio is constant. The solution method utilises a Plevako’s representation

form which reduces the problem to the construction of a potential function satisfying

a linear fourth-order partial differential equation. We write this potential function in

terms of Bessel functions and we pointwise assign mixed boundary conditions. The

analytic solution is obtained in a general form and explicitly presented by assuming

transversal load on the upper face and zero displacements on the mantle; this is done

by superposing the solutions of problems with suitably imposed radial displacement.

We validate the solution by means of a finite element approach; in this way, we high-

light the effects of the material inhomogeneity and the limits of the employed numerical

method near the mantle, where the solution shows a large sensitivity to the boundary

conditions.
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1 Introduction

Functionally graded materials (FGMs) are composites inhomogeneous at the macroscopic

scale because of the continuous spatial variation of the volume fractions of their constituent

homogeneous phases. If the characteristic length scale of such variation is much larger than

the size of the microstructural elements (reinforcements, voids, etc.), it is possible to describe

the behaviour of each macroscopic material point by means of its relevant effective properties

obtained via standard homogenisation techniques for statistically homogeneous aggregates.

Instead, care must be taken in estimating the effective properties within regions where the

microstructure varies rapidly (see, e.g., Reiter et al. 1997; Yin et al. 2004).

FGMs were initially developed for high temperature applications to avoid detachments

in laminated composites due to their typical abrupt change of the material properties. The

advantage of smoothing the mismatch in materials properties makes FGMs very useful for

various applications in which the structure is subjected to extreme conditions (Suresh 2001).

One of their most relevant advantages, with respect to conventional laminated composites,

concerns the scarce relevance in FGMs of structural integrity issues such as delamination or

fracture (e.g., Vel and Batra 2003; Erdogan 1995).

The modelling of FGMs is currently an active research area and, over the years, differ-

ent approaches have been introduced to investigate on the mechanical performance of FGM

structures (plates and coatings). Some problems have been studied by using the inhomoge-

neous elasticity theory but, because of the inherent mathematical difficulties, much of the

work has been carried out by using numerical methods (Reddy et al. 1999; Reddy 2000;

Reddy and Cheng 2001; Ma and Wang 2004).

Recently, some investigators presented three-dimensional analytic solutions for the bend-

ing of FGM plates subject to transversal loads by assuming specific boundary conditions

on the mantle for the description of either simply supported or clamped plates (e.g., Li et

al. 2008; Kashtalyan 2004). The limit of these 3D solutions consists in the fact that the

boundary conditions are satisfied on the mantle only in some average sense, not pointwise.

In this paper, we develop a method, within the framework of the linear inhomogeneous

elasticity theory, to find analytic solutions for FGM cylindrical bodies subject to axisym-

metric boundary conditions. The solution is explicitly found in the case a right cylinder of

modest thickness subject to axisymmetric transversal loads with mixed boundary conditions

(plate-like body), with particular reference to the case of zero displacement components on

the mantle. We adopt a commonly used model for the material gradation: a spatially uni-

form Poisson’s ratio and an exponential variation along the thickness coordinate z for the

Young modulus (see, e.g., Erdogan 1995; Kashtalyan 2004). This choice of gradation has

been made by Martin et al. (2002) and Chan et al. (2004) for solving elastic problems by

means of the boundary element method.

The analytic solution is constructed by introducing a potential function leading to a

fourth-order linear partial differential equation (Plevako 1971). Furthermore, we write the

potential function with a Bessel expansion with respect to the radial coordinate r and, in

this way, the solution consists of four series of coefficients and two functions of z completely
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determined by the boundary conditions (Sburlati 2009).

We validate the analytic solution by means of a comparison with a finite element analysis.

Also, we show in detail the effects of the material inhomogeneity with particular reference

to the mantle, where it turns out that the solution provided by the finite element method

(FEM) may be quite inaccurate, while the analytic solution is obtained in a closed form.

The chosen benchmark might be useful to evaluate the accuracy of numerical or approximate

analytic approaches (see, e.g., Elishakoff and Gentilini 2005).

2 Formulation of the problem

In figure 1, on the left, we show a sketch of the problem under investigation. We use a

cylindrical coordinate system (0; r, ϑ, z) to describe the elastic field in a cylinder made up of

a isotropic FGM with Young’s modulus E = E(z) varying only along the z-direction, while

the Poisson ratio ν is spatially uniform and positive; b denotes the radius of the cylinder

and h its thickness. We suppose that the applied loads on the upper face and the boundary

conditions are axisymmetric; consequently, the circumferential displacement component is

zero and the radial and transversal components of the displacement, say u and w respectively,

are functions of r and z only. By considering null body forces, the elasticity equations assume

the form (Plevako 1971):

∇2u− u

r2
+

1

1− 2ν

∂Θ

∂r
+

(

∂u

∂z
+
∂w

∂r

)

1

E(z)

d

dz
E(z) = 0, (2.1)

∇2w +
1

1− 2ν

∂Θ

∂z
+

(

∂w

∂z
+

ν

1− 2ν
Θ

)

2

E(z)

d

dz
E(z) = 0,

where

Θ =
∂u

∂r
+
u

r
+
∂w

∂z
.

The body is subjected to transverse compressive loading p (r) on its upper face (z = 0), so

the boundary conditions on the ends are

σz(r, 0) = −p (r), σz(r, h) = 0, τrz(r, 0) = 0, τrz(r, h) = 0. (2.2)

On the mantle (r = b) we impose vanishing displacements:

w(b, z) = 0, u(b, z) = 0. (2.3)

The elastic problem is consistent with the notion of clamped edge within the classical bending

plate theory (Love 1927).

3 The solution technique

To find the analytic solution we follow the Plevako (1971) approach in which the displacement

field, in the axisymmetric case, is expressed in terms of a potential function L = L(r, z), in

3
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the form

u = − 1 + ν

E(z)

∂

∂r

(

ν∇2
rL− (1− ν)

∂ 2

∂z2
L

)

,

w = − 2(1 + ν)

E(z)

∂

∂z
∇2

rL+ (1 + ν)
∂

∂z

[

1

E(z)

(

ν∇2
rL− (1− ν)

∂ 2

∂z2
L

)]

,

where ∇2
r is the radial Laplace operator; L(r, z) satisfies the Plevako equation

∇2

(

1

E(z)
∇2L

)

− 1

1− ν
∇2

rL
d 2

d z2
1

E(z)
= 0. (3.1)

The stress field reads:

σr =
ν

r

∂

∂r
∇2

rL+
∂ 2

∂ z2
∇2

rL− 1− ν

r

∂ 3

∂r∂z2
L, σz = ∇4

rL,

σϑ = ν∇4
rL− ν

r

∂

∂r
∇2

rL+ ν
∂ 2

∂z2
∇2

rL+
1− ν

r

∂ 3

∂r∂z2
L, τrz = − ∂ 2

∂r∂z
∇2

rL.

(3.2)

By using these equations it is easy to show that

σϑ − ν(σr + σz) = E(z)
u

r
.

Now we introduce an exponential function describing the Young’s modulus variation:

E(z) = E0 e
2 kz with k =

1

2 h
ln

(

Eh

E0

)

, (3.3)

where E0 = E(0) and Eh = E(h). By using the position (3.3), we write equation (3.1) as

∇4
rL+ 2

(

∂ 2

∂ z2
− 2k

∂

∂z
− 2k2

ν

1− ν

)

∇2
rL+

(

∂ 2

∂ z2
− 4k

∂

∂z
+ 4k2

)

∂ 2

∂ z2
L = 0. (3.4)

We remark that this equation becomes biharmonic in the case of homogeneous material.

In order to construct the explicit solution for equation (3.4), we write the function

L(r, z) − L(b, z), clearly vanishing for r = b, in terms of a Bessel expansion with respect

to r (Sneddon 1966; Watson 1966). By defining

β(z) = L(b, z), (3.5)

we set

L(r, z) = β(z) +
∞
∑

j=1

Lj(z)J0 (φj r), where φj =
z 0
j

b

and z 0
j , for j = 1, 2, 3, . . . , are the positive roots of J0(x), the zero-order Bessel function; the

functions Lj(z) are

Lj(z) =
2

[b J1 (φj b)]2

∫ b

0

[L(ρ, z)− β(z)] J0 (φj ρ) ρ dρ,

where J1(x) is the first-order Bessel function. After introducing the functions

α(z) = ∇2
rL(r, z)

∣

∣

∣

r=b
and γ(z) = ∇4

rL(r, z)
∣

∣

∣

r=b
(3.6)
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we obtain (Sburlati 2009):

∇2
rL(r, z) = α(z)−

∞
∑

j=1

(

φ2j Lj(z) + 2
α(z)

φj b J1(φj b)

)

J0(φj r), (3.7)

and

∇4
rL(r, z) = γ(z)−

∞
∑

j=1

(

φ4j Lj(z) + 2
γ(z)− φ2jα(z)

φj b J1(φj b)

)

J0(φj r). (3.8)

By substituting expressions (3.7) and (3.8) in equation (3.4), one has

∞
∑

j=1

[

L
′′′′

j (z)− 4 k L
′′′

j (z) +
(

4 k2 − 2φj
2
)

L
′′

j (z) + 4φj
2k L

′

j(z) + φj
2
(

4 k2ω2 + φj
2
)

Lj (z)

−
(

4α
′′

(z)− 8 kα
′

(z)− 2α(z)
(

4 k2ω2 + φj
2
)

+ 2 γ (z)
) 1

φjb J1(φjb)

]

J0(φjr)

+ β
′′′′

(z)− 4 kβ
′′′

(z) + 4 k2β
′′

(z) + 2α
′′

(z)− 4 kα
′

(z)− 4 k2ω2α(z) + γ(z) = 0 (3.9)

where prime denotes the derivative with respect to z and ω2 = ν/(1−ν). Now, by evaluating

equation (3.9) at r = b, we get

γ(z) = −β′′′′

(z) + 4 kβ
′′′

(z)− 4 k2β
′′

(z)− 2α
′′

(z) + 4 kα
′

(z) + 4 k2ω2α(z). (3.10)

By using this result in equation (3.9), we obtain

L
′′′′

j (z)− 4 k L
′′′

j (z) +
(

4 k2 − 2φj
2
)

L
′′

j (z) + 4φj
2k L

′

j(z)

+ φj
2
(

4 k2ω2 + φj
2
)

Lj (z) + Fj(z) = 0, (3.11)

where

Fj(z) = 2
β

′′′′

(z)− 4 kβ
′′′

(z) + 4 k2β
′′

(z) + φ2j α(z)

φj b J1(φj b)
. (3.12)

We write the solution of (3.11) in the form

Lj(z) = L0
j(z) + L1

j(z),

where

L0
j(z) = ekz

[

eβj z
(

Aj cos(αj z) +Bj sin(αj z)
)

+ e−βj z
(

Cj cos(αj z) +Dj sin(αj z)
)]

(3.13)

and

L1
j(z) =

ekz Fj(z)Rj(z)

k ω
(

α2
j + β2

j

)

φ2j b J1 (φj b)
. (3.14)

We have set

Rj(z) =

z
∫

0

e−kζα(ζ)
[

βj cosh [αj(ζ − z)] sin [αj(ζ − z)]

− αj sinh [βj(ζ − z)] cos [βj(ζ − z)]
]

dζ (3.15)

5
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where the real parameters αj and βj are

αj =

√
2

2

√

√

k4 + φ4j + 2 k2 φ2j (2ω
2 + 1)− k2 − φ2j and βj =

k ω φj
αj

.

This allows us to write the solution of equation (3.9) as

L(r, z) = L0(r, z) + L1(r, z), (3.16)

where

L0(r, z) =
∞
∑

j=1

L0
j(z)J0(φj r), (3.17)

L1(r, z) = β(z) +
∞
∑

j=1

L1
j(z)J0(φj r). (3.18)

Hence, the displacement field assumes the form

u(r, z) = e−2kz
∞
∑

j=1

(

u0j(z) + u1j(z)
)

J1(φj r), (3.19)

where

u0j(z) = −1− ν2

E0
φj

(

L0 ′′

j (z) + ω2φ2j L
0
j(z)

)

,

u1j(z) = −1− ν2

E0
φj

(

L1 ′′

j (z) + ω2φ2j L
1
j(z) +

2ω2α(z)

b φj J1(φj b)

)

,

and

w(r, z) = e−2kz
∞
∑

j=1

(

w0
j (z) + w1

j (z)
)

J0(φj r)

− (1− ν)e−2kz
(

β
′′′

(z)− 2k β
′′

(z) + (2 + ω2)α
′

(z) + 2ω2k α(z)
)

, (3.20)

where

w0
j (z) = −1− ν2

E0

(

L0 ′′′

j (z)− 2kL0 ′′

j (z)− (2 + ω2)φ2jL
0 ′

j (z)− 2ω2kφ2j L
0
j(z)

)

,

w1
j (z) = −1− ν2

E0

(

L1 ′′′

j (z)− 2kL1 ′′

j (z)− (2 + ω2)φ2jL
1 ′

j (z)− 2ω2kφ2j L
1
j(z)

)

+
2(1− ν2)

E0 b φj J1(φj b)

(

(2 + ω2)α
′

(z) + 2ω2kα(z)
)

.

Now, we evaluate the stress components:

σr(r, z) =
∞
∑

j=1

(

σ0
r(j)(z) + σ1

r(j)(z)
)

J0(φj r)

+

∞
∑

j=1

(

σ0
r(j)(z) + σ1

r(j)(z)
) J1(φj r)

r
+ α

′′

(z), (3.21)

6
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where

σ0
r(j)(z) = −φ2j L0 ′′

j (z), σ1
r(j)(z) = −φ2j L1 ′′

j (z)− 2

b φj J1(φj b)
α

′′

(z),

σ0
r(j)(z) = (1− ν) φj

(

L0 ′′

j (z) + ω2 φ2j L
0
j(z)

)

,

σ1
r(j)(z) = (1− ν) φj

(

L1 ′′

j (z) + ω2 φ2j L
1
j(z) +

2ω2α(z)

b φj J1(φj b)

)

;

σϑ(r, z) =
∞
∑

j=1

(

σ0
ϑ(j)(z) + σ1

ϑ(j)(z)
)

J0(φj r)

+

∞
∑

j=1

(

σ0
ϑ(j)(z) + σ1

ϑ(j)(z)
) J1(φj r)

r
+ ν

(

α
′′

(z) + γ(z)
)

, (3.22)

where γ(z) is given by (3.10) and

σ0
ϑ(j)(z) = −ν φ2j

(

L0 ′′

j (z)− φ2j L
0
j(z)

)

,

σ1
ϑ(j)(z) = −ν φ2j

(

L1 ′′

j (z)− φ2j L
1
j(z)

)

− 2ν

b φj J1(φj b)

(

γ(z) + α
′′

(z)− φ2jα(z)
)

,

σ0
ϑ(j)(z) = − σ0r(j)(z), σ1

ϑ(j)(z) = − σ1r(j)(z);

σz(r, z) =
∞
∑

j=1

(

σ0
z(j)(z) + σ1

z(j)(z)
)

J0(φj r) + γ(z), (3.23)

where

σ0
z(j)(z) = φ4j L

0
j(z), σ1

z(j)(z) = φ4j L
1
j(z) +

2

bφjJ1(φj b)

(

φ2j α(z)− γ(z)
)

;

τrz(r, z) =
∞
∑

j=1

(

τ0
rz(j)(z) + τ1

rz(j)(z)
)

J1(φj r), (3.24)

where

τ0rz(j)(z) = −φ3j L0 ′

j (z), τ1rz(j)(z) = −φ3j L1 ′

j (z)− 2

bJ1(φj b)
α

′

(z).

Furthermore, we write the following stress components as:

σ0
z(r, z) =

∞
∑

j=1

σ0
z(j)(z)J0(φjr), τ0rz(r, z) =

∞
∑

j=1

τ0
rz(j)(z)J1(φjr), (3.25)

where the shear stress is written in terms of a Dini expansion.1

The determination of the explicit solution (3.19)–(3.24) requires the prescription of the

boundary conditions in order to evaluate the four series of coefficients Aj , Bj , Cj , Dj of (3.13)

and the functions α(z) and β(z) of (3.14) and (3.12).

1For any detail on Dini expansions we refer to Watson (1966). Here we recall that, by using the sym-

bols of page 597, by putting ν = H = 1 and rescaling the radius from 1 to b, we see that a continuous

function f(r) can be written in terms of the following Dini expansion: f (r) =
∑

∞

k=1
ckJ1(φkr) where

ck = 2
∫ b
0
rf(r)J1(φkr) dr/[b J1(φkb)]

2.

7
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We remark that, in order to check the axisymmetric conditions: limr→0 σr(r, z) = limr→0 σϑ(r, z)

and τrz(0, z) = 0, we use equations (3.21), (3.22), and (3.24) and exploit the relation:

∞
∑

j=1

2 J0(φj r)

b φj J1(φj b)
= 1

which is true for r < b (Watson 1966).

4 Analysis of the boundary conditions

In this section we impose the boundary conditions (2.2)–(2.3) to determine the explicit

solution. First of all, we notice that, for the subclass of solutions where w(b, z) = 0, by

(3.20), we have

β
′′′

(z)− 2 k β
′′

(z) + (2 + ω2)α
′

(z) + 2 k ω2α(z) = 0. (4.1)

Further, since also u(b, z) = 0, the following relations

σr(b, z) = α
′′

(z), σz(b, z) = γ(z) = ω2 α
′′

(z),

σϑ(b, z) = ν[γ(z) + α
′′

(z)] = ω2 α
′′

(z).
(4.2)

can be obtained by using (3.21), (3.22), (3.23), and (3.19).

Now, we obtain the solution of the problem of section 2 as superposition of the solutions

of the two new problems A and B represented in figure 1. More precisely, we first define a

problem A by assuming α(z) = 0 and β(z) = 0 in order to reduce the solution of equation

(3.4) to the sole contribution L0(r, z). In this way, we obtain the coefficients Aj , Bj , Cj , Dj by

using the boundary conditions on the stress (2.2); the condition w(b, z) = 0 is automatically

verified while, the radial displacement uA(b, z) (where the superscript A refers to the problem

A) is obtained from (3.19). The solution of problem A gives so rise to an infinite sum of

terms, each of them generating displacement fields w(r, z) and u(r, z) satisfying the so called

semi-inverse Levinson assumptions defined in Levinson (1985) and generalized, for cross

section of arbitrary shape, in Nicotra et al. (1999). Hence, we define the problem B with the

following boundary conditions: free loading ends, wB(b, z) = 0 and uB(b, z) = −uA(b, z);
these conditions imply α(z) 6= 0 and β(z) obtained by (4.1).

4.1 Problem A

We now consider the subclass of elastic solutions in which

α(z) = 0, β(z) = 0, (4.3)

σA
z (r, 0) = −p (r), σA

z (r, h) = 0, τArz(r, 0) = 0, τArz(r, h) = 0. (4.4)

The condition wA(b, z) = 0 is automatically satisfied because of the restrictions (4.3) (see

equation (3.20)).

8
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The solution of equation (3.9), with the position (4.3), becomes

LA(r, z) =
∞
∑

j=1

LA
j (z)J0(φj r),

where

LA
j (z) = ekz

[

eβj z [Aj cos(αj z) +Bj sin(αj z)]

+ e−βj z [Cj cos(αj z) +Dj sin(αj z)]
]

. (4.5)

Now, we write the load applied on the upper face as a Bessel expansion

p(r) =
∞
∑

j=1

pj J0(φj r), where pj =
2

[b J1(φj b)]2

∫ b

0

p(ρ)J0(φj ρ) dρ, (4.6)

by assuming, for simplicity, p(b) = 0. By virtue of conditions (4.4) we have

LA
j (0) =

pj
φ4j
,

d

dz
LA
j (z)

∣

∣

∣

z=0
= 0, LA

j (h) = 0,
d

dz
LA
j (z)

∣

∣

∣

z=h
= 0,

which lead to the following expressions of the coefficients of (4.5):

Aj = − pj
Hj

[

e2hβj

[

βj (k − βj)
(

1− cos (2hαj)
)

− αjβj sin (2hαj)
]

+ α2
j

(

1− e2hβj
)

]

,

Bj = − pj
Hj

[

e2hβj

(

αjβj cos (2hαj)− βj (k − βj) sin (2hαj)
)

− αjβj − k αj

(

1− e2h βj
)

]

,

Cj = − pj
Hj

e2hβj

[

αjβj sin (2hαj)− βj (k + βj)
(

1− cos (2hαj)
)

− α2
j

(

1− e2hβj
)

]

,

Dj = − pj
Hj

e2h βj

[

e2hβjαjβj − αjβj cos (2hαj) + βj (k + βj) sin(2hαj) + k αj

(

1− e2hβj
)

]

where

Hj = φj
4
[

α2
j

(

1− e2hβj
)2 − 2 β2

j e
2hβj

(

1− cos (2 hαj)
)]

.

By (3.19) and (3.20), the displacement components assume the form

uA(r, z) = −1− ν2

E0
e−2kz

∞
∑

j=1

φj

(

LA ′′

j (z) + ω2φ2j L
A
j (z)

)

J1(φj r), (4.7)

wA(r, z) = −1− ν2

E0
e−2kz

∞
∑

j=1

(

LA′′′

j (z)− 2kLA′′

j (z)

− (2 + ω2)φ2jL
A′

j (z)− 2ω2kφ2j L
A
j (z)

)

J0(φj r). (4.8)
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and, by (3.21)–(3.24), the stress components are

σA
r (r, z) = −

∞
∑

j=1

φ2j L
A ′′

j (z)J0(φj r) + (1 − ν)
∞
∑

j=1

φj

(

LA ′′

j (z) + ω2 φ2j L
A
j (z)

) J1(φj r)

r
,

(4.9)

σA
ϑ (r, z) = −ν

∞
∑

j=1

φ2j

(

LA ′′

j (z)− φ2j L
A
j (z)

)

J0(φj r)

− (1− ν)
∞
∑

j=1

φj

(

LA ′′

j (z) + ω2 φ2j L
A
j (z)

) J1(φj r)

r
, (4.10)

σA
z (r, z) =

∞
∑

j=1

φ4j L
A
j (z)J0(φj r), τArz(r, z) = −

∞
∑

j=1

φ3j L
A ′

j (z)J1(φj r). (4.11)

Note that a combination of equations (4.9), (4.10), and (4.7) furnishes

σA
r (b, z) = −σA

ϑ (b, z) = − E0 e
2kz

b (1 + ν)
uA(b, z), (4.12)

which implies that σA
r , σ

A
ϑ , and u

A vanish in the same point on the mantle. An analysis of

the previous expressions shows that, for r = b, each term of the expansion of (4.7) vanishes

for a value of z, say s, obtained by solving the following transcendental equations

LA ′′

j (s) + ω2φ2j L
A
j (s) = 0,

that can be written in the following form

tan(αj s) = −M2j e
βjs +M4j e

−βjs

M1j eβjs +M3j e−βjs
, (4.13)

where

M1j = (1− ν)φj
[

(α2
j + β2

j + k2 + 2kβj)− ω2φ2j
]

Bj + 2 (1− ν)φj (k + βj)αjAj ,

M2j = (1− ν)φj
[

(α2
j − β2

j − k2 − 2kβj)− ω2φ2j
]

Aj − 2 (1− ν)φj (k + βj)αjBj ,

M3j = (1− ν)φj
[

(α2
j − β2

j − k2 + 2kβj)− ω2φ2j
]

Dj + 2 (1− ν)φj (k − βj)αjCj ,

M4j = (1− ν)φj
[

(α2
j − β2

j − k2 + 2kβj)− ω2φ2j
]

Cj − 2 (1− ν)φj (k − βj)αjDj .

In section 5 we will numerically solve this equation in order to obtain the value of s (the

position of the ”neutral plane”) as a function of the ratio E0/Eh.

4.2 Problem B

We now require

σB
z (r, 0) = 0, σB

z (r, h) = 0, τBrz(r, 0) = 0, τBrz(r, h) = 0, (4.14)

wB(b, z) = 0, uB(b, z) = −uA(b, z). (4.15)
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By accounting for expressions (4.1) and (4.2), conditions (4.14) imply

α
′′

(z)
∣

∣

∣

z=0
= 0 and α

′′

(z)
∣

∣

∣

z=h
= 0. (4.16)

The general expression for a function α(z) satisfying these conditions is

α(z) = (z − h)3[a0 + a1z + a2z
2 + z3A(z)],

for any choice of the coefficients a0, a1, a2 and of the function A(z).

Let us write the Plevako function L(r, z) for this problem as

LB(r, z) = L0B(r, z) + L1B(r, z), (4.17)

where we have denoted with L0B(r, z) a functional contribution of the kind (3.17). On the

other hand, by using (4.1), equation (3.12) becomes

FB
j (z) = −2

(2 + ω2)α
′′

(z)− 4k α′(z)− (4k2ω2 + φ2j )α(z)

φj b J1(φj b)
,

and

L1B
j (z) =

ekz FB
j (z)Rj(z)

k ω
(

α2
j + β2

j

)

φ2j b J1 (φj b)
. (4.18)

For any choice of the function α(z), Rj(z) is given by (3.15) and, then, the coefficients

Aj , Bj , Cj , Dj are obtained by conditions (4.14). Finally, the requirement uB(b, z) = −uA(b, z)
is used to identify the function α(z).

Due to the complexity of the expressions (3.19) and (4.7), we are not able to explicitly

determine α(z). Hence, we follow an inverse method trying to find a function α(z) able to

match the requirement (4.15) on the radial displacement with a very good approximation.

To this purpose, we choose the following form of α(z), satisfying condition (4.16):

α(z) = (z − h)3(a0 + a1z + a2z
2 + a3z

3 + a4z
3 ek z), (4.19)

where a2 = 3(ha1 − a0)/h
2. The four coefficients a0, a1, a3, a4 are arbitrary and so equation

(4.19) generates four classes of exact solutions. We also set

β(z) =
8
∑

j=2

bjzj +
8
∑

j=0

b̄jz
j ekz, (4.20)

where the coefficients bj , b̄j are obtained from a0, a1, a3, a4 by imposing equation (4.1) for

α(z) (see Appendix 1).

By computing the integral (3.15) with the choice (4.19), one realizes that the function

L1B(r, z) can be written as

L1B(r, z) = β(z) +

6
∑

j=0

(

Gj(r) + Vj(r) e
kz
)

zj, (4.21)

up to a term which can be reabsorbed in the definition of L0B(r, z). We have denoted with

Gj(r) and Vj(r) suitable functions which can be now determined directly by substituting

11
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(4.17) in (3.4); since the term L0B(r, z) already verifies (3.4), this procedure leads to the

following systems of ordinary differential equations

∇4
r G6 (r) − 4 k2ω2 ∇2

r G6 (r) + 4 k2ω2 a6 = 0,

∇4
r G5 (r) − 4 k2ω2 ∇2

r G5 (r)− 24 k∇2
rG6 (r) + 4 k2ω2 a5 + 24 k a6 = 0,

∇4
r G4 (r) − 4 k2ω2∇2

r G4 (r)− 20 k∇2
rG5 (r) + 60∇2

r G6 (r)

+120 k2G6 (r) + 4 k2ω2a4 + 20 k a5 − 30 (ω2 + 2) a6 = 0,

∇4
r G3 (r) − 4 k2ω2∇2

r G3 (r)− 16 k∇2
rG4 (r) + 40∇2

r G5 (r)

+80 k2G5 (r) − 480 kG6 (r) + 4 k2ω2a3 + 16 ka4 − 20 (ω2 + 2) a5 = 0,

∇4
r G2 (r) − 4 k2ω2∇2

r G2 (r)− 12 k∇2
rG3 (r) + 24∇2

r G4 (r) + 48 k2G4

(r) − 240 kG5 (r) + 360G6 (r) + 4 k2ω2a2 + 12 ka3 − 12 (ω2 + 2) a4 = 0,

∇4
r G1 (r) − 4 k2ω2∇2

r G1 (r)− 8 k∇2
r G2 (r) + 12∇2

rG3 (r)

+24 k2G3 (r) − 96 kG4 (r) + 120G5 (r) + 4 k2ω2a1 + 8 ka2 − 6 (ω2 + 2) a3 = 0,

∇4
r G0 (r) − 4 k2ω2∇2

r G0 (r)− 4 k∇2
r G1 (r) + 4∇2

r G2 (r)

+8 k2G2 (r)− 24 kG3 (r) + 24G4 (r) + 4 k2ω2a0 + 4 ka1 − 2(ω2 + 2) a2 = 0,

(4.22)

∇4
r V6 (r)− 2

(

2ω2 + 1
)

k2∇2
r V6 (r) +

[

b6 + V6 (r)
]

k4 = 0,

∇4
r V5 (r)− 2

(

2ω2 + 1
)

k2∇2
r V5 (r) +

[

b5 + V5 (r)
]

k4 = 0,

∇4
r V4 (r)− 2

(

2ω2 + 1
)

k2∇2
r V4 (r) + 60∇2

r V6 (r)

+
[

b4 + V4 (r)
]

k4 − 60
[

b6 + V6 (r)
]

k2 = 0,

∇4
r V3 (r)− 2

(

2ω2 + 1
)

k2∇2
r V3 (r) + 40∇2

r V5 (r)

+
[

b3 + V3 (r)
]

k4 − 40
[

b5 + V5 (r)
]

k2 = 0,

∇4
r V2 (r)− 2

(

2ω2 + 1
)

k2∇2
r V2 (r) + +24∇2

rV4 (r)
[

b2 + V2 (r)
]

k4 − 24
[

b4 + V4 (r)
]

k2 + 360[b6 + V6 (r)] = 0,

∇4
r V1 (r)− 2

(

2ω2 + 1
)

k2∇2
r V1 (r) + 12∇2

r V3 (r)

+
[

b1 + V1 (r)
]

k4 − 12
[

b3 + V3 (r)
]

k2 + 120[b5 + V5 (r)] = 0,

∇4
r V0 (r)− 2

(

2ω2 + 1
)

k2∇2
r V0 (r) + 4∇2

r V2 (r)

+
[

b0 + V0 (r)
]

k4 − 4
[

b2 + V2 (r)
]

k2 + 24[b4 + V4 (r)] = 0,

(4.23)

where we have introduced the coefficients aj , for j = 0, . . . , 6 satisfying the following position

(z − h)3(a0 + a1z + a2z
2 + a3z

3) =

6
∑

j=0

ajz
j.

The solutions of these systems, regular in r = 0, are

G6 (r) = g6,0 + g6,1r
2, G5 (r) = g5,0 + g5,1r

2,

G4 (r) = g4,0 + g4,1r
2 + g4,2r

4 + g4,0 I 0 (2 kω r),

G3 (r) = g3,0 + g3,1r
2 + g3,2r

4 + g3,0 I0 (2 kω r) + g3,1r I1 (2 kω r),

G2 (r) = g2,0 + g2,1r
2 + g2,2r

4 + g2,3r
6 + g2,0 I0 (2 kω r) + g2,1r I1 (2 kω r)

+g2,2r
2 I2 (2 kω r),

G1 (r) = g1,0 + g1,1r
2 + g1,2r

4 + g1,3r
6 + g1,0 I0 (2 kω r) + g1,1r I1 (2 kω r)

+g1,2r
2 I2 (2 kω r) + g1,3r

3 I3 (2 kω r),

G0 (r) = g0,0 + g0,1r
2 + g0,2r

4 + g0,3r
6 + g0,4r

8 + g0,0 I0 (2 kω r)

+g0,1r I1 (2 kω r) + g0,2r
2 I2 (2 kω r) + g0,3r

3 I3 (2 kω r) + g0,4r
4 I4 (2 kω r),

(4.24)
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V6(r) = v6,0 I0(kηr) + v6,0 I0(kψr) − b6,

V5 (r) = v5,0 I0(kη r) + v5,0 I0(kψ r)− b5,

V4 (r) = v4,0 I0(kη r) + v4,0 I0(kψ r) + v4,1r I1, (kη r) + v4,1r I1(kψ r) − b4,

V3(r) = v3,0 I0(kψ r) + v3,0 I0(kη r) + v3,1r I1, (kη r) + v3,1r I1(kψ r) − b3,

V2 (r) = v2,0 I0(kη r) + v2,0 I0(kψ r) + v2,1r I1(kη r) + v2,1r I1(kψ r)

+v2,2r
2 I2(kη r) + v2,2r

2 I2(kψ r) − b2,

V1 (r) = v1,0 I0(kη r) + v1,0I0(kψ r) + v1,1r I1(kη r) + v1,1r I1(kψ r)

+v1,2r
2 I2(kη r) + v1,2r

2 I2(kψ r) − b1,

V0 (r) = v0,0 I0(kη r) + v0,0 I0(kψ r) + v0,1r I1(kη r) + v0,1r I1(kψ r)

+v0,2r
2 I2(kη r) + v0,2r

2 I2(kψ r) + v0,3r
3 I3(kη r) + v0,3r

3 I3(kψ r) − b0,

(4.25)

where η =
√
ω2 + 1 − ω, ψ =

√
ω2 + 1 + ω, and Ii(x) denotes the i-th modified Bessel

functions of the first kind. The coefficients gji, gji, vji, and vji are determined by solving

the algebraic system which arises with their substitution in (3.4) and by accounting for the

conditions L1(b, z) = β(z) and ∇2
r L

1(r, z)|r=b = α(z). These coefficients, given in Appendix

2, depend on the constitutive and geometrical properties of the body.

The Plevako function so obtained gives rise to the following stress components

σz(r, z) = σ0
z(r, z) + c6(z)r

4 + c7(z)r
2 + c8(z)

+
[

c1(z)r
4 + c2(z)r

2 + c3(z)
]

I0(2kωr) +
[

c4(z)r
3 + c5(z)r

]

I1(2kωr)

+
[

c1(z) r
2 + c2(z)

]

I0(kηr) +
[

c3(z) r
2 + c4(z)

]

I0(kψr)

+
[

c6(z) r
3 + c5(z) r

]

I1(kηr) +
[

c8(z) r
3 + c7(z) r

]

I1(kψr),

τrz(r, z) = τ0rz(r, z) + d5(z)r
3 + d6(z)r

+
[

d1(z)r
3 + d2(z)r

]

I0(2kωr) +
[

d3(z)r
2 + d4(z)

]

I1(2kωr)

+
[

d1(z)r
3 + d2(z)r

]

I0(kηr) +
[

d4(z)r
2 + d3(z)

]

I1(kηr)

+
[

d5(z)r
3 + d6(z)r

]

I0(kψr) +
[

d8(z)r
2 + d7(z)

]

I1(kψr),

(4.26)

where the functions cj(z), dj(z), ci(z), and di(z) can be obtained by (3.2), (4.17), (4.21),

(4.24), and (4.25) .

In order to impose the boundary conditions (4.14) for LB(r, z), we compute the expres-

sions (4.26) on the ends; the quantities σ0
z(r, 0), σ

0
z(r, h), τ

0
rz(r, 0), and τ

0
rz(r, h), defined by

(3.25), are written in terms of the coefficients Aj , Bj , Cj , Dj of L0B(r, z). To this end, we

first write σz(r, 0) and σz(r, h) as Bessel J0(φj r) expansions and τrz(r, 0) and τrz(r, h) as

Dini J1(φj r) expansions and, then, we solve the corresponding algebraic system obtained

from their substitution in (4.14).2

This procedure leads to an algebraic system for Aj , Bj , Cj , Dj which generates four

class of exact elastic homogeneous solutions (Lur’e 1964), for every choice of the coefficients

a0, a1, a3, a4.

The solution of the problem B can be so written as

LB(r, z) = LB(r, z; a0, a1, a3, a4),

2In this calculation one has to perform some integrals involving products of Bessel functions; they can

be obtained by suitably differentiating, with respect to x and/or y, the expression
∫ b
0
J0(xρ) I0(yρ) ρdρ =

[xJ1(xb) I0(yb) + y J0(xb) I1(yb)] b/(x2 + y2) and then substituting x = φj and y = 2kω.
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where we have emphasised the functional dependence on the coefficients a0, a1, a3, a4.

By using equation (3.19), we compute the resulting radial field:

uB(b, z) = a0 u
(0)(b, z) (b, z) + a1 u

(1)(b, z) + a3 u
(3)(b, z) + a4 u

(4)(b, z), (4.27)

where u(i)(b, z) (with i = 0, 1, 3, 4) denotes the contribution to uB(b, z) given by the ai-term

of α(z).

Furthermore, we remark that, by using equations (4.2) and (4.19), the superposition

principle allows us to write the explicit form of the stress on the mantle as:

σB
ϑ (b, z) = ω2 α′′(z)− σA

ϑ (b, z), σB
z (b, z) = ω2 α′′(z), σB

r (b, z) = α′′(z)− σA
r (b, z).

In the next section we provide an example where the coefficients a0, a1, a3, a4 generate a

good approximation of the displacement field uB(b, z) opposite to the displacement (4.7).

Hence, by further superposing this solution of problem B to that of problem A, we will be

able to solve the global problem formulated in section 2.

5 Numerical example

The numerical example here concerned has the purpose of highlighting the peculiarity of the

analytic solution obtained. Hence, we choose a thick plate-like body, having radius b = 45

mm and thickness h = 15 mm, with a quite severe Young’s modulus gradation, as E(z)

varies from Eh = 45 MPa to E0 = 4500 MPa, so that k ≈ 0.1535 mm−1. The Poisson ratio

is uniformly ν = 0.3.

The finite element model has been developed within the code ABAQUS (Dassault Systémes,

2006). The Young’s modulus variation through the thickness has been assigned by coding it

into a user subroutine, so that we do not need any special finite element, as instead employed

by other investigators (e.g., Kim and Paulino 2002).

The plate is loaded on the upper face by a distributed load shaped as the first term of

the Bessel expansion (4.6): 3

p(r) = J0(φ1 r) [MPa]. (5.1)

Of course, different loading conditions can be obtained by superposing a suitable number of

terms of the Bessel expansion.

The finest mesh employed consists of 720×240 axisymmetric 4-noded elements with full

integration (four integration points each). We have implemented several models, increasing

the degrees of freedom to be sure to best represent the stresses about the mantle, which is a

region where, in fact, the finite element description turned out to be too much inaccurate.

3The load (5.1) has been applied to the finite element model by implementing it into a user subroutine

in the following polynomial form, well fitting J0(φ1 r):

p(r) =
[

1− (φ1 r)
2/4 + (φ1 r)

4/64 − (φ1 r)
6/2304 + (φ1 r)

8/147456
]

[MPa].
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In order to validate the solution method and get an insight into the convergence of the

series involved in the analytic solutions, it is important to compare separately the solutions

of the two problems A and B.

5.1 Numerical results - solution A

By using the loading condition (5.1), the solution of the problem A is obtained in closed

form. In particular, equation (4.13) gives the position of the neutral plane: s ∼= 0.2 h, where

uA(r, s) = 0 and, by (4.12), σA
r (b, s) = −σA

ϑ (b, s) = 0. In figure 2 we have plotted s/h as a

function of the ratio E0/Eh.

We remark that in the FEM approach of the problem A we need to assign the radial

displacement on the mantle provided by (4.7).4

The analytic and the FEM solutions are in excellent agreement. In terms of displacement,

they provide (within a four digits precision) exactly the same results; for instance, wA(0, 0) =

0.02289b, while the maximum value occurs at z0 = 0.181h and reads wA(0, z0) = 0.023b.

The behaviour in terms of stresses is given in figure 3, which shows the radial and shear

stresses through the plate thickness, in the centre and on the mantle. The comparisons give

very satisfactory results. Figure 4 gives a further insight on the stress behaviour by showing

the radial and circumferential stress variation along the ends. It is clearly recognised that

σA
r (0, z) = σA

ϑ (0, z) and σ
A
r (b, z) = −σA

ϑ (b, z).

5.2 Numerical results - solution B

The analytic solution of subsection 4.2 requires the calculation of the coefficients a0, a1, a3,

a4 of (4.27) in order to assign the required radial displacement on the mantle.

We use a least square technique to find the coefficients a0, a1, a3, a4 best fitting the

function uA(b, z); the coefficients of (4.27) for the displacement uB(b, z) are:

a0 = 0.4613 10−1, a1 = 0.8980 10−2, a3 = 0.5810 10−4, a4 = −0.9662 10−3. (5.3)

As shown by the first two curves in figure 5, the radial displacement uA(b, z) (5.2) and the

displacement generated by the procedure of solution described in subsection 4.2 are in a very

good agreement.

We remark that the FEM solution is obtained by applying uB(b, z) = −uA(b, z) as given
by (5.2), instead of its approximation employed in the analytic procedure. The transversal

displacement is wB(0, 0) = −0.0130974b whereas the FEM results provides wB
FEM(0, 0) =

4To this purpose, we have implemented into a user subroutine the following numerical evaluation of the

displacement provided by equation (4.7):

uA(b, z) = h
[

e4.7885z/h
(

1.3221 × 10−5 sin (qz/h) + 8.7208 × 10−6 cos (qz/h)
)

+ e−0.18352z/h
(

5.6634 × 10−2 sin (qz/h)− 5.4937× 10−3 cos (qz/h)
)]

(5.2)

where q ∼= 0.48604.
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−0.01302b. The maximum transversal displacement predicted by the analytic solution is

wB(0, z0) = −0.0131501b, with z0 ≈ 0.181h, while wB
FEM(0, z0) = −0.01307b.

In figure 6 we have reported the radial and circumferential stresses on the plate ends in

terms of the normalised radial coordinate. From the black and red plots on this figure it is

evicted that the results are in excellent agreement within the region r ∈ [0,≈ 0.85b], while

there is a large discrepancy approaching the mantle.

Figure 7 shows that the FEM approach is quite inaccurate in predicting the stresses

about the mantle. In fact, as quite satisfactorily predicted by the analytic solution, both

σz(b, z) and τrz(b, z) should be zero in the mantle corners (z = 0 and z = h), while, for

z → 0, the FEM analysis predicts that they both reach a conspicuous maximum value,

even larger than the maximum radial stress on the mantle. This problem is due to the

simultaneous presence of high stress gradients, corners, and nodes having all the degrees

of freedom assigned. We notice that this problem cannot be solved by further refining the

mesh, or by choosing other standard or hybrid elements: for each formulation, we tried both

4-noded and 8-noded elements, with either full or reduced integration, always obtaining very

similar results. Elements with incompatible modes mitigate the corner problem, but they

do not solve it.

The discrepancy between the analytical and FEM solutions is instead less pronounced

if the FEM solution is obtained by applying at the mantle the same displacement as that

employed in the analytical solution, instead of −uA(b, z). However, since we have no simple

explicit analytical expression for the displacement uB(b, z) given by (4.27), we can apply to

the FEM model a polynomial best fitting it. Figures 6 and 7 report the results corresponding

to the choice of a 6th-order polynomial for representing uB(b, z), as plotted in figure 5. 5

The solution is mostly improved in the upper face, while it is still quite far from the analytic

solution in the bottom face, where, by the way, as shown in the detail of figure 5, the chosen

6th-order polynomial is less precise in fitting the radial displacement uB(b, z) given by (4.27).

The results in terms of stresses show a very large sensitivity to changing the applied dis-

placement by a small perturbation, which is for instance the case of the difference between

−uA(b, z) and its approximation (4.27) with the coefficients given in equation (5.3). This

suggests that simpler models than that here developed, where only average buondary con-

ditions can be imposed at the mantle, may provide stresses about the mantle very different

from that actual ones.

In any case, within the conventional FEM formulation employed, the element in the

corner (r = b, z = 0) cannot satisfy both the field and the boundary equations.

Note that in Problem A we have shown, in the previous subsection 5.1, that the numerical

5The polynomial, implemented within a 15 digits precision, fits uB(b, z) with a determination coefficient

R2 = 0.999901 and reads

uB
pol(b, z) ≈ −3.2071(z/h)6 + 8.14320(z/h)5 − 6.6591(z/h)4

+ 1.4245(z/h)3 + 0.42051(z/h)2 − 0.243022z/h − 0.073364
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solution is quite accurate, also at the mantle, in spite of the similarity of problems A and B

in terms of boundary conditions. This might be due to the presence, in Problem A, of the

load p(r), which is strictly connected to the radial displacement at the mantle uA(b, z), the

latter being a result of the analysis. This suggests that the combined boundary conditions

consisting of σA
z (r, 0) = −p(r) and u(b, z) = uA(b, z) leads to a Levinson type of solution

which is smooth enough to be described by the FEM. Instead, in Problem B, the presence

of the sole loading condition uB(b, z) = −uA(b, z) leads to a solution (see, e.g., figure 6),

whose associated displacement field turns out to be difficult to be modelled via FEM. It is

important to notice that this stress behaviour at the mantle, in Problem B, corresponds to

the existence of a non-planar neutral surface.

Finally, let us notice that the issues above are not peculiar of FGM materials only, as

one has to face with them also in the homogeneous case.

5.3 Numerical results - final solution

The complete solution is obtained by superposition of the solutions A and B. We note that the

non-monotonic behaviour of w(0, z) implies a change in sign of the strain εz(0, z) and w(0, z)

has a variation of about 10% between its maximum and minimum values; such a variation

is large enough in order to establish the invalidity for the present case of the assumption,

standard for plates, of constant through-the-thickness deflection (Reddy and Cheng 2001).

Figure 8 shows, on the deformed shape, the contour of the shear stress, restricted to the

region r ∈ [0, 0.8b], where the results of the analytical and finite element solutions are almost

coincident.

Let us now highlight the peculiarity of the stress behaviour on the mantle. To this

purpose, we exploit the closed form expressions (4.2) for the stress components:

σr(b, z) = α
′′

(z), σϑ(b, z) = σz(b, z) = ω2 α
′′

(z),

where α
′′

(z) is obtained by equation (4.19) with the coefficients a0, a1, a3, a4 given by (5.3).

While the usual classical plate models assume that σz vanishes everywhere, we observe that

the solution of problem A states that σA
z (r, z) is non-zero in the internal points whereas it is

null on the mantle (see equation (4.11)). Hence, in the global problem, the function σz on

the mantle turns out to coincide with σB
z (b, z) and σϑ(b, z) = σz(b, z).

In figure 9 we have plotted the radial and shear stresses along various radial sections.

Their highly oscillatory behaviour about the mantle rapidly disappears moving towards

the centre (Sburlati 2009). The radial stress at the centre is the only curve made non-

dimensional by dividing it by the Young’s modulus gradation (3.3); it is interesting that

such a normalisation leads to an almost perfectly linear curve.

We remark that the radial stress is such that the neutral surface is non-planar, due to

the edge effects on the mantle.

Effect of a graded Poisson’s ratio We wish now to investigate on the assumption of

uniform Poisson’s ratio introduced in the analytic model. To this purpose, we have run FEM
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analyses similar to those exploited so far, with the exception that we assume for the Poisson

ratio an exponential variation analogous to that chosen for the Young modulus, given by

equations (3.3):

ν(z) = ν0 e
2 kνz, kν =

1

2h
ln

(

νh
ν0

)

,

where ν(0) = ν0 and ν(h) = νh. We have set a quite extreme variation of Poisson’s ratio:

ν0 = 0.01 (where E0 = 4500 MPa) and νh = 0.499 (where Eh = 45 MPa), according to the

fact that, often, the softer the material the higher the Poisson ratio. Also, we have run other

two reference analyses with spatially uniform ν having values of 0. and 0.499, respectively.

The results are given in terms of the most significant variables at the centre, where the

finite element results are very accurate. From figure 10 one evicts that the change in the

deflection w(0, z) may be quite relevant, even though the maximum deflection in the case of

graded Poisson’s ratio is larger of only 2.8% with respect to the analysis where the Poisson

ratio is uniform and equal to 0.3. As shown in figure 11, the qualitative match between

different cases is better if evaluated in terms of σr(0, z), albeit the maximum stress of the

graded case differ of about 26% with respect to the case ν=0.3. Also, it turned out that, in

terms of stresses, the graded case is very similar to that of ν=0, uniformly.

6 Concluding remarks

We have determined some exact 3D elastic solutions for an axisymmetric functionally graded

cylinder subject to mixed boundary conditions. By assuming inhomogenity governed by

exponential gradation along the plate thickness, we have studied the case of a plate-like

body perfectly clamped on the mantle and subject to a transversal distributed load on the

upper face. The major effort has been devoted to assign the boundary conditions pointwise

The analytic solution, obtained in terms of Bessel expansions, is numerically robust since

the solution is obtained as the sum of two parts: one given in closed form and the other

written in a standard way, for which convergence properties are known.

The method of solution allowed us to highlight the inhomogeneity effects, to show the

non-planarity of the neutral surface due to the localized effects on the edges, and to obtain the

stress behaviour on the mantle in a closed form. The comparisons with a FEM approach have

been very satisfactory in internal points and showed the relevant difficulties in representing

the solution near the mantle because of the large sensitivity of the solution within the

mantle region to the boundary conditions and because of the inability of the conventional

finite elements employed to satisfy all the equilibrium conditions in the corner region.

Moreover, the investigation with FEM on the effects of a graded Poisson’s ratio, in con-

junction with the Young’s modulus gradation, quantified the limits of the usual assumptions

introduced in the literature to obtain analytic solutions.

Finally, we observe that the method of solution may be adopted to account different

boundary conditions and to describe the elastic response of a FGM coating on a substrate

(see, e.g., Kashtalyan and Menshykova 2008).
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Appendix 1

The coefficients of (4.20) are

b2 =
1

4k6
(ω2 + 1)

(

45 a6 + 15k a5 + 6 k2a4 + 3 k3a3 + 2 k4a2 + 2 k5a1
)

+
1

2
ω2a0,

b3 =
1

6k5
(ω2 + 1)

(

45 a6 + 15 ka5 + 6 k2a4 + 3 k3a3 + 2 k4a2
)

+
1

6
ω2a1,

b4 =
1

4k4
(ω2 + 1)

(

15 a6 + 5 ka5 + 2 k2a4 + k3a3
)

+
1

12
ω2a2,

b5 =
1

10k3
(ω2 + 1)

(

15 a6 + 5 ka5 + 2 k2a4
)

+
1

20
ω2a3,

b6 =
1

6k2
(ω2+1) (3 a6 + ka5)+

1

30
ω2a4, b7 =

1

7k
(ω2+1)a6+

1

42
ω2a5, b8 =

1

56
ω2a6,

b0 =
24

k8

(

h3k3ω
2
+ 21 h2k2ω2 + 90 hkω2 + 6 h2k2 + 270ω2 + 60

)

a4,

b1 = − 6

k7

(

5 h3k3ω
2
+ 48 h2k2ω2 + 420 hkω2 + 2 h3k3 + 120 hk+ 720ω2

)

a4,

b2 =
6

k6

(

h3k3ω
2
+ 30 h2k2ω2 + 120 hkω2 + 12 h2k2 + 420ω2 + 120

)

a4,

b3 = − 1

k5

(

3 h3k3ω
2
+ 24 h2k2ω2 + 300 hkω2 + 2 h3k3 + 120 hk+ 480ω2

)

a4,

b4 =
3

k4
(

3 h2k2ω2 + 10 hkω2 + 2 h2k2 + 50ω2 + 20
)

a4,

b5 = − 3

k3
(

3 hkω2 + 2 hk + 4ω2
)

a4, b6 =
1

k2
(3ω2 + 2)a4.

Appendix 2

By setting
√
ω2 + 1 = χ, we write:

g6,0 = − b2

4
a6, g5,0 = − b2

4
a5, g4,0 = − b2

4
a4 +

15A4,0

32 k4 ω6
a6,

g3,0 = − b2

4
a3 +

5A4,0

16 k4 ω6
a5 −

15A3,0

8 k5 ω8
a6, g2,0 =

3A4,0

16 k4 ω6
a4 −

15A3,0

16 k5 ω8
a5 −

5A2,0

32 k6 ω10
a6,

g1,0 = − b2

4
a1 +

3A4,0

32 k4 ω6
a3 −

3A3,0

8 k5 ω8
a4 −

5A2,0

96 k6 ω10
a5 −

5A1,0

16 k7 ω12
a6,

g0,0 = − b2

4
a0 −

3A3,0

32 k5 ω8
a3 −

A2,0

96 k6 ω10
a4 +

5A1,0

96 k7 ω12
a5 +

5A0,0

1024 k8 ω14
a6,

g6,1 =
1

4
a6, g5,1 =

1

4
a5, g4,1 =

1

4
a4 −

15A4,1

8 k2 ω4
a6,

g3,1 =
1

4
a3 −

5A4,1

4 k2 ω4
a5 +

15A3,1

2 k3 ω6
a6, g2,1 = − 3A4,1

4 k2 ω4
a4 +

15A3,1

4 k3 ω6
a5 +

45 A2,1

32 k4 ω8
a6,
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g1,1 =
1

4
a1 −

3A4,1

8 k2 ω4
a3 +

3A3,1

2 k3 ω6
a4 +

15A2,1

32 k4 ω8
a5 +

45A1,1

8 k5 ω10
a6,

g0,1 =
1

4
a0 +

3A3,1

8 k3 ω6
a3 +

3A2,1

32 k4 ω8
a4 +

15A1,1

8 k5 ω10
a5 +

A0,1

64 k6 ω12
a6,

g4,2 =
15

32ω2
a6, g3,2 =

5

16ω2
a5 −

15χ2

kω4
a6, g2,2 =

3

16ω2 a4 −
15χ2

16 kω4
a5 −

45A2,2

32 k2 ω6
a6,

g1,2 =
3

32ω2
a3 −

3χ2

8 k ω4
a4 −

15A2,2

32 k2 ω6
a5 +

45A1,2

16 k3 ω8
a6,

g0,2 = − 3χ2

32 kω4
a3 −

3A2,2

32 k2 ω6
a4 +

15A1,2

32 k3 ω8
a5 +

A0,2

256 k4 ω10
a6, g2,3 =

5

32ω4
a6,

g1,3 =
5

96ω4
a5−

5χ2

8 kω6
a6, g0,3 =

1

96ω4
a4−

5χ2

48 kω6
a5−

5A0,3

64 k2 ω8
a6, g0,4 =

5

1024ω6
a6,

where

A4,0 = 3 k4ω4 b4 + 4χ2
(

ω2 − 1
)

(k2ω2 b2 − 1), A3,0 = χ2
(

3k4ω4b4 + 4k2ω2b2
(

ω2 − 2
)

− 4(2ω2 − 3)
)

,

A2,0 = 19 k6ω6b6 − 18χ2
(

9 k4ω4b4 + 2 k2ω2b2
(

2ω4 + 3ω2 − 15
)

− 4
(

2ω4 + 5ω2 − 14
))

,

A1,0 = χ2k4ω3
(

38ω2b6k2 + 27ω4 − 54ω2 − 270
)

+χ2
(

72
(

ω2 −
(

3ω4 − 14
))

ω2k2b2 − 2160 + 36ω2
(

15ω2 + 4
))

,

A0,0 = 211 b8ω8k8 + 1/16
[

−95ω6
(

ω2 + 3
)

k6b6 − 27ω4
(

ω6 + 9ω4 − 30ω2 − 70
)

k4b4

+72ω2
(

3ω6 + 25ω4 − 35ω2 − 105
)

k2b2 − 540ω6 − 5292ω4 + 3780ω2 + 17820
]

χ2

A4,1 = k2ω2b2 + χ2
(

ω2 − 1
)

, A3,1 = χ2
(

k2ω2b2 +
(

ω2 − 2
))

,

A2,1 = 3 b4ω4k4 − 24 k2b2χ2 − 8ω2
(

ω4 − 6
)

− 20
(

ω4 − 3
)

,

A1,1 = χ2
(

2 b2ω6k2 − 4 k2b2ω4 − 12ω4 + 3 b4ω4k4 + 4ω2 − 20 b2k2ω2 + 56
)

A0,1 = 675 b4 k4 ω4 χ2
(

ω2 + 3
)

− 95b6 k6 ω6 + 180 b2 k2 ω2 χ2
(

ω6 + 9ω4 − 30ω2 − 70
)

−360χ2
(

3ω6 + 25ω4 − 35ω2 − 105
)

,

A2,2 = k2ω2b2 − 6χ2, A1,2 = χ2
(

2 k2ω
2
b2 + ω4 − 2ω2 − 10

)

,

A0,2 = 135 b4 k4 ω4 − 900 b2 χ2 k2 ω2
(

ω3 + 3
)

− 180χ2
(

ω6 + 9ω4 − 30ω2 − 70
)

,

A0,3 = ω2b2k2 − 5ω4 − 20ω2 − 15,

and

g4,0 =
15B4,0

8 k4ω6
a6, g3,0 =

5B4,0

4 k4ω6
a5+

15B3,0

2 k5ω8
a6, g2,0 =

3B4,0

4 k4ω6
a4+

15B3,0

4 k5ω8
a5+

45B2,0

2 k6ω10
a6,

g1,0 =
3B4,0

8 k4ω6
a3 +

3B3,0

2 k5ω8
a4 +

15B2,0

2 k6ω10
a5 +

15B1,0

k7ω12
a6,

g0,0 =
3B3,0

8 k5ω8
a3 +

3B2,0

2 k6ω10
a4 +

5B1,0

2 k7ω12
a5 +

15B0,0

k8ω14
a6, g3,1 =

15B4,0

2 k4ω7
a6,

g2,1 =
15B4,0

4 k4ω7
a5 +

45
(

4B3,0 −
(

2ω2 + 1
)

B4,0

)

8 k5ω9
a6,

g1,1 =
3B4,0

2 k4ω7
a4+

15
(

4B3,0 −
(

2ω2 + 1
)

B4,0

)

8 k5ω9
a5+

45
(

4B2,0 −
(

2ω2 + 1
)

B3,0 + χ2B4,0

)

4 k6ω11
a6,

g0,1 =
3B4,0

8ω
a3+

3
(

4B3,0 −
(

2ω2 + 1
)

B4,0

)

8 kω3
a4+

15
(

4B2,0 −
(

2ω2 + 1
)

B3,0 + χ2B4,0

)

8 k2ω5
a5
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+
15
(

4B1,0 − 3
(

2ω2 + 1
)

B2,0 + 3χ2B3,0

)

4 k3ω7
a6+

15
(

18ω4 + 23ω2 − 53
) (

1− k4ω6
)

b2B4,0

8 k5ω11 (ω2 − 1)
a6

+
45
(

2
(

4ω6 − 17ω2 + 46ω4 − 140
)

ω6k4 + 285− 97ω4 − 9ω6 + 35ω2
)

B4,0

16 (ω2 − 1) k7ω13 a6,

g2,2 =
45B4,0

4 k4ω8
a6, g1,2 =

15B4,0

4 k4ω8
a5 +

45
(

2B3,0 −
(

2ω2 + 1
)

B4,0

)

4 k5ω10
a6,

g0,2 =
3B4,0

4 k4ω8 a4 +
15
(

2B3,0 −
(

2ω2 + 1
)

B4,0

)

8 k5ω10 a5

+
45
(

16B2,0 − 8
(

2ω2 + 1
)

B3,0 +
(

2ω2 + 3
)2
B4,0

)

32 k6ω12
a6, g1,3 =

15B4,0

2 k4ω9
a6,

g0,3 =
5B4,0

4 k4ω9
a5 +

15
(

4B3,0 − 3
(

2ω2 + 1
)

B4,0

)

8 k5ω11
a6, g0,4 =

15B4,0

8 k4ω10
a6,

where

B4,0 =
ω4 − 1

I0 (2 kω b)
, B3,0 = −kωb I1 (2 kω b)

I0 (2 kω b)
B4,0 −

(

2ω2 − 3
)

χ2

I0 (2 kω b)
,

B2,0 = −bkω I1 (2 kω b)
I0 (2 kω b)

B3,0 +
bkω

(

2ω2 + 3
)

I1 (2 kω b)

4 I0 (2Kω b)
B4,0 −

1

2
k2ω2b2B4,0

+
χ2
(

2ω4 + 5ω2 − 14
)

2 I0 (2 kω b)
,

B1,0 = −3kωbI0 (2 kω b)

I1 (2 kω b)
B2,0 +

3kωb
(

2ω2 + 3
)

I1 (2 kω b)

4I0 (2 kω b)
B3,0

+
kω b

(

−9ω2 + 4 b2k2ω2 − 10
)

I1 (1, 2 kω b)

4 I0 (2 kω b)
B4,0

+
χ2
(

b2k2ω2
(

6ω4 + 13ω2 − 25
)

− 45ω4 − 12ω2 + 180
)

4 I0 (2 kω b)
,

B0,0 = −kωbI1 (2 kω b)
I0 (2 kω b)

B1,0 +
3kωb

(

2ω2 + 3
)

I1 (2 kω b)

4I0 (2 kω b)
B2,0

+
kω b

(

−9ω2 + 4b2k2ω2 − 10
)

I1 (2 kω b)

4 I0 (2 kω b)
B3,0 +

χ2
(

579 b2k2ω2 − 630ω2 − 2970
)

32 I0 (2 kω b)

−
(

−18ω4 + 48 b2k2ω4 + 64 b2k2ω2 − 120ω2 − 105
)

kω bI1 (2 kω b)B4,0

32 I0 (2 kω b)

+
χ2
(

−12ω8b2k2 + 90ω6 + 20ω6k4b4 − 216 b2k2ω6 − 79 b2k2ω4 + 882ω4 − 20 k4b4ω4
)

32 I0 (2 kω b)
.

The coefficients vji, vji are

v6,0 =
b6k

2ψ2 − a4
4k2ω χI0(kηb)

, v6,0 = − b6k
2η2 − a4

4k2ω χI0(kψb)
, v5,0 =

b5k
2ψ2 + 3 a4h

4k2ω χI0(kη b)
,

v4,0 = C1 v4,1 + ψC2 v4,1 +
b4k

2
ψ2 − 3 a4h

2

4k2ω χI0(kη b)
, v3,0 = C1 v3,1 + ψC2 v3,1 +

b3k
2ψ2 + a4h

3

4k2ω χI0(kη b)
,

v2,0 = C1 v2,1 + ψC2 v2,1 + C3 v2,2 + ψC4 v2,2 +
b2ψ

2

4ω χI0(kη b)
,
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v1,0 = C1 v1,1 + ψC2 v1,1 + C3 v1,2 + ψC4 v1,2 +
b1ψ

2

4ω χ I0(kη b)
,

v0,0 = C1 v0,1 +1/η C2 v0,1 +C3 v0,2 +1/η C4 v0,2 +C5 v0,3 +1/η C6 v0,3 +
b0

4ω χ η2I0 (kη b)
,

v4,1 = − 15

kχ
v6,0, v3,1 = − 10

kχ
v5,0, v2,1 = − 6

kχ
v4,0 +

45ω

k3η χ3
v6,0,

v1,1 =
15
(

2χη − 3ω2 + 3ω χ− 2
)

k3χ3η2
v5,0−

3

kχ
v3,0, v0,1 = − 1

k χ
v2,0+

3ω

k3χ3η
v4,0+

45ω

k5χ5η
v6,0,

v2,2 =
45

k2χ2 v6,0, v1,2 =
15

k2χ2 v5,0, v0,2 =
3

k2χ2 v4,0 −
45ω

k4χ4η
v6,0, v0,3 = − 15

k3χ3
v6,0,

where C1 =
η

2kω χ
− bI1(kη b)

I0(kη b)
, C2 =

I0(kψ b)

2kω χI0(kη b)
, C3 =

(

2ω2 + 1
)

bI1(kη b)

kω χ η I0(kη b)
− b2

C4 =
b I1 (kψ b)

kωχI0 (kη b)
, C6 =

3b (b k I0 (kψ b)− 2η I1(kψ b))

2k2ωχη I0 (kη b)

C5 =

(

4 η χ2 + 3ω − χ
)

b2

2kωχ η2
+

(

3− 2ωχ− 6χ2 − ω χk2η2b2
)

b I1 (kη b)

k2ωχ η2I0 (kη b)
.

The coefficients vi,j can be obtainded from the analogous coefficients vi,j by exchanging ψ

with η and changing a sign, after having written in terms of coefficients ai and bi.
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Figure 1: Schematic of the boundary value problem and the strategy of solution by

superposition.
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Figure 2: Position of the neutral plane as a function of the heterogeneity.
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Figure 3: Problem A — comparison between FEM and analytic solutions in terms

of the radial and shear stresses at the centre and on the mantle.
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Figure 4: Problem A — radial and circumferential stresses on the ends.
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Figure 6: Problem B — comparison between FEM and analytic solutions in terms of

the radial and circumferential stresses on the ends.
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Figure 7: Problem B — comparison between FEM and analytic solutions in terms of

normal and shear stresses on the mantle.
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Figure 9: Global problem— analytic solution in terms of the radial and shear stresses.
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Figure 10: Global problem — FEM solution in terms of the deflection at the centre,

w(0, z)/b, also for the case of graded Poisson’s ratio.
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Figure 11: Global problem— FEM solution in terms of the radial stress at the centre,

σr(0, z), also for the case of graded Poisson’s ratio.
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