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Abstract

This paper is devoted to micromechanical modeling of isotropic damage in brittle materials. The damaged
materials will be considered as heterogeneous media composed of solid matrix weakened by isotropically distributed
microcracks. The original contribution of the present work is to provide a proper micromechanical thermodynamic
formulation for damage-friction modeling in brittle materials with the help of Eshelby’s solution to matrix-inclusion
problems. The elastic and plastic strain energy involving unilateral effects will be fully determined. The condition
of microcrack opening-closure transition will be determined in both strain-based and stress-based forms. The
effect of spatial distribution of microcracks will also be taken into account. Further, the damage evolution law is
formulated in a sound thermodynamic framework and inherently coupled with frictional sliding. As a first phase
of validation, the proposed micromechanical model is finally applied to reproduce basic mechanical responses of
ordinary concrete in compression tests.

Key words: Homogenization; isotropic damage; friction; unilateral effects; thermodynamics; concrete.

1. Introduction

A proper description of inelastic behavior of cracked solids is essential for failure process modeling
and stability analysis in many engineering applications. The present work is mainly devoted to one class
of brittle geomaterials such as concrete and rocks. In such materials, the inelastic behavior is generally
related to multiple mechanisms at different scales, such as void expansion or compaction, nucleation and
propagation of microcracks, decohesion of matrix-aggregates interfaces, frictional sliding along weakness
planes, phase transformation, and physical - chemical degradation. However, for a large range of stresses,
damage due to nucleation and propagation of microcracks is considered as a key mechanism of inelastic
deformation and failure process in such materials. Further, geomaterials may be subjected to both tensile
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and compressive stresses and microcracks can be in open or closed states ; there are strong unilateral effects
on macroscopic responses. In the open state of microcracks, the inelastic deformation is directly related
to displacement discontinuity which is characterized by normal opening and tangential shearing between
two faces of microcracks. In the closed state, the inelastic deformation is generated by frictional sliding
along crack faces. Moreover, the frictional sliding and microcrack growth leading to damage evolution are
inherently coupled each other during irreversible processes involving the dissipation of energy and the
evolution of microstructure (Wong, 1982; Fredrich et al., 1989).

In the past three decades, a number of macroscopic and phenomenological models have been developed
for modeling coupled plastic deformation and induced damage in various materials, for instance Dragon
and Mroz (1979), Ju (1989), Hayakawa and Murakami (1997), Shao (1998), Chiarelli et al. (2003), Shao
et al. (2006) and others. Most of such models have been formulated within the framework of irreversible
thermodynamics. It is generally assumed that the total free energy, used as the thermodynamic poten-
tial and expressed as a function of internal variables (plastic strain, damage variable, plastic hardening
variable, etc...), can be decomposed into an elastic part and a plastic part, commonly termed as locked
plastic work. Further, in view of some difficulties in mathematical determination, the locked plastic work
is usually taken as a function of scalar-valued plastic hardening variable and damage variable. However,
this assumption has never been theoretically and experimentally justified. Moreover, the mathematical
description becomes quickly complex when it is needed to incorporate the so-called unilateral effects due
to crack closure and interactions between microcracks. In order to overcome these shortcomings often re-
vealed in classical phenomenological models, micromechanical damage models, mainly based on fracture
mechanics and linear homogenization techniques, have been developed in parallel, for instance Andrieux
et al. (1986), Gambarotta and Lagomarsino (1993), Krajcinovic (1996), Pensee et al. (2002), Zhu et al.
(2008a,b). By taking into account the coupling between damage evolution and friction sliding, these mo-
dels provide a better description of physical mechanisms at microscopic scale and their consequences on
macroscopic responses, for instance, material softening due to localization and coalescence of microcracks,
hysterestic phenomenon due to frictional sliding in cyclic loading, volumetric dilatancy related to aspe-
rity of crack faces, unilateral effects related to crack closure and irreversible strain after unloading, etc.
However, most existing micromechanical models are limited to the analysis of solid matrix weakened by
one single family of parallel microcracks and the case of interacting multi-families of microcracks is still a
difficult task, especially when unilateral effects are involved simultaneously. Further, the basic concepts of
linear fracture mechanics are generally used as the theoretical background without developing sound and
rigorous up-scaling methods. Concerning the description of local frictional sliding along microcracks, most
existing models do not take into account dilatancy-induced hardening effects due to passive crack opening
during frictional sliding along closed rough microcracks. Finally, the local material softening related to
the deterioration of internal friction and material cohesion has been usually neglected.

In the present work, a micromechanical model will be formulated by using sound homogenization
methods and by taking into account the various difficult features mentioned above. Based on the recent
works (Zhu et al., 2008a) on micromechanical modeling of anisotropic damage in brittle materials, the main
emphasis of the present work is to develop a basic background for micromechanics-based thermodynamic
formulation for the coupling between isotropic damage with unilateral effects and dissipative frictional
sliding along microcracks. For the sake of clarity, we start by the simple case of unilateral damage
evolution without friction sliding ; the classical linear homogenization schemes (the dilute scheme (Eshelby,
1957), the Mori-Tanaka scheme (Mori and Tanaka, 1973) and the Ponte-Castaneda and Willis’ estimate
(Ponte-Castaneda and Willis, 1995)) will be adapted. The basic model is then logically extended by
coupling the two dissipative mechanisms, i.e. damage evolution and friction sliding, for the case of closed
microcracks. Compared with existing studies on this topic, the micromechanical model proposed here has
the following specific features : i) development of a sound micromechanical basis via Eshelby’s solution-
based homogenization method, with the consideration of spacial distribution of microcracks ; ii) complete
determination of the elastic and plastic strain energy involving unilateral effects ; iii) determination of
crack opening-closure transition condition in both strain-based and stress-based forms. It is also shown
that the number of parameters in such micromechanical model is significantly reduced with respect to
phenomenological ones.

Throughout the paper, the following notations on tensorial products of any second-order tensors A and
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B will be used : (A⊗B)ijkl = AijBkl. The tensor product of two vectors a and b is denoted (a⊗b)ij = aibj

and its symmetric part (a
s⊗ b)ij = 1

2 (aibj + ajbi). With the second rank identity tensor δ, the usually
used fourth order isotropic tensors I and J are expressed in components form as Iijkl = 1

2 (δikδjl + δilδjk)
and Jijkl = 1

3δijδkl, respectively. The deviatoric operator K is then obtained by K = I − J.

2. General principles of upscaling method in cracked materials

Consider the representative volume element (r.v.e.), occupying a domain Ω and having a boundary ∂Ω,
as a matrix-inclusion system, composed of the solid matrix with the elasticity tensor Cs, assumed to be
isotropic, and N phases of inclusions with the stiffness tensor Cc,r,r = 1, . . . , N , as shown in Fig.1a. The
local mechanical behavior in Ω is assumed to be linear elastic : σ(x) = C(x) : ε(x) (∀ x ∈ Ω) with σ(x)
and ε(x) as the local stress and strain fields, respectively. By making use of the superposition principle
and taking the average of the local strain over Ω, the general effective (homogenized) elasticity tensor is
derived (Zaoui, 2002; Dormieux et al., 2006; Zhu et al., 2008a) :

Chom = Cs +
N∑

r=1

ϕr(Cc,r − Cs) : Ac,r (1)

where ϕr is the volume fraction representing the concentration of the rth inclusion family. Ac,r is the
averaged strain concentration tensor relating in a linear way the local strain ε to the macroscopic uniform
strain E on ∂Ω, i.e. ε = Ac : E.
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Fig. 1. a) R.v.e. of cracked solids ; b) Schematic representation of a penny-shaped crack with aspect ratio ε = c/a

The determination of homogenized elasticity tensor Chom consists finally in evaluating the fourth
order concentration tensor Ac,r for each phase. To this end, one can use the basic Eshelby’s solution to
the matrix-inclusion problem (Eshelby, 1957). For many engineering materials, it is useful to take into
account both the influences of the shape of inclusions and those of their spatial distribution. The former
is described by the fourth order Hill’s tensor Pr

ε which is linked to the Eshelby tensor by Sε = Pε : Cs,
while for the latter, another fourth order tensor Pd has been introduced (Ponte-Castaneda and Willis,
1995). For example, in the case of a spherical distribution of inclusions, Pd takes the form :

Pd =
α1

3ks
J +

α2

2μs
K; with α1 =

3ks

3ks + 4μs
; α2 =

6(ks + 2μs)
5(3ks + 4μs)

(2)

where ks and μs denote respectively the bulk modulus and shear modulus of the solid matrix with Cs =
3ksJ + 2μsK. The effective (homogenized) stiffness tensor for all the three considered homogenization
schemes can be expressed in the following general form :

Chom = Cs − (
I + Cd : Pd

)−1
: Cd (3)

with

Cd =
N∑

r=1

ϕr(Cs − Cc,r) : [I − Sr
ε : (I − Ss : Cc,r)]−1 (4)

The Mori-Tanaka estimate is obtained by setting Pd = Pε for all families, equivalent to set α1 = α2 = 1
in (2) whereas by taking Pd = 0, correspondingly, α1 = α2 = 0, (3) reduces to the dilute homogenization
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scheme : Chom = Cs − Cd implying that Cd can be interpreted as the modification by microcracks of
dilute distribution to the matrix stiffness tensor Cs.

2.1. Application to cracked media

Let’s now consider cracked materials. A family of penny-shaped microcracks with a same normal can
be approximated as flat ellipsoids characterized by its unit normal vector (orientation) n and the aspect
ratio c

a , noted ε, with a being the average radius of cracks and c the half-length of the small axis, as
shown in Fig.1b. It is then possible to express mathematically the volume fraction ϕr of the rth family
of microcracks as follows :

ϕr =
4
3
πa2

rcrNr =
4
3
πεωr (5)

where Nr denotes the crack density (number of cracks per unit volume) of the rth family, and ωr = Nra
3
r

is the damage parameter of microcracks, initially introduced by Budiansky and O’Connel (1976) and
widely used as an internal variable in micromechanical models. For open cracks, the elasticity tensor Cc

is taken as Cc = 0 by considering the cancellation of the stress on the crack faces. For closed frictionless
planar cracks, it is shown in Appendix(A) that such cracks can be modeled as a fictitious material with
the elasticity tensor Cc = κn ⊗ n ⊗ n ⊗ n, reflecting the complete recovery of the elastic stiffness in the
normal direction, in which κ is positively definite. 1 By the use of discrete damage parameters, the fourth
order tensor Cω in (4) is rewritten as :

Cω =
N∑

r=1

ωrTr (6)

with Tr = 4
3πε(Cs − Cc,r) : [I − Sr

ε : (I − Ss : Cc,r)]−1. In the case of penny-shaped microcracks, the non
vanishing components of the Eshelby tensor Sε are given in Mura (1987) and Nemat-Nasser and Hori
(1993), and the expression in the Walpole’s base is provided in Zhu et al. (2008a). Under the assumption
of small aspect ratio (ε � 1), Tr reads for open cracks

Tr =
4
3
πCs : lim

ε→0
ε(I − Sr

ε)
−1, (7)

and for closed cracks the expression Tr =
4
3
π(Cs − Cc,r) : lim

ε→0
ε [I − Sr

ε : (I − Ss : Cc,r)]−1 is proved to be
equivalent to the form :

Tr =
4
3
πCs : lim

ε→0
ε(I − Sr

ε : E4)−1. (8)

with E4 given in Appendix(A).
Since we are here interested in isotropic case, for both open and closed state of microcracks, the spatial

damage distribution is then assumed to be uniform in the representative volume Ω. This means that the
discrete orientation-dependent damage variable ωr is identical for all families. Therefore, by removing
the superscript, we will take ω as the global damage variable for all crack families. Under this isotropic
simplification and by making integration over the surface of a semi-sphere, we obtain the isotropic version
of the homogenized (effective) stiffness tensor Chom for cracked solids :

Chom = 3khomJ + 2μhomK (9)

where khom and μhom are the effective bulk modulus and shear modulus, respectively. In order to describe
unilateral effects due to cracks closure and then distinguish the elastic moduli between the open and closed

1 Noticing that in the Walpole’s base J =
(

2
3
, 1
3
, 0, 0, 1

3
, 1
3

)
, the special choice Cc = 3ksJ by Deude et al. (2002), although

lack of theoretic support, gives the same result in determination of the effective stiffness tensor.

4



 

states,we introduce the following different superscripts for the elastic moduli, i.e. khom,o and μhom,o for
the open cracks and ; khom,c and μhom,c for the closed ones, which are given as :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μhom,o = μs

(
1 − η2ω

1 + η2α2ω

)
, khom,o = ks

(
1 − η1ω

1 + η1α1ω

)

μhom,c = μs

(
1 − η2ω

χ + η2α2ω

)
, khom,c = ks

(10)

with η1 = 16(1−(νs)2)
9(1−2νs) , η2 = 32(1−νs)(5−νs)

45(2−νs) and χ = 5−νs

3 .

2.2. Elastic damage formulation

This section focuses on the constitutive formulation of damage model in the thermodynamic framework.
The assumption of small strain and isothermal process is adopted in the present work. Generally, the
formulation of damage model consists of the following three steps : i) choice of suitable damage variable(s)
for the description of considered dissipative process ; ii) determination of strain free energy from which
it is derived the state laws and conjugated thermodynamic forces ; and iii) finally, the choice of damage
criterion for determining damage evolution. In the previous section, we have defined a scalar-valued global
parameter ω as the internal damage variable and determined the effective elastic tensor via a standard
homogenization procedure for cracked solids. The strain energy associated with the homogenized elastic
tensor Chom, noted W (E, ω), can be expressed as

W (E, ω) =
1
2
E : Chom : E =

1
2
khom(trE)2 + μhomtr(E′.E′) (11)

where E′ is the deviatoric part of the macroscopic strain tensor, E′ = K : E. The macroscopic stress-strain
relations are obtained by derivation of W (E, ω) with respect to the total strain E

Σ =
∂W

∂E
(E, d) = Chom : E (12)

Similarly, the thermodynamic force associated with the damage variable ω is then obtained :

Fω = −∂W

∂ω
(E, ω) = −1

2
∂khom

∂ω
(trE)2 − ∂μhom

∂ω
tr(E′.E′) (13)

with

∂khom

∂ω
= − η1

(1 + η1α1ω)2
ks,

∂μhom

∂ω
= − η2

(1 + η2α2ω)2
μs (14)

for open cracks, and

∂khom

∂ω
= 0,

∂μhom

∂ω
= − χη2

(χ + η2α2ω)2
μs (15)

for closed cracks.
When the damage criterion is based on the strain energy release rate, it should be a function of the

driving force Fω and the damage variable ω, such that f(Fω, ω) ≤ 0. As usually performed, the damage
evolution rate can be determined by using the standard normality rule :

ω̇ = λ̇ω ∂f

∂Fω
(16)

where λ̇ω is commonly termed as damage multiplier and calculated by using the consistency condition
ḟ = 0,
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ḟ =
∂f

∂ω
ω̇ +

∂f

∂E
: Ė =

∂f

∂ω

∂f

∂Fω
λ̇ω +

∂f

∂Fω

∂Fω

∂E
: Ė = 0 (17)

The insertion of (16) into (17) leads to the determination of λ̇ω

λ̇ω =
1

Hω

∂Fω

∂E
: Ė (18)

with the damage hardening modulus Hω = − ∂f
∂ω . The incremental form of the macroscopic stress-strain

relation in (12) is then expressed as Σ̇ = Chom
t : Ė with the fourth order symmetric tangent stiffness

tensor Chom
t :

Chom
t = Chom − 1

Hω

∂Fω

∂E
⊗ ∂Fω

∂E
(19)

3. Coupling between friction and unilateral damage

The inelastic deformation due to displacement discontinuities generated a family of penny-shaped
microcracks of normal n , noted εc, takes the following general form :

εc = βn ⊗ n + γ
s⊗ n (20)

where the vector γ is used to characterize the shear sliding along the crack planes whereas the scalar-
valued variable β denotes the average normal opening between crack lips ; both γ and β are related to
the local displacement discontinuity [u] by :

γ = N
∫
S+

[u].(δ − n ⊗ n)dS; β = N
∫
S+

[u].ndS (21)

The total macroscopic inelastic strain is obtained by the integration of εc over the surface S+ of a semi
unit sphere :

Ec =
1
Ω

∫
Ωc

εcdV =
1
4π

∫
S+

(βn ⊗ n + γ
s⊗ n)dS (22)

For the isotropic case and with the notation Γ = 1
4π

∫
S+ γ

s⊗ ndS, Ec can be decomposed into a mean
part and a deviatoric part :

Ec =
1
3
βδ + Γ, with β = trEc (23)

In Section 2.2, we have discussed the elastic damage formulation within the thermodynamic framework
for open and closed frictionless microcracks. Note that (12) can also be written as Σ = Cs : (E −Ec). It
is easy to obtain the explicit form of Ec as :

Ec =
(

η2ω

1 + η2α2ω
K +

η1ω

1 + η1α1ω
J

)
: E (24)

for open cracks, with

β =
η1ω

1 + η1α1ω
tr(E), Γ =

η2ω

1 + η2α2ω
K : E (25)

and

Ec = Γ =
η2ω

χ + η2α2ω
K : E (26)

for frictionless closed cracks with β = 0

6



 

Remark 1 : The condition of unilateral contact on the frictionless crack faces is commonly written as

[un] ≥ 0; σn ≤ 0; [un]σn = 0 (27)

where σn = σ : (n ⊗ n) is the normal component of the local stress tensor σ on the crack faces and
[un] = [u].n is the normal component of the displacement jump vector [u] (crack aperture vector). Note
that in the case of frictional closed cracks, the inelastic volumetric deformation described by the variable β
is mainly due to the rugosity of crack surfaces and passively induced by frictional sliding. Therefore, it is
convenient to adopt σn = 0 instead of [un] (equivalently β) as the indicator of opening-closure transition.

Remark 2 : For frictional closed cracks, the explicit relations (24) and (25) do not hold any more due to
energy dissipation in crack planes. In this case, an appropriate criterion for the study of frictional sliding
is required, for instance the Coulomb-type criterion. In addition, the friction-induced inelastic deformation
can be treated as plastic strain in the framework of the classic plasticity theory, and its evolution can be
determined by following the normality rule within the thermodynamic framework.

3.1. Macroscopic free energy based problem decomposition

In most micromechanics-based damage models for brittle materials, the macroscopic free energy was
generally composed of an elastic free energy purely caused by the solid matrix, and a blocked energy
by self-equilibrated stresses due to the existence of displacement discontinuities (Gambarotta and Lago-
marsino (1993), Pensee et al. (2002)), which implies that the solid matrix weakened by closed frictional
microcracks exhibits the same effective elastic property as that in intact state, i.e. Chom,c = Cs, and
the damage dissipative process is only related to the blocked term. In this way, the closed frictional mi-
crocracks appear as quasi-statically frozen (blocked). Note that such static hypothesis has been widely
adopted in micromechanical analysis for brittle materials (e.g. hard rocks and concrete).
According to the strain decomposition, i.e. E = Ee + Ec, the initial homogenization problem P can be
decomposed into two sub-problems, as shown in Fig.2.

n

E
pE - E pE

=
(1) (1),

P
( )aP ( )bP

(2) (2),

Fig. 2. Problem decomposition

In the sub-problem P (1), the stress field σ(1) being uniform and statically admissible with the macro-
scopic stress and the stress field in the sub-problem P (2) being self-equilibrated, i.e. < σ(2) >Ω= 0, one
obtains

Σ = σ(1) (28)

The strains in the two sub-problems obey to the homogenization principle over Ω and read

< ε(1) >Ω= E − Ec, < ε(2) >Ω= Ec (29)

In the sub-problem P (1), Σ is linked to the strain (E − Ec) via the stiffness tensor Cs :

Σ = Cs : (E − Ec) (30)

According to this decomposition, the global free energy W is defined as
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W =
1

2Ω

∫
Ω

ε(1)(x) : Cs(x) : ε(1)(x)dV +
1

2Ω

∫
Ωs

ε(2)(x) : Cs(x) : ε(2)(x)dV (31)

The first term corresponds to the free energy in the sub-problem P (1) whereas the second one, noted
W (2), is the contribution of the self-equilibrated stress field in the solid matrix σ(2)(= Cs : ε(2)) , which is
due to the displacement discontinuities by microcracks. By making use of the self-equilibrating property,
i.e. < σ(2) >Ω= 0, it is proved that the energy W (2) can be rewritten as :

W (2) =
1

2Ω

∫
Ωs

ε(2)(x) : Cs : ε(2)(x)dV = − 1
2Ω

∫
Ωc

ε(2)(x) : Cs : ε(2)(x)dV (32)

Under the isotropic assumption of the local stress field σ(2) on cracks faces for all families and by using
(30), the total strain energy W takes finally the form :

W =
1
2
(E − Ec) : Cs : (E − Ec) − 1

2
σ(2) : Ec (33)

For complete determination of the total free energy W , it is necessary to establish the relation between
σ(2) and Ec. To this end, we adapt the problem decomposition procedure used in Barthelemy et al.
(2003) (see also Zhu et al. (2008a)) for the case that the solid matrix is weakened by one unique family
of penny-shaped microcracks.

By applying the formulation procedure proposed in Zhu et al. (2008a) to the sub-problem P (2), i.e.
taking E = Ec and correspondingly Σ = 0, we obtain the following relation

Ec = −(I − Ac)−1 : Ac : Ss : σ(2) (34)

where Ac is termed as the global strain concentration tensor relating the inelastic strain Ec to the
macroscopic strain E as defined in (24)

Ac =
η2ω

1 + η2α2ω
K +

η1ω

1 + η1α1ω
J (35)

The relation (34) can be also written in its inverted form :

σ(2) = −Cb : Ec (36)

in which the explicit form of Cb = [(I − Ac)−1 : Ac : Ss]−1 reads :

Cb = 3kbJ + 2μbK (37)

with the moduli kb = 1+η1(α1−1)ω
η1ω ks and μb = 1+η2(α2−1)ω

η2ω μs. Insertion of (36) into (33) leads finally to
the total free energy W :

W =
1
2
(E − Ec) : Cs : (E − Ec) +

1
2
Ec : Cb : Ec (38)

It is seen that the total free energy W is the sum of two terms, one representing to the elastic free energy
of the solid matrix and another one, 1

2Ec : Cb : Ec, interpreted as the locked energy induced by closed
frictional microcracks.
According to the superposition principle and the uniform character of the local stress field σ(1) in the
sub-problem P 1 as well as the self-equilibrium property of σ(2) in the sub-problem P 2, the local stress
field of the initial problem P , σ(= σ(1) + σ(2)) is expressed in the form :

σ = Σ− Cb : Ec (39)

For a set of microcracks of normal n, it is convenient to take the normal component of the local stress,
i.e. σn = σ : (n ⊗ n) as the indicator of the crack open/closed state. Under isotropic assumption, the
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global opening-closure transition condition P is then determined by making integration of the local one
over the surface of a unit sphere S2 :

P =
1
4π

∫
S2

σ : (n ⊗ n)dS =
1
3
σkk = 0. (40)

Substitution of (23) and (37) into the above equation leads to the macroscopic stress-based transition
condition

P(Σ) = Σm − kbβ = Σm − 1 + η1(α1 − 1)ω
η1ω

ksβ = 0, (41)

in which Σm = 1
3Σkk is the mean part of the macroscopic stress tensor, and accordingly the macroscopic

strain-based condition reads

P(E) = Ekk − ks + kb

ks
β = Ekk − 1 + η1α1ω

η1ω
β = 0. (42)

3.2. Friction criterion and evolution law for closed cracks

According to the second law of thermodynamics, the Clausius-Duhem inequality reads

Σ : Ė − Ẇ = (Σ − Cb : Ec) : Ėc − ∂W

∂ω
ω̇ ≥ 0 (43)

The thermodynamic force associated with the friction-induced plastic strain, noted σc, is then given by

σc = − ∂W

∂Ec = Σ − Cb : Ec (44)

Comparison between (39) and (44) shows that σc is exactly the local stress in the representative volume
and according to the classic plasticity theory, plays the role of the driving force for frictional sliding on
microcracks faces. Hence, the friction criterion should be function of appropriate invariants of σc. For
this, the fourth ordre isotropic tensors J and K are applied to σc in order to extract its mean part and
deviatoric part, noted pc and Sc , respectively :

σc = J : σc + K : σc =
1
3
(δ : σc)δ + K : σc (45)

The combination of (30), 37) and (45) provides the mean part pc and deviatoric part Sc of the local stress
σc :

pc =
1
3
δ : σc = Σm − kbβ; Sc = K : σc = S − 2μbΓ (46)

Recall that Σm and S are the commonly-used mean part and deviatoric part of the macroscopic stress
Σ, respectively. Based on this decomposition and by using the incremental form of (23), the inequality
(43) is casted into the form :

Σ : Ė − Ẇ = pcβ̇ + Sc : Γ̇− ∂W

∂ω
ω̇ ≥ 0 (47)

from which is derived pc and Sc by differentiation of the free energy W respectively with respect to the
variables β and Γ :

pc = −∂W

∂β
; Sc = −∂W

∂Γ
(48)

Based on these analysis, we will discuss two typical friction criteria, the Von Mises criterion and the
generalized Coulomb friction criterion, in which use is made of the norm of the deviatoric stress Sc
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‖Sc‖ =
√

Sc : Sc =
√

σc : K : σc (49)

and the following friction-induced cumulated parameter γc is introduced as the hardening variable :

γc =
∫

γ̇c, γ̇c =
√

Ė
c

: K : Ė
c

=
√

Γ̇ : Γ̇ (50)

For simplicity, only the associated friction rules are discussed here.

3.2.1. Generalized Coulomb friction criterion
The generalized Coulomb type friction criterion is expressed as a linear function of the deviatoric stress

Sc and the mean stress pc :

g(σc, γc) = ‖Sc‖ + cfpc =
∥∥S − 2μbΓ

∥∥ + cf (Σm − kbβ) ≤ 0 (51)

where cf denotes the friction coefficient. The evolution of the strain Ec is determined by

Ė
c

= λ̇f ∂g(Sc, pc)
∂σc

= λ̇f

(
V +

1
3
cfδ

)
(52)

Correspondingly, the evolution rates of the components Γ and β rae given by

Γ̇ = λ̇fV ; β̇ = cf λ̇f (53)

The increment of the hardening variable γc is determined by

γ̇c =
√

Γ̇ : Γ̇ = λ̇f (54)

Inversely, we have Γ̇ = γ̇cV ; β̇ = cf γ̇c. In this way, the scalar hardening variable γc is inherently
involved in the above criterion.

3.2.2. Yield criterion of Von Mises type
Mathematically, the Von Mises type yield criterion is commonly expressed as :

g(Sc, γc) = ‖Sc‖ − κc =
∥∥S − 2μbΓ

∥∥ − κc(γc) ≤ 0 (55)

The evolution rate of the inelastic strain Ec is then determined by

Ė
c

= λ̇f ∂g(Sc)
∂σc

= λ̇fV (56)

where the factor λ̇f is referred to as the non-negative multiplier and generally determined by the consis-
tency condition ġ = 0. Comparison of (56) with the incremental form of (23),

Ė
c

=
1
3
β̇δ + Γ̇, (57)

allows the evolution rate of the variables Γ and β to be derived for the Von Mises-type yield criterion

Γ̇ = λ̇fV ; β̇ = 0 (58)

Note that the criterion (55) does not take into account influences of confining pressures (or mean stress)
on plastic deformation, which, however, is essential for geomaterials under compressive loading. Further,
for an associated flow rule, this model is not able to predict inelastic volumetric deformation.
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3.2.3. Verification of continuities at opening-closure transition
From physical point of view, when any opening-closure transition of microcracks occurs, the stresses and

free energy need to remain continuous although the material stiffness may suffer a strong discontinuity
(jump). Therefore, a proper friction criterion should take into account this requirement of continuity.
We first check the Coulomb friction criterion (51). When the opening-closure transition condition (41)
(equivalently (42)) is verified, one has

Σm − kbβ = 0 (59)

and

Ekk − 1 + η1α1ω

η1ω
β = 0 (60)

from (41) and 42), respectively.
Given ‖Sc‖ ≥ 0, the insertion of (59) into the Coulomb criterion (51) leads to S − 2μbΓ = 0, which

can be given in strain-based form by

E′ − 1 + η2α2ω

η2ω
Γ = 0 (61)

We then derive from (60) and (61) the relations

β =
η1ω

1 + η1α1ω
Ekk, Γ =

η2ω

1 + η2α2ω
E′ (62)

Their insertion into (30) and (38) leads to the expressions of the macroscopic stress and the total free
energy (11) in open state of microcracks, implying the simultaneous satisfaction of the continuity of
stresses and free energy at the opening-closure transition.

However, according to the Von Mises criterion (55) which is independent of the local mean stress pc,
when the transition condition is verified, we have S − 2μbΓ 
= 0 for the general case that κc(γc) 
= 0.
Consequently, the continuities of stresses and free energy are generally not satisfied for this criterion.

3.3. Coupling between damage and friction

Based on the strain free energy (38), the thermodynamic force associated with the internal damage
variable ω, noted Fω, is derived by standard differentiation of the macroscopic free energy W :

Fω = −∂W

∂ω
= −1

2
Ec :

∂Cb

∂ω
: Ec (63)

or in explicit form

Fω =
1

2η1ω2
ksβ2 +

1
η2ω2

μsΓ : Γ (64)

It is seen that Fω is independent of homogenization scheme and that damage propagation is totally
caused by frictional sliding on cracks faces via the cumulation of the variables β et Γ. When a strain
energy release rate based damage criterion is used, the criterion f(Ec, ω) ≤ 0 should be function of the
friction-induced inelastic strain Ec and the damage variable ω. Note that the moduli kb and μb in the
fourth order tensor Cb are also function of the damage variable. In fact, the Coulomb criterion (51) can
also be expressed in strain-based form :

g(E, β,Γ, γc) = 2μs

∥∥∥∥E′ − 1 + η2α2ω

η2ω
Γ

∥∥∥∥ + cfks

(
trE − 1 + η1α1ω

η1ω
β

)
≤ 0 (65)

When damage propagation and frictional sliding take place simultaneously, these two dissipative me-
chanisms will interfere each other in a strong manner in the sense of the determination of their evolution.
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In this case, one obtains the following system to be solved, which is constructed by the consistency
conditions for damage ḟ = 0 and for friction, ġ = 0 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ḟ =
∂f

∂ω
ω̇ +

∂f

∂β
β̇ +

∂f

∂Γ
: Γ̇ = 0

ġ =
∂g

∂ω
ω̇ +

∂g

∂β
β̇ +

∂g

∂Γ
: Γ̇ +

∂g

∂E
: Ė = 0

(66)

Note also that Ė
c

= λ̇f ∂g
∂σc and ω̇ = λ̇ω ∂f

F ω . It follows the expression of the damage and plasticity
multipliers :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ̇f =
1

Hfw

∂g

∂E
: Ė

λ̇ω = −
∂f
∂β cf + ∂f

∂Γ : V

∂f
∂d Hfw

∂g

∂E
: Ė

(67)

with

Hfw =
[

∂g

∂ω

(
∂f

∂β
cf +

∂f

∂Γ
: V

)
− ∂f

∂ω

(
∂g

∂β
cf +

∂g

∂Γ
: V

)] /∂f

∂ω
(68)

Accordingly, the tangential operator Chom
t linking the macroscopic stress increment to the macroscopic

strain increment, i.e. Σ̇ = Chom
t : Ė, is now given as

Chom
t = Cs − 1

Hfw

∂g

∂E
⊗ ∂g

∂E
(69)

with ∂g
∂E = 2μsV + cfksδ. Chom

t possesses the major and minor symmetries since we have adopt an
associated flow rule.

4. First validations

This section is devoted to show the performence of the proposed model in predicting main features
of mechanical behaviors for quasi-brittle materials. A frist phase of validation is presented. Numerical
simulations of a few typical laboratory tests on concrete materials are performed with the proposed model
and compared with experimental data. We adopt here the Coulomb-type friction criterion defined in (51)
or (65) and an associated flow rule for the evolution of inelastic strains Ec. In addition, the following
damage criterion is proposed :

f(Fω, ω) = Fω − κ0 − 1
c1

tan
(

π

2
ω − ω0

ωc − ω0

)
= 0 (70)

where κ0 represents the initial damage threshold. For the sake of simplicity, its value is arbitrarily fixed
at κ0 = 0 ; ω0 and ωc are initial and critical values of the damage variable, respectively ; the term
1
c1

tan
(

π
2

ω−ω0
ωc−ω0

)
characterizes damage hardening effect controlled by the parameter c1.

In the present numerical simulations, ω0 is taken as a small positive value ω0 = 0.001 due to the lack
of experimental data on the initial distribution of microcracks. Further, in compressive conditions, the
dissipation mechanism is essentially related to frictional sliding along crack faces and the induced damage
mainly affects the macroscopic shear modulus. It is thus reasonable to link the parameter ωc to the
degradation of macroscopic shear modulus μhom in (10). We derive from the condition μhom ≥ 0 :

ω ≤ 1
η2(1 − α2)

(71)
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which provides the critical value ωc = 1
η2(1−α2)

. Consistently, the inequality (71) also leads to the non-
negative property of the modulus μb implying a continuously kinematic hardening of the yield function.
In order to illustrate the range of ωc for different homogenization schemes (the dilute scheme, the Mori-
Tanaka scheme (M-T) and the Ponte-castaneda and Willis’ estimate (PC-W)), we depict the evolution
of the ratio μhom

μs with damage variable ω, for each scheme and for three values of Poisson’s ratio of the
solid matrix νs = 0.15, νs = 0.20 and νs = 0.25, as shown in Fig.3. The results show that the critical
values of damage for the considered homogenization schemes are very different : this value is lower than
1.0 for the dilute scheme while higher than 1.0 for the scheme PC-W; as for the Mori-Tanaka estimate,
there is no bound. Furthermore, it seems that the influence of Poisson’s ratio on critical damage value is
not significant.

Damage ω

μ
h

o
m

/μ
s

Dilute PC-W

M-T

νs = 0.15
νs = 0.20
νs = 0.25

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Relative evolution with damage of the effective shear modulus for three homogenization schemes

4.1. Numerical predictions for monotonic loading

The proposed coupled damage-friction model is now applied to simulate two compression tests reported
by Van Mier (1984) and performed on concrete materials under uniaxial loading and under plane-strain
condition, respectively. Based on the discussions above, the proposed model contains four parameters :
two elastic constants for initial (undamaged) state of material, Es and νs, which may be determined from
the linear part of stress-strain curves before the initiation of damage evolution, the friction coefficient cf

involved in the Coulomb friction criterion as well as the damage parameter c1 controlling the material
softening. These two parameters have been calibrated by means of a simple compression test for the
homogenization scheme proposed by the Ponte-castaneda and Willis (Ponte-Castaneda and Willis, 1995),
due to the fact that among the considered homogenization schemes, only the PC-W one has the ability
of properly taking into account the influences of interactions between microcracks. The parameter values
used for numerical simulations are : Es = 35000MPa, νs = 0.2, cf = 0.3 and c1 = 10.0/J.m−2.
In Fig.4, mechanical responses in uniaxial compression predicted by three homogenization schemes are
compared. It is shown that with the proposed damage criterion and friction condition, the dilute scheme
and the PC-W scheme both lead to a material softening behavior. As commonly observed, the former is
more brittle (sharp decrease of stress) than the latter. It seems that the interaction between microcracks
induces more ductile response of material. Contrarily to these two schemes, the Mori-Tanaka estimate
leads to a fully hardening behavior. In addition, the evolutions of the global damage value are provided
in Fig.5, as functions of axial strain.

13



 

A
xi

al
st

re
ss

Σ
1
1

[M
P
a]

Strain E11[%]

Dilute
PC-W
M-T

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

80

Fig. 4. Comparaison on predictions of mechanical responses for uniaixal compression test

G
lo

ba
l
da

m
ag

e
ω

Strain E11[%]

Dilute
PC-W
M-T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fig. 5. Comparison on damage evolutions for uniaixal compression test

4.2. Numerical predictions for cyclic triaxial compression

The mechanical response and damage evolution predicted by the PC-W scheme for the cyclic loading
path are illustrated in Fig. 6 and Fig. 7, respectively. The same values of parameters as those for the
above monotonic tests have been used. From a qualitative point of view, we can observe three phases of
response as in monotonous loading. Irreversible strains and hysteretic loops during loading - unloading -
reloading paths are observed as a consequence of the frictional mechanism. Further, open loops are found
at the end of reloading path ; this is in agreement with the evolution of the damage variable ω associated
to the volumetric dilation.

4.3. Numerical simulations for concrete tests

Fig.8 and Fig.9 show comparisons between experimental results and numerical predictions respecti-
vely for uniaxial compression test and for compression test under plane-strain condition with kinematic
constraint E22 = 0. One can see that there is a good agreement for the axial stress-strain curves while
the lateral strains are underestimated for both tests. This difference can be interpreted by the fact we
have adopted here an associated flow rule for the determination of frictional sliding-induced inelastic
deformation in the normal direction of cracks. The use of non-associated flow rule should improve this
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5. Conclusions

By applying the standard Eshelby-type homogenization procedure to the matrix - cracks system, an
original homogenization-based formulation has been proposed for modelling coupled unilateral damage
and friction-induced inelastic deformation in cracked brittle materials. Under isotropic simplification,
constitutive equations for the damaged materials are established respectively for the open, closed fric-
tionless and closed frictional cases. Within the thermodynamic framework, we have discussed some typical
frictional yield conditions and treated in detail the coupling between damage and friction. It is concluded
that the Von-Mises criterion can not satisfy the continuity conditions while the Coulomb criterion does.
As examples of first phase validation, the proposed model was applied to simulate typical compression
tests on concrete materials. The proposed model is able to reproduce the main features of mechanical
behaviors observed in such class of brittle materials. Deeper validations will be necessary in order to more
precisely determine the validity domains of the proposed model. Appropriate laboratory investigations,
both on microscopic and microscopic scales will be also essential for the proper determination of model’s
parameters.

Annexe A. Determination of Cc for closed frictionless microcracks

Materials composed of an isotropic solid matrix and a family of parallel cracks exhibit transversely
isotropic symmetry. The Walpole’s tensorial algebra (Walpole, 1981) is proved particularly useful to
carry out inner product of transversely isotropic tensors or tensor inversion, which is composed of a set
of six direction-related fourth-order tensors Er, r = 1, . . . , 6. With notations a = n⊗n and b = δ−n⊗n,
the components Er

ijkl are then given as
⎧⎪⎪⎨
⎪⎪⎩

E1
ijkl =

1
2
bijbkl, E2

ijkl =
1
2
aijakl, E3

ijkl =
1
2
(bikbjl + bilbjk − bijbkl),

E4
ijkl =

1
2
(aikbjl + ailbjk + ajkbil + ajlbik), E5

ijkl = aijbkl, E6
ijkl = bijakl

(A.1)

From these identities, it is shown that any transversely isotropic (not necessary symmetric) fourth-order
tensor U can be expressed as a linear combination of these six elementary tensors Er, r = 1, . . . , 6 :

U = cE1 + dE2 + eE3 + fE4 + gE5 + hE6 (A.2)

which may be noted in the following symbolic form :
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U = (c, d, e, f, g, h) (A.3)

For the case that U possesses the diagonal symmetry, g = h, the coefficients are related to five independent
elastic moduli

c = 2k, d − 2g2/c = Ea, g/c = νa, e = 2μt, f = 2μa (A.4)

with k, μt, μa, Ea, νa, all positive definite, as the plane strain bulk modulus, the transverse shear modulus,
the axial shear modulus and the axial Young’s modulus and Poisson’s ratio, respectively.

When the solid matrix is weakened by one unique family of closed frictionless microcracks with the
unit normal vector n, which corresponds to the axis according to the specific penny-shaped geometry, the
normal stress is assumed to be continuous across the microcrack faces. At the transition (from open to
closed), the axial Young’s Modulus, noted E(n) = (n⊗n) : (Chom)−1 : (n⊗n) should return to its intact
value Es. Under the frictionless condition, the shear moduli μt et μa could be assumed to be unchange, i.e.
zero-valued. The elastic modulus for microcracks Cc which as commonly, possesses diagonal symmetry,
i.e. g = h, is then expressed in the Walpole’s base as follows :

Cc = (c, d, 0, 0, g, g) (A.5)

For the dilute scheme, the effective stiffness tensor Chom is given by

Chom = Cs − ϕ(Cs − Cc) :
[
I − Sε : (I − (Cs)−1 : Cc)

]−1
(A.6)

We recall that ϕ = 4
3πωε and that a family of cracks characterized by its unit normal leads to a transversal

isotropy in the material behavior. It is shown that there exist the following relations for the Eshelby tensor
Sε

Sε = (S1111 + S1122, S3333, S1111 − S1122, 2S1313, S3311, S1133) (A.7)

with the components given in Mura (1987) and Nemat-Nasser and Hori (1993).
As commonly, the determination of Chom first needs to calculate a limit, noted Q

Q = lim
ε→0

ε
[
I − Sε : (I − (Cs)−1 : Cc)

]−1
(A.8)

After some tensorial calculations, Q is rewritten in the form :

Q =
(

lim
ε→0

1 − a2

l
ε, lim

ε→0

1 − a1

l
ε, lim

ε→0

1
1 − a3

ε, lim
ε→0

1
1 − a4

ε, lim
ε→0

a5

l
ε, lim

ε→0

a6

l
ε

)
(A.9)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = (S1111 + S1122)
[
1 − 1

Es
((1 − νs)c − 2νsg)

]
− 2

Es
(g − νsc)S1133

a2 = S3333

[
1 − 1

Es
(d − 2νsg)

]
− 2

Es
((1 − νs)g − νsd)S3311

a3 = S1111 − S1122, a4 = 2S1313

a5 = S3311

[
1 − 1

Es
((1 − νs)c − 2νsg)

]
− 1

Es
(g − νsc)S3333

a6 = S1133

[
1 − 1

Es
(d − 2νsg)

]
− 1

Es
((1 − νs)g − νsd)(S1111 + S1122)

l = (1 − a1)(1 − a2) − 2a5a6

(A.10)

It is then proved that if and only if d > 0, Q is non zero and takes the expression :
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Q =
4
π

1 − νs

2 − νs
E4 (A.11)

Consequently, (3) reduces to the form

Chom = Cs :
(

I − 16
3

1 − νs

2 − νs
ωE4

)
(A.12)

Note that ω denotes the damage variable. The homogenized compliance tensor Shom is obtained by
inversing Chom

Shom =
[(

I − 16
3

1 − νs

2 − νs
ωE4

)]−1

: Ss, Ss = (Cs)−1 (A.13)

It is easily proved that Shom satisfies E(n) = Es.
As a conclusion, for the case of closed frictionless microcracks, we can take Cc = κn ⊗ n ⊗ n ⊗ n with

κ > 0 for modelling of mechanical behaviors.
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