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In this work the flexural vibration of a free cylinder of any aspect ratio is analyzed. A general solution by powers series of the coordinates is here proposed to represent the displacements, with restrictions on the powers of the radial coordinates which prevent potential energy and stress singularities at the axis of the cylinder. By means of an analytic method, it is concluded that certain points of the cylinder have no axial motion.

As a result of the pure transverse movement and of the fact that the cylinder bends, it is inferred that the axis is extended. Furthermore, in the symmetric modes, the points situated at the centres of the bases are displaced in the same direction and sense, and hence the distance between them does not vary in time. Flexural natural frequencies are numerically calculated by Ritz's method with the general solution series proposed.

Since the series used are more adequate, convergence is better than with classic series.

The results are verified by FEM. Some consequences are extended to a rectangular plate, whose points of the middle surface vibrate transversally in the double-symmetric mode. In order to verify the theoretical results, a set of experiments with a laser interferometer are carried out. The experimental frequencies agree with the theoretical values.

Introduction

For over half a century, the subject of wave propagation in rods has been addressed by many researchers. The results are well documented in several text books [START_REF] Graff | Wave Motion in Elastic Solids[END_REF][START_REF] Achenbach | Wave Propagation in Elastic Solids[END_REF]. Flexural vibrations of long thin cylindrical rods can be described by the basic Bernuilli-Euler theory of beams. In this theory, it is assumed that cross-sectional planes remain plane and normal to the strained axis. The fourth-order partial differential equation obtained yields accurate results for slender beams and long wavelengths. Rayleigh improved beam theory by considering rotary inertia of crosssections. Timoshenko beam theory includes shear and rotary effects and provides more satisfactory results for shorter wavelengths. The relation between the resultant shear force and the shear angle is represented by a correction factor that depends on the shape of the cross-section. These theories are based on "strength-of-materials" considerations.

The simplifications introduced enable the three-dimensional problem to be reduced to a single-dimensional problem.

Exact solutions of the three-dimensional equations of elasticity for an infinite, elastic cylinder were obtained by Pochhammer and Chree [START_REF] Meeker | Physical Acoustics[END_REF].

Their solutions satisfy the condition that the cylindrical surface is traction-free.

However, an analytical solution that satisfies the boundary conditions at the end planes is generally impossible to obtain for a finite cylinder. Accurate solutions for the natural frequencies of finite length free-free cylinders have been presented by [START_REF] Hutchinson | Vibrations of Solid Cylinders[END_REF][START_REF] Hutchinson | Transverse Vibrations of Beams, Exact Versus Approximate Solutions[END_REF]). Hutchinson's analysis for traction-free end surfaces combines exact solutions of the governing equations in three series which, term by term, satisfy three of the six boundary conditions; the remaining three conditions are satisfied by orthogonalisation on the boundaries. Three-dimensional frequency results for elastic cylinders with different end boundary conditions have also been presented by different authors using the Ritz procedure. [START_REF] Heyliger | Axisymmetric Free Vibrations of Finite Anisotropic Cylinders[END_REF] used power series in the co-ordinates as the approximating functions to find estimates for the axisymmetric free vibrations of finite anisotropic cylinders. In later work, [START_REF] Heyliger | The Free Vibrations of Inhomogeneous Elastic Cylinders and Spheres[END_REF] used the Ritz method to include the complete vibrations of a solid isotropic cylinder and to study the free vibration of hollow and orthotropic cylinders of finite length. [START_REF] Visscher | On the normal modes of free vibration of inhomogeneous and anisotropic elastic objects[END_REF] proposed a powerful approach for the general solution of the weak form of the equations of motion formulated in rectangular Cartesian coordinates. Leissa andSo (1995a, 1995b) applied the Ritz method to study vibrations of isotropic cylinders of finite length that have arbitrary boundary conditions. The three dimensional components are expressed as algebraic polynomials in the radial and axial directions and as Fourier series in the circumferential direction. Their study shows that Timoshenko theory is reasonably accurate in predicting the first five flexural frequencies of free-free cylinders with length-to-diameter ratio L/D≥10 and accurate results are obtained for only the first two frequencies of each symmetry class for L/D=3. The method of Leissa and So is applied to calculate the elastic constants of short cylinders [START_REF] Nieves | Estimation of the elastic constants of a cylinder with a length equal to its diameter[END_REF].

One of the objectives of the present work is to calculate accurate values of freevibration flexural frequencies of isotropic elastic cylinders with arbitrary length-todiameter ratios. The three-dimensional frequency results are obtained by applying the Ritz method as proposed by Leissa and So, i.e., with displacements assumed in the form of power series in r and z, and Fourier series in θ. The procedure can be applied to rods of any aspect ratio. There are some restrictions on the powers of the radial component r in order to avoid stress singularities at the axis of the cylinder, r=0. These singularities are automatically avoided with series which contain no term in r 0 . Leissa and So added two terms to the series for the radial and tangential displacements in order to complete the functions for all boundary conditions. The added coefficients are the same for both components but opposite in sign. In this work a more general solution series is proposed to represent the displacements. The number of terms added to the radial and tangential series is not limited to two; as many terms are added as required to achieve the desired convergence. The aforesaid singularities in calculating the potential energy are therefore eliminated. Since more complete series are used to represent the displacements, the solutions are expected to converge to greater accuracy.

The mode shapes of the lowest natural frequencies for a non-constrained cylinder are analysed. The analytical study shows the motion of the axis is purely transverse. A FEM analysis corroborates the analytical results obtained from the general series proposed.

Given the curious properties of the displacements of the points of the axis, which are deduced in this work for the deflection of a circular cylinder, some are expected to be the same as those of a plate of rectangular section. For this reason, although this topic has been investigated by many authors [START_REF] Ohno | Free vibration of a rectangular parallelepiped crystal and its application to determination of elastic constants of orthorhombic crystals[END_REF][START_REF] Heyliger | Elastic constants of layer in isotropic laminates[END_REF][START_REF] Alfano | Determining the elastic constants of isotropic materials by modal vibration testing of rectangular thin plates[END_REF], a section to study the movement of the points of its middle plane has been included here. The numerical and analytical results obtained for the flexural frequencies are confirmed by means of laboratory experiments with a short cylinder and with a thick plate, and good agreement is found.

Flexural vibration of a circular cylinder not submitted to external forces

Let an elastic cylinder be of radius R, diameter D, length L, density ρ and Lamé constants λ and G, Young modulus E, and Poisson ratio ν. A system of cylindrical coordinates is situated with its origin in the centre of the cylinder and the axis OZ along its axis. The coordinates of a point of the cylinder are r, θ, and z, (Fig. 1). The components of the displacement of the points of the cylinder at instant t are u, v, and w in the directions of the three respective axes, and are small with respect to the size of the cylinder.

Hamilton's principle applied to a period of a natural mode of a vibrant system not submitted to external forces states that

2 / 0 Action ( ) minimum, k p E E dt π ω ≡ - = ∫ (1)
where the potential energy or strain energy E p comes from conservative force fields and the kinetic energy is E k . The expressions of the kinetic and potential energies are, respectively [START_REF] Petyt | Introduction to finite element vibration analysis[END_REF]:
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where the integration extends over the whole volume of the original unstrained cylinder.

In the expression of the potential energy (3) the terms in 1/r and G have been grouped

for reasons that are explained later.

The natural mode of vibration considered is described by the displacement of components:

( )

( , ) ( , ) cos sin( ), u u f r z U r z n t θ ω = (4) ( ) ( , ) ( , )sin sin( ), v v f r z V r z n t θ ω = (5) ( ) ( , ) ( , ) cos sin( ), w w f r z W r z n t θ ω = (6)
where the functions u, v, and w satisfy the boundary conditions of the displacement, if they exist. To this end, the functions f u , f v , and f w are chosen in an adequate form to satisfy the boundary conditions and the selection of the functions U, V, and W is possible in any form. The trigonometric factor θ assures the uniqueness of the displacement for points of the same r and z but displaced in 2π, and explicitly shows a term of the Fourier series in the coordinate θ for the displacements. Moreover, due to the trigonometric functions implied, this factor guarantees the symmetry of the displacements with respect to the plane y= 0. The plane of the figure coincides with this plane, y=0. Henceforth, the first flexural circumferential mode, n = 1, is chosen, however this could be extended for flexural modes of n> 1. The axisymmetric and torsion modes with n = 0 are disregarded in this study. The functions U(r,z), V(r,z), and W (r,z) are unknown, and must be such that the displacements u, v, w verify Hamilton's principle (1). It is supposed that the vibration is free, that is to say, that there are no constraints that impede the displacements of the points of the cylinder, and therefore functions f equal one. It is also assumed that the amplitudes of the modes under study can be expressed by means of the following series: , 0, 0 ,

i j ij i j U A r z ∞ ∞ = = = ∑ (7) , 0, 0 , k l kl k l V B r z ∞ ∞ = = = ∑ (8) , 0, 0 . p q pq p q W C r z ∞ ∞ = = = ∑ (9)
Note that U, V, and W are at least of degree zero in r and that the exponents are whole numbers. The coefficients A ij , B kl , and C pq are unknown and if a small variation at a given instant is made to any of the values, this variation implies a variation of the U, V, and W according to (7-9), and therefore a variation of the displacements u, v, and w, by means of (4-6). From these displacement functions, the variations of the kinetic and potential energies are deduced by means of (2) and (3), respectively. These last three variations should be such that Eq. ( 1) is verified. Therefore, the condition of minimum action (1) implies that the partial derivatives of action with respect to A ij , B kl , and C pq are zero,

2 / 2 / 0 0 Action 0 0, k p ij ij ij E dt E dt A A A π ω π ω ∂ ∂ ∂ = ⇒ - = ∂ ∂ ∂ ∫ ∫ (10)
and likewise for B kl , and C pq .

The substitution of (7-9) in (4-6) and then in (2-3) allows E k and E p to be expressed as functions of R, L, A ij , B kl , C pq , and of the elastic constants of the material. The substitution of E k and E p in (10) and similar for B kl , and C pq allows the calculation of the unknown coefficients A ij , B kl , and C pq . As the equations (7-9) are lineal in these coefficients, (10) and the similar expressions lead to a system of linear equations whose condition of compatibility permits the calculation of the natural frequencies ω. Observe that in the process of minimization the only variables to consider are the coefficients A ij , B kl , and C pq of the development of power series, and therefore ω should be considered as an unknown constant but not as a variable.

The unbounding problem

The integrand in (3) has some terms unbounded for r=0. Consequent difficulties in integrating E p with respect to r from 0 to R may be prevented by including suitable coefficients for products where r 0 appears in (7-9). A simple method to prevent this complication consists of eliminating the constant terms and those that linearly depend on r 0 from the series (7-9). This simplification can have important consequences to obtain good or bad results. In fact, as the series are expected to be convergent, if the first terms are omitted, that is to say, those of the smaller degree in the coordinates, then the series are truncated deleting the terms that reflect the simplest modes of vibration.

These modes can correspond to those of smaller values of the natural vibration frequencies.

Following Leissa andSo (1995a, 1995b), the singularities, which these terms would otherwise cause in Eq. ( 3) for the flexural modes, are eliminated. This is accomplished by taking a limited series , 00 01 1, 0

I J i j ij i j U A A z A r z = = = + + ∑ , , 00 01 1, 0 K L k l kl k l V A A z B r z = = = -- + ∑ , , 1, 0 P Q p q pq p q W C r z = = = ∑ , (11) 
instead of Eqs. (7-9). The two terms added to U and V are necessary for the completeness of the functions for the boundary conditions. Equations ( 11) prevent unbounding of potential energy as can be shown by the substitution of Eqs. ( 11) in Eq.

(3).

To resolve the unbounding in a general form, the expression of the potential energy

(3) has been written by grouping the terms in 1/r and in G. The proposed vibration must be finite in r = 0 for any value of the elastic constants, and therefore each of the terms that appear in the integration of E p in the Eq. ( 3) must be at least of degree minus one in r. In particular,
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must be at least of first degree with respect to r. In the same way
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must be at least of first degree with respect to r.

Free cylinders vibrating in their flexural modes. Analytical determination of the motion of the axis

We now study the vibration of a cylinder that, despite not being submitted to external forces, remains free of constraints that impede the displacement of some of its points. In this case (4-6) are reduced to

( , ) cos sin( ), u U r z t θ ω = (14) ( , ) sin sin( ), v V r z t θ ω = (15) ( , ) cos sin( ), w W r z t θ ω = (16)
and condition (12) implies that the next expression is at least of degree one in r:

[ ] [ ] 2 2 U W U V r U V r z ∂ ∂   + + + +   ∂ ∂   . ( 17 
)
As the degrees in r of U and of W are at least zero, the degrees of their derivatives are also at least zero, and therefore the second term of ( 17) is at least of degree one, supposing that U and W are not constant. Hence the condition is reduced to

degree (U+V) ≥ 1. ( 18 
)
By substituting the series (7-9) in ( 18), it is deduced that 0 0 0 0 0 1 0 1 1 0 00 00 01 01 10

... ...

A r z B r z A r z B r z

A r z + + + + + + must be at least of degree one in r, for every z, and therefore 0

0 0 0 0 j j j j A B B A + = ⇒ = -. Analogously condition (13) implies that [ ] [ ] [ ] 2 2 2 2 2 2 2 tan 2 tan , V V U V U V r U V W rW r z θ θ ∂ ∂   + + + - + + -   ∂ ∂   (19) 
must be at least of degree one in r for all θ. Taking (17) into account and the fact that the derivatives that appear in (19) are at least of degree zero, if W is of degree one or greater, then the expression ( 19) is of degree one or greater, that is to say

degree (W) ≥ 1. ( 20 
)
Therefore, adequate series are:
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Equations (14-16) are difficult to interpret for r = 0. In fact, θ is not defined mathematically for r = 0, and therefore neither cosθ nor sinθ exists and it appears that u, v, and w are undefined and hence incalculable. However, after avoiding the unbounding by means of Eqs. (21-23), the kinematic physical sense remains clear. In fact, (23) implies that if r = 0 then W = 0, and hence w = 0, that is to say w is completely determined as indicated earlier. It should be borne in mind the fact that W = 0 for r = 0 implies that the points of the axis have no axial displacement. On the other hand, according to (21-22), when r = 0, 0 0 ,

j j j U A z V ∞ = = = - ∑ (24)
then the displacement module of the points of the axis becomes 2 2 2 2 0 0 0 0 0 0 sin cos sin sin sin ,
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which is independent of θ as required.

Therefore, the points of the axis move in the direction of the axis OX, that is to say, they have a purely transverse movement which is perfectly quantifiable when the A 0j are known. This result agrees with that by [START_REF] Love | A treatise on the mathematical theory of elasticity[END_REF] and is illustrated in Fig. 2, where, the amplitude of a possible flexural vibration appears in qualitative form.

For r≠0 and x=0 (θ=±π/2), then (14-16) are reduced to: u=0, v=Vsin(ωt), w=0.

Therefore, all points of the cylinder situated on the plane x = 0 have a purely transverse motion and their axial displacement is zero. On the other hand, according to (14-16), all the points of the plane y= 0 move on this plane. Therefore, the points of the axis of the cylinder move in the direction of the axis OX and this axis bends over time as expressed by Eq. ( 25). In particular, the extreme points of the axis, A and B, move in the direction of the axis OX. As a result of the movement deduced and of the fact that the cylinder bends, it is concluded that its axis is extended. This contradicts the supposed idea in strength of materials and the intuitive idea obtained on observing large static and dynamic deflections of rods.

In the symmetric deflection modes, the displacement of the points of the cylinder is symmetric with respect to the plane z = 0 and therefore the exponents q of the coordinate z in the expression of W should all be odd while the exponents j and l of U and of V respectively should be even. Therefore, in the symmetric modes, the axial displacement given by ( 23) is zero at the points of the middle plane (z=0). In these symmetric modes, points A and B of the extremes of the axis displace in the same direction and sense, perpendicular to the axis, and hence the distance from A to B does not vary over the course of time. Figure 3 shows two planes where the axial displacement can be assured to be zero in symmetric modes.

The anomalous terms added to avoid the unbounding correspond at least to a translation movement, variable with z, of each cross section of the beam in the direction of the axis OX, and a rotation around the axis OY due to W.

Numerical calculation of natural frequencies of flexural vibrating cylinders by

Ritz's method

To calculate U(r,z), V(r,z), and W(r,z), Ritz's method is applied with admissible functions in the form of power series, such as Eqs. (21-23); the number of terms is reduced by means of the limitation of the maximum value of the exponents. Hence the series acquire the form:

0 , 0 0 1, 0 , J I J j i j j ij j i j U A z A r z = = = = + ∑ ∑ (26) 0 , 0 0 1, 0 , J K L j k l j kl j k l V A z B r z = = = = - + ∑ ∑ (27) , 1, 0 . P Q p q pq p q W C r z = = = ∑ (28)
Here the series (26-28) are generalized with respect to the expressions (11)

published by Leissa andSo (1995a, 1995b). Completeness arises with a larger value of exponent j in the terms A 0j z j .

Numerical calculation of the natural vibration frequencies is simplified considerably by means of the introduction of non-dimensional quantities. The non-dimensionality is obtained by means of the introduction of the relative coordinates r'≡r/R and z'≡z/L. The slenderness or aspect ratio is also defined by s≡L/D. With all this, expressions (2) and

(3) take the form:
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which, except for the limits of integration for r (0 and 1), and for z (-1/2 and 1/2), and the factors R 2 and L, are formally equal to (2) and (3), respectively. Since, in any given problem, we have data ρ, R, L, G and ν and therefore s, these quantities are constant in the resolution of a special problem.

Calling I k and I p to the integrals that appear in ( 29) and ( 30) respectively, the minimization of the action expressed by Eq. ( 1) may be written thus:

2 / 2 / 2 0 0 minimum k p R I dt I dt G π ω π ω ρ ω ω - = ∫ ∫ . ( 31 
)
Given the form of (30-31), the first integral of (31) factorizes ω. The second integral has some terms in the integration which contain sin(ωt), whose integral is zero, and other terms which have no trigonometric functions or contain sin 2 (ωt), and therefore the second integral is proportional to 1/ω. By introducing the non-dimensional 31) is greatly simplified and Ω 2 becomes a function of only ν and s.

frequency / R G ω ρ Ω = , (

Example

The analytic demonstrations developed in this work are general for cylinders of any aspect ratio. If the aspect ratio is much greater than one, then the bar is slender and can be studied by elementary methods. If the aspect ratio is much smaller than one, the bar is a disk and can also be studied by means of elementary methods. Since the study of short cylinders is more complicated, we now propose an example with s = L/D = 1.

There are no adequate analytic solutions and intuition may lead to erroneous results.

As an application of this formulation, and in order to compare results obtained using the proposed general series with those of other authors, a cylinder is studied free of external constraints which is submitted to a symmetric flexural vibration.

Let the vibration be quantified by (26)(27)(28). In a first proposal the amplitude is taken as:

U=D 1 , V=-D 1 , W= D 2 r'z'. ( 32 
)
With this simple proposal, the analytic calculation gives:

2 1 0 Ω = , 2 2 2 6 1 4 1 2 s ν ν - Ω = + - . ( 33 
)
The application of (33) to the cylinder studied by Leissa andSo (1995a, 1995b),

where the Poisson coefficient is 0.3, and the slenderness is s = 1, yields Ω 1 =0 and

Ω 2 =3.807887.
Subsequently a displacement with another added term is proposed: (34) which applied to the same cylinder gives Ω 1 =0, Ω 2 =2.6459, and Ω 3 =4.7434. Note the increase of the number of frequencies and the convergence to smaller values.

U=D 1 +D 3 z' 2 , V=-D 1 -D 3 z' 2 , W=D 2 r'z',
If the solution

U=D 1 , V=-D 1 , W=D 2 r'z'+D 3 r'z' 3 , ( 35 
)
is proposed, which has the same number of coefficients as the previous solution but

gives less importance to the terms in r 0 , then the results become Ω 1 =0, Ω 2 =3.3554 and Ω 3 =12.3636. As these frequencies are greater than those obtained with proposal (34), it can be deduced that the r-independent terms added are more relevant.

If greater accuracy of numerical calculation and an increase in the number of frequencies are required, then it is necessary to increase the number of coefficients of the series. Numerical calculation by Ritz's method has been programmed and run on a workstation. To compare the results with the proposal of Leissa and So, the following series are used, where only one added term, A 00 , is included:

4,4 4,4 4,5 00 00 1, 0 1, 0 1, 1 ; ; . i j k l p q ij kl pq i j k l p q U A A r z V A B r z W C r z = = = = = = = + = -+ = ∑ ∑ ∑ (36) 
The number of terms, and therefore coefficients, is 37 and the first lower non-dimensional frequencies obtained are shown in the second row (one term) of Table 1.

If four terms of the type r 0 z j are added in U (and the corresponding terms in V) and the terms of maximum order in r for W are decreased by one, then the series become 

; ; , i j ij i j k l kl k l p q pq p q U A A z A z A z A r z V A A z A z A z B r z W C r z = = = = = = = + + + + = -- - - + = ∑ ∑ ∑ (37)
whose number of coefficients, 37, is the same as before, although the frequencies are those shown in the third row (four terms) of Table 1.

Consequences of the comparison:

A) All the frequencies that appear in the third row of Table 1 are smaller than their respective frequencies in the second row, and therefore, when comparing proposals of equal total number of terms, the introduction of more added terms accompanied by the corresponding reduction of others of greater degree, improve the solution.

B) Each of the frequencies shown in Table 1, third row, is smaller than those shown in Table II of Leissa and So (1995a) for the same number of analogous terms. Hence the introduction of the added terms improves the calculation of the natural frequencies of vibration of a short cylinder.

Application of the Finite Element Method

Due to the analytic result that the axis of the cylinder experiences no axial displacements, FEM analysis of the vibration of a free cylinder was carried out, defined by the following data: L=D=49.92 mm, ρ=7884 kg/m 3 , E=199.3 GPa, ν=0.283. The mesh and the calculations were performed by employing Cartesian coordinates to prevent the problem that appears using cylindrical coordinates in Eq. ( 28) which obliges W to equal 0 if r=0. Ansys SOLID45 element is used. This element is a 3D structural solid, defined by eight nodes having three degrees of freedom at each node: translations Observe that the mode is symmetric. In this figure only the displacements of the surface points of the cylinder are represented, but are sufficient to verify the analytic demonstration carried out in Section 4. In fact, the intersections of the planes with w = 0 of Fig. 3 with the surface of the cylinder are a square and a circumference. In Fig. 4, both geometric figures correspond to an amplitude of zero axial vibration. The following figure, Fig. 5, corresponds to the resulting amplitudes of the displacements of the axis of the cylinder. In this figure, within the precision limits of the numerical calculation and of the graph, it may be appreciated that the displacements of all the points of the axis are perpendicular to the axis and also the direction of the displacements is the same, that is to say, all the points of the axis move on the plane y= 0 and in parallel to the axis OX. To better quantify these results, Fig. 6 is drawn where the values of the three components of the displacement of the points of the axis appear.

In this figure, the component U x of the displacement and its important variation with the coordinate z may be appreciated, while the components U y and U z are zero at all points of axis Y, and are therefore superimposed.

The following two figures refer to the second-lowest flexural frequency, f = 43049 Hz. Figure 7 shows W at the points of the cylinder surface, and hence it can be observed that it corresponds to an antisymmetric flexural mode and that at least those points located on the plane x = 0 are motionless on its axial component, according to the analytic demonstration. Finally, Fig. 8 shows the three components of the displacement at the points of the axis, and it can be noted that the only component of the displacement of their points is the radial of direction coincidental with that of the axis OX. Hence the direction of the total displacement of the axis points is common to all its points, and these have only a transversal displacement, as predicted by the analytic method.

Thus, the proposals and analytic demonstrations described above are numerically corroborated by the FEM analysis. Furthermore, this agreement of results demonstrates that Eqs. (14-16) and (21-23) are the adequate expressions to describe bending modes.

With the aim of comparing the results for the lowest flexural frequency of symmetric modes obtained by different approaches, the lowest frequency for a short cylinder of L=D=49.92 mm, ρ=7884 kg/m 3 , ν=0.283, E=199.3 GPa is calculated by four methods: Euler-Bernoulli beam theory, Timoshenko beam theory, FEM, and the optimized Ritz method. The results are listed in Table 2. Note the great difference among the results for short cylinders given by simple beam theories and 3-D theories, as expected. The lowest frequency for a cylinder with the same properties but with L=10D=499.2 mm is also calculated by the aforesaid methods; these results are included in the third column of Table 2. The results given by FEM, the optimized Ritz method, and Timoshenko beam theory are in good agreement. The lowest flexural frequency for s=10 from Euler-Bernoulli beam theory and from the other three approaches differ by 3%, whereas for s=1, the differences between the frequency calculated using Euler-Bernoulli and Timoshenko beam theories and the frequency calculated by the Ritz method are 126% and 9%, respectively.

Doubly symmetric bending modes of rectangular plates

Given the special properties deduced in the deflection of a cylinder, in relation with its displacements, it is expected that some of these properties be the same as those of a plate of rectangular section of any thickness, that is to say, a rectangular parallelepiped vibrating freely and without external forces applied. In this case, the use of a system of Cartesian axes is suitable, as shown in Fig. 9. The OX 3 and OX 1 axes are parallel to the longest and shortest edges, respectively. As standard, the following solution is proposed:

1 1 2 2 3 3 ( , , ) sin( ), ( , , ) sin( ), ( , , ) sin( ). 

u U x y z t u U x y z t u U x y z t

ω ω ω = = = (38) 
An important difference within the study of the vibration of a cylinder, in which the use of cylindrical coordinates is very practical, is that with the rectangular Cartesian coordinates, the expression of the element of volume is dx 1 dx 2 dx 3 . For this reason no problem of unbounding exists. Therefore, to apply the Ritz method, the amplitudes are expressed simply by the following series:

1 1 1 , , 1 
1, 1 2 3 0, 0, 0

P Q R p q r pqr p q r U A x x x = = = = ∑ , 2 2 2 , , 2 
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P Q R p q r pqr p q r U A x x x = = = = ∑ , ( 39 
) 3 3 3 , , 3 
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P Q R p q r pqr p q r U A x x x = = = = ∑ .
The eigenvalue problem can be split [START_REF] Heyliger | Elastic constants of layer in isotropic laminates[END_REF] into eight smaller problems using symmetry arguments of the displacements and matching these with the appropriate series terms in the approximation function (Alfano and Pagnota, 2006). If the displacement u is symmetric with respect to the reflection in the x 3 =0 and x 2 =0 planes, then the modes are called [START_REF] Bayón | Optimized calculation of natural frequencies of rectangular plates by Ritz's method and experimental verification by laser interferometry[END_REF] doubly symmetric modes, i.e. SS modes. Modes are said to be antisymmetric with respect to a plane x 1 =0 if the vector -u, opposite to u, is reflected in such plane. SSA flexural modes refer to modes which are SS and are antisymmetric with respect to x 1 =0, in which all points undergo bending about an axis parallel to OX 2 . Therefore, for SSA bending modes, the exponents in x 1 , x 2 , and x 3 are, respectively: even, even, and even for U 1 ; odd, odd, and even for U 2 ; and odd, even, and odd for U 3 . For such a mode, Eqs. ( 39) can be written:

1 1 1 ' , ' , ' 2 2 2 1 1, 1 2 3 0, 0, 0 P Q R p q r pqr p q r U A x x x = = = = ∑ , 2 2 2 ' , ' , ' 2 1 2 1 2 2 2, 1 2 3 1, 1, 0 P Q R p q r pqr p q r U A x x x - - = = = = ∑ , ( 40 
) 3 3 3 ' , ' , ' 2 1 2 2 1 3 3, 1 2 3 1, 0, 1 P Q R p q r pqr p q r U A x x x - - = = = = ∑ .
The last two amplitudes of (40), U 2 and U 3 , contain powers of x 1 as one or larger than one. Therefore, for a point near the plane x 1 =0 (x 1 tending to zero), both amplitudes U 2 and U 3 are null. Hence the distance from the centres of the two smallest sides remains unchanged during the vibration. Therefore all the points on the plane x 1 =0 move transversally to this plane. The situation is analogue to that of the cylinder.

The first amplitude can be written

1 1 1 1 1 1 1 ' , ' ' , ' , ' ' , ' 2 2 2 2 2 2 2 2 1 1,0 2 3 1, 1 2 3 1,0 2 3 1 0, 0 2, 0, 0 0, 0, , 0 Q R P Q R Q R q r p q r q r qr pqr qr q r p q r q r U A x x A x x x A x x x - = = = = = = = = + = ∀ → ∑ ∑ ∑ . ( 41 
)
FEM has been applied to a rectangular plate of aluminium of dimensions 150.02×100.02×50.06 mm, density 2655 kg/m 3 and elastic properties G = 26.90 GPa, and ν=0.330. Ansys SOLID45 element is again used. The element size is 3x3x2 mm and the number of nodes is 95445. The lowest frequency corresponds to a mode of torsion; of no interest here. The following lower frequency, 9019.4 Hz, corresponds to a flexural mode. Figure 10 is a three-dimensional representation of the plate vibrating in the mode (symmetric) corresponding to that frequency, and Fig. 11 shows the components of the amplitude of the displacement in the directions of the three axes of the points of the axis parallel to the longest edge. Since the maximum values calculated for amplitudes U 2 and U 3 are less than 1% of that of the corresponding amplitude in the perpendicular direction to the plate, U 1 , the first are therefore represented as superimposed at the ordinate zero. Agreement with respect to the previous analysis is very good.

Experimental results

In order to verify the numerical and analytic calculations carried out in the present Analogously, the systematic uncertainty for Poisson's ratio is found to be U ν =0.0001.

These values are used in the determination of the systematic uncertainty for the frequencies calculated by Ritz's method.

A laser speckle interferometer OP-35 I/O [START_REF] Monchalin | Measurements of in-plane and out-of-plane ultrasonic displacements by optical heterodyne interferometry[END_REF], from Ultra Optec Inc., is used to measure the vibration of the sample. With this system, out-ofplane and in-plane displacement components can be detected at the same point, though detection is not simultaneous but sequential. The spot size of the laser beam on the surface is 20 µm, detection being point-like and without contact with the sample. The system has a broad bandwidth, from 1 kHz to 35 MHz, allowing simultaneous detection of various natural frequencies, with a resolution for the displacements of approximately 1 nm. The signal is processed by a demodulating unit to yield an output proportional to the instantaneous displacement of the surface at the detection point. A Tektronix TDS-430A oscilloscope digitizes the signal and the spectrum of the vibration is calculated using the fast Fourier transform. The natural frequencies are those associated with the maximum amplitudes in the spectrum. Figure 12 shows the spectrum obtained for the aluminium sample. The resolution of the Fourier analyzer used is 10 Hz. Hence, the systematic uncertainty of the measured frequencies is U fe =10 Hz. The experimental frequencies may be written as f e ±U fe .

Table 3 shows the experimental frequencies along with the first three natural frequencies numerically calculated by Ritz's method. The uncertainties for both sets of frequencies are also included. The ranges of numerically calculated frequencies and the experimentally obtained values, with their respective systematic uncertainties, intersect in such a way that it can be said that the experimental results are in complete agreement with the numerical values.

A second experiment is carried out on a stainless-steel cylinder with the properties:

L=D=49.92 mm, ρ=7884 kg/m 3 , G=77.63 GPa, ν=0.283. Vibration is induced by a horizontal grazing impact at a point on the side surface, which produces torsional and flexural oscillations. The resulting vibration is detected by recording the tangential (in-plane) component of the displacement at a point on the base near the edge. Figure 13 shows its spectrum. The frequency f t =31225 Hz belongs to the lowest torsional mode whereas the frequency f f =39525 Hz corresponds to the lowest flexural mode; the resolution in the measurement is 25 Hz. From Ritz's method with the number of terms in r and z approximately equal and the total number of terms as small as 75, the lowest flexural frequencies are Ω f =1.986269 and f f =39742 Hz. From FEM the frequency of the latter is 39767 Hz. Therefore, the concordance between Ritz, FEM and the experimental method is good (relative differences 0.6 %). 
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  in the nodal X, Y, and Z directions. The element dimensions are D/30 in X and Y directions and L/50 in Z direction (approximately 1.6x1.6x1 mm). The number of nodes is 42279. The Ansys program simultaneously calculates all the modes of vibration, not only those of flexural vibration. From the analysis of the "mode shape" the flexural frequencies are deduced; therefore no prior hypothesis is carried out as that established by Eqs. (4-6) and (7-9), nor is any condition on the displacement imposed. The lowest flexural frequency calculated is f=39767 Hz. The mode, whose amplitude of the axial component of the displacement is represented in Fig.4, corresponds to this frequency.

  study of the flexural vibrations of cylinders and plates, a series of experiments with a thick plate and a short cylinder are carried out.A plate of commercial aluminium is machined, whose dimensions are: L 1 =50.06 mm, L 2 =100.02 mm, and L 3 =150.02 mm, and of density 2655 kg/m 3 . The dynamic elastic properties of the aluminium sample are determined from measurements of the P and S wave velocities. The values of the elastic constants obtained for the aluminium plate are G=26.90 GPa and ν =0.330. Taking into account the uncertainties in the measurements of lengths, mass and transit times, the absolute value of the systematic uncertainty in the indirect measurement of the shear modulus is U G =0.08 GPa.
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Table 1 .

 1 -The lowest five non-dimensional frequencies calculated by the Ritz method with one and four terms in r 0 z j .

	Method	Non-dimensional frequencies
	One term	2.093075 2.820870 3.437874 4.184687 5.004201
	Four terms	1.993948 2.801925 3.405710 4.126409 4.768845

Table 2 .

 2 -The lowest symmetric flexural frequency for a cylinder of D=49.92 mm, ρ=7884 kg/m 3 , ν=0.283, E=199.3 GPa calculated by different methods for aspect ratios s=1 and s=10 .

		Frequencies (Hz)
	Method	s=1	s=10
	Euler-Bernoulli	89659	897
	Timoshenko	36142	874
	FEM 42279 nodes 39767	875
	Ritz 37 coefficients 39756	874

Table 3 .

 3 -The lowest SS flexural natural frequencies in Hz measured in the laboratory and calculated by Ritz's method for the thick aluminium plate.

		f 1 ±U f	f 2 ±U f	f 3 ±U f
	Experimental	9050±10	17430±10	25460±10
	Computed (Ritz)	9026±28	17432±62	25481±91

Application of the optimized Ritz's [START_REF] Bayón | Optimized calculation of natural frequencies of rectangular plates by Ritz's method and experimental verification by laser interferometry[END_REF] method to the sample gives the results shown in Table 3. The number of terms in the series is approximately 200.

The systematic uncertainty in the numerical calculation of the frequencies in the three-dimensional solution is estimated by repeating the calculation with increased and decreased lengths of the sample, according to U L . The same process is repeated for the values of ρ, ν, and G. The absolute differences between the previously calculated frequencies and those obtained with shifted L,ρ, ν, and G are considered as systematic uncertainties. These uncertainties originate from the lack of resolution of measuring apparatuses and turn out to be U fc =28 Hz, 62 Hz, and 91 Hz, respectively, for the three lowest flexural natural frequencies. The numerically calculated frequencies may be written as f c ±U fc .

The values obtained by FEM for the three lowest flexural frequencies of the aluminium plate are 9019 Hz, 17427 Hz, and 25496 Hz, respectively, which differ from the Ritz calculated values by less than 0.07 %.

The procedure for generating and detecting the vibration of the sample is described in previous work [START_REF] Nieves | Natural frequencies and mode shapes of flexural vibration of plates: laser-interferometry detection and solutions by Ritz's method[END_REF]. The sample is placed vertically, supported on two small rubber blocks, so that it can vibrate almost freely. The two blocks are located at approximately nodal position for the mainly excitable mode, the lowest bending SS mode. A small steel sphere measuring 3 mm in diameter is used to excite vibration of the sample by applying a brief impact perpendicular to the plate. The duration of the impact is estimated to be 10 -5 s, therefore the maximum appreciable frequency is in the order of 100 kHz. This type of excitation allows the sample to oscillate freely in its natural modes, since following the impact, no additional appreciable forces act upon the sample.