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Abstract
The development of a quadratic programming formulation for the solution of layered elastic con-
tact problems in the presence of friction is presented in this paper. Conveyor belts, tyred wheels,
composite cylinders, and conrod bearings, are classical examples of systems which can be studied
using the efficient numerical methodology proposed here. In this type of mechanical assembly,
micro-slip between the mating surfaces often occurs and may eventually lead to system failure.
Accurately capturing the evolution of slip and stick areas using a computationally inexpensive
procedure (as an alternative to full finite element analysis) is therefore key to preventing these
failures and to improving the design of various engineering components.
The proposed approach is first tested and validated against classical marching-in-time solutions
for two-dimensional layered systems in the presence of both static and moving loads. Results are
then extended to demonstrate the feasibility of the technique to study systems with multiple slip
regions and to solve rolling contact problems of practical interest. Finally, the numerical method-
ology is successfully applied to the prediction of frictional creep of tyred cylinders. Experimental
corroboration has been obtained by testing tyred discs.
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1 Notation

Notation

2 Introduction

Components which are notionally in stationary contact, but subjected to cyclic or vibratory

loads often do not exhibit complete adhesion, and may be susceptible to some slip over at least

part of the contact [1]. This is likely to lead to degradation of the surfaces [2], but it may be

a transitory phenomenon; the coefficient of friction may gradually increase as surface modifi-

cation proceeds [3], or residual interfacial shearing tractions may develop, leading to frictional

shakedown [4]. On the other hand, slip may continue indefinitely. If it does, then, there are two

possible responses: (1) in each cycle the total net slip may be zero, so that there is no rigid

body movement , or ‘creep’, and the resulting behaviour is analogous to cyclic plasticity whilst

(2) in other cases there may be a net movement, and creep ensues, cf. ratchetting. It is very im-

portant to be able to determine into which class a given problem falls. This has led to detailed

investigations of the possibility of extending the elastic shakedown theorem to frictional shake-

down problems. One output of these studies is that, although Melan’s theorem may profitably

be used for frictional systems, it applies only to ‘uncoupled’ systems where the direct tractions

are unaffected by relative tangential displacement between the surfaces in contact [4].

In general, continuing slip may lead to system failure [5]. For example, engine connecting

rods suffer severe damage if the bushes slip with respect to the housing [6], and may exhibit

continuous rotation. Classic approaches to the design of these assemblies are based on macro-

scopic criteria, such as localised yielding. Also, interfacial micro-slip is not easily captured

using standard numerical design tools, especially if the loading history is complicated, and

where simultaneous slip may occur at different locations along the mating surfaces [7]. Finite

element or boundary element approaches may be able to provide accurate results, but they often

face limitations in terms of both computational time and solution convergence when applied to

the solution of complex partial slip contact problems under cyclic loading [8].

Turning, now, to shrink-fitted and/or layered systems, a semi-analytical procedure, normally
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referred to as the distributed dislocation technique, has been successfully used to analyse mi-

croslip in layered frictional contact problems [9-14]. The applicability of this methodology

has been recently extended by the authors to layered cylinders undergoing rolling contact [15].

The principal limitation is that, if the classical integral equation procedure is adopted, it is

extremely difficult to determine the locations of the stick/slip transition points systematically

and, if there are several such points, long-winded iterative schemes may be needed [8]. In the

approach advocated here, the advantages of the dislocation kernel (which maintains remote

boundary conditions) is retained but the problems of the integral equation are averted by for-

mulating the contact problem in terms of a ‘quadratic cost function’ to be minimised [21]. The

problem can therefore be solved using quadratic programming. Building on the capabilities

of linear programming to be applied to tackle contact problems (e.g. see Kalker [17] [18]),

this optimisation technique has been widely applied in mechanics to solve problems with both

linear or non-linear constraints. Its applicability to two and three dimensional elastic contact

problems has been demonstrated in the ’80s [19] [20]. Nowell and Dai [21] also used quadratic

programming to solve the fretting configuration. The technique is well established in other

fields of applied mechanics; for example, in the late ’60s, Maier had already demonstrated its

effectiveness in solving non-linear structural problems [22], elastic-perfectly plastic structures

[23] and problems involving creep [24]. Finally, quadratic programming has been applied in

combination either with finite element methods (FEM) [26] [27], or boundary element methods

(BEM) [25] to investigate problems related to fracture and contact mechanics.

In this paper we formulate, for the first time, the problem of a layered system, mounted on

a (rigid or elastic) substrate in the presence of friction and subjected to loading conditions giv-

ing rise to micro-slip or creep, using the distributed dislocation technique, within the quadratic

programming framework. We then demonstrate its use for the solution of rolling contact prob-

lems for layered systems. The development of an experimental technique to measure the extent

of creep in layered rolling contact problems is also presented. A preliminary comparison be-

tween numerical and experimental results is performed to confirm the validity of the proposed

numerical technique.
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3 Formulation

3.1 Stationary loads

Figure 1 shows schematically an elastic layer under transverse plane strain, pressed against a

substrate in the presence of friction and subjected to external normal and tangential loading.

This problem may be seen as a generalisation of the contact problem extensively discussed in

[15].

Figure 1

The coordinate origin is positioned at the interface between the layer and the substrate, and

the Coulomb-Amontons friction law is adopted so that the coefficient of friction is independent

of slip-velocity. The solution to the ‘bilateral’ problem (where coefficient of friction suffi-

ciently high to prevent all slip) is found first, and denoted by σbilxy (x), σbilyy (x) for shear and

direct tractions, respectively. Slip along the interface is subsequently introduced by distribut-

ing dislocations within the slip region(s), and the corrective solution denoted by σcorrxy (x) and

σcorryy (x) for shear and direct tractions, respectively. The total tractions are then given by:∙
σyy (x, 0)

σxy (x, 0)

¸
=

∙
σbilyy (x)

σbilxy (x)

¸
+

∙
σcorryy (x)

σcorrxy (x)

¸
, (1)

where the corrective terms are:∙
σcorryy (x)

σcorrxy (x)

¸
= ASM,DM

+∞Z
−∞

Bx (ξ)

∙
Gyy (x, ξ)

Gxy (x, ξ)

¸
dξ, (2)

A is the contact compliance, the subscripts SM and DM refer, respectively, to similar (E1 =

E2 and ν1 = ν2) and dissimilar (E1 6= E2 and/or ν1 6= ν2) material pairs, Bx (ξ) is the

dislocation density, and Gyy (x, ξ) and Gxy (x, ξ) are the influence functions associated with

the glide dislocations (see Appendix A). Separation between the layer and the substrate is not

considered.

The interface conditions are now defined. Where the frictional law is not violated, stick

occurs and this means that:

h (x) = 0 (3)

|σxy (x, 0)| ≤ −fσyy (x, 0) , (4)
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where h (x) is the the relative displacement between the bodies in contact defined by:

h (x) = ulayer (x)− usubstrate (x) (5)

and ulayer (x) and usubstrate (x) represent, respectively, the upper body and the lower body

surface tangential displacement. Where the friction law is violated, slip displacement takes

place and:

|σxy (x, 0)| = f |σyy (x, 0)| (6)

whilst the sign of the shear is dictated by the requirement that it opposes slip, so that:

sgn (σxy (x, 0)) = sgn
³
ḣ (x)

´
. (7)

Here, the sign of the relative slip and its first derivative in time coincide [11]:

sgn
³
ḣ (x)

´
= sgn (h (x)) (8)

so that the final expression for shear traction in the presence of slip is:

σxy (x, 0) = −fσyy (x, 0)
h (x)

|h (x)| . (9)

Lastly, uniqueness demands that:
+∞Z
−∞

Bx (ξ) dξ = 0 (10)

although, of course, the integrand is zero except in the slip regions.

The classic way of solving the problem requires guessing the location and extent of each

slip area present and iterating the solution until (10) is satisfied, but this can easily become very

cumbersome. The formulation developed below relies on the use of optimisation strategies to

avoid this.

If both sides of the equation for slip (9) are multiplied by h (x), we obtain:

σxy (x, 0)h (x) + fσyy (x, 0) |h (x)| = 0. (11)

It should be noted that this also applies where stick occurs. Thus, the above boundary condition

is valid along the whole interface, with no distinction made between stick and slip areas. If we

now integrate (11) along the entire interface, we can define the functional of our layered elastic
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problem, F̃ , as follows:

F̃ =

+∞Z
−∞

{− [σxy (x, 0)h (x) + fσyy (x, 0) |h (x)|]} dx (12)

The minus sign was added in front of the integrand as this makes it always positive. This

property can be easily proved, because

−σxy (x, 0)h (x)− fσyy (x, 0) |h (x)| ≥ − |σxy (x, 0)| |h (x)|− fσyy (x, 0) |h (x)| ≥ 0 (13)

where the first inequality becomes an equality if and only if slip vanishes or traction has the

same sign direction as slip, whilst the second inequality turns into an equality if and only if the

shear tractions are f times σyy (x, 0) or slip vanishes. Now, if the solution to the layer problem

is substituted in (12), the functional goes to zero. On the other hand, if any other combination

of pressure, tangential tractions and displacement is used, the value of the functional is strictly

positive. We conclude that the solution to the problem may be found by minimising the value

of the functional, taking into account the frictional law adopted together with the condition for

uniqueness of the elastic solution [17]. We now focus our attention on how the functional and

boundary conditions can be discretised.
3.1.1 Discretisation and Numerical Integration

The integral representing the functional is improper as the integration domain is unbounded.

However, the integration interval may be truncated as no slip is permitted as x goes to ±∞.

The interval of integration may therefore be reduced until it just includes all slip areas. In order

to compute the value of (12), we assume that traction and displacement fields are sampled at a

finite number of equally spaced points, indicated with the letter j, with j = 1..np. The distance

between the equally spaced points is indicated with the letter dsup. Thus, the integration in (12)

can be replaced by a summation and, consequently, the functional rewritten as follows:

F̃ = −
npX
j=1

£¡
σbilxy,j + σcorrxy,j

¢
hj + f

¡
σbilyy,j + σcorryy,j

¢
|hj|
¤
dsup. (14)

The presence of the absolute value of the relative displacement, h (x), complicates the for-

mulation. A similar problem was first faced and solved by Kalker [17] who proposed that the

absolute value could be replaced by the sum of two positive quantities, and the term within the

6

Highlight

Highlight

Highlight

Highlight



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

sign of absolute value by the difference between the same quantities. This transformation is

applied by replacing the displacement term, hj , and its absolute values, |hj|, as follows:

hj = h0j − h00j (15)

|hj| = h0j + h00j (16)

where h0j are h00j are positive quantities such that if hj > 0, hj = h0j and h00j = 0, whereas if hj
< 0, hj = −h00j and h0j = 0, and therefore the product h0jh00j is always zero. This constitutes

a set of complementary variables and they are the independent variables to be determined by

performing the minimisation of the functional (14) using algorithms conventionally employed

to solve Linear Complementarity Problems (LCP).

The final discretised form of the functional is

F̃ = −
npX
j=1

£¡
σbilxy,j + σcorrxy,j

¢ ¡
h0j − h00j

¢
+ f

¡
σbilyy,j + σcorryy,j

¢ ¡
h0j + h00j

¢¤
dsup. (17)

We now focus our attention on the corrective terms. The dislocation density is related to the

slip displacement by:

Bx (ξ) = −
dh (ξ)

dx
. (18)

The gradient of the slip displacement may be calculated using the finite difference method. The

position of a generic midpoint coordinate, k, where the dislocation density is sampled can be

expressed as follows:

xk =
xj
2
+

xj+1
2

(19)

and the discretised form of (18) is therefore

Bxk = −
hj+1 − hj
xj+1 − xj

=
hj − hj+1

dsup
. (20)

The integral in (2) is discretised by representing the dislocation density function using overlap-

ping triangles [31], which provide a piecewise linear approximation of its distribution. Figure

2 shows a typical element of distributed dislocations, located at xk.

Figure 2
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Thus, the corrective terms, σcorriy,j (i=x,y), evaluated at a generic location xj are:

∙
σcorryy,j

σcorrxy,j

¸
= ASM,DM

npX
k=1

3
2
xj+1−

xj
2Z

3
2
xj−

xj+1
2

Bxk (ξ, xk)

∙
Gyy (xj, ξ)

Gxy (xj, ξ)

¸
dξ. (21)

The formulation can be further simplified to obtain:∙
σcorryy,j

σcorrxy,j

¸
= ASM,DM

npX
k=1

Bxk

xkZ
3
2
xj−

xj+1
2

µ
1 +

xk
xj+1 − xj

¶ ∙
Gyy (xj, ξ)

Gxy (xj, ξ)

¸
dξ + (22)

+ASM,DM

npX
k=1

Bxk

3
2
xj+1−

xj
2Z

xk

µ
1− xk

xj+1 − xj

¶ ∙
Gyy (xi, ξ)

Gxy (xi, ξ)

¸
dξ,

where the only unknowns are the triangle heights, Bxk , and hence∙
σcorryy,j

σcorrxy,j

¸
= ASM,DM

npX
k=1

Bxk

∙
Fxyjk

Fyyjk

¸
, (23)

with Fxyjk and Fyyjk given by:

∙
Fxyjk

Fyyjk

¸
=

xkZ
3
2
xj−

xj+1
2

µ
1 +

xk
xj+1 − xj

¶ ∙
Gyy (xj, ξ)

Gxy (xj, ξ)

¸
dξ + (24)

+

3
2
xj+1−

xj
2Z

xk

µ
1− xk

xj+1 − xj

¶ ∙
Gyy (xj, ξ)

Gxy (xj, ξ)

¸
dξ.

Fxyjk and Fyyjk represent the influence functions of a dislocation triangle centred at xk and of

unit height, Bxk . These functions can be computed and stored at the outset as they depend only

on the density grid, xk.

The condition for the solution of the problem to be unique (10), can be expressed in its

discretised form as follows

dsup

npX
k=1

Bxk = 0. (25)

3.1.2 Quadratic Form of the Minimisation Problem

Now that all elements of the layered elastic problem have been discretised, the problem to be

8

Highlight

Highlight

Highlight



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

solved can be written as follows

F̃
min
= −

npX
j=1

£¡
σbilxy,j + σcorrxy,j

¢ ¡
h0j − h00j

¢
+ f

¡
σbilyy,j + σcorryy,j

¢ ¡
h0j + h00j

¢¤
dsup (26)

where σcorriy,j is given by equation (23) provided only that

h0j, h
00
j ≥ 0. (27)

By appropriately grouping and re-writing the variables of the system under consideration in

vector form, x
¯quad, the formulation of the problem to be solved using quadratic programming

routines can be expressed as follows:

min
x
¯quad

1

2
x
¯
T
quadHquadx¯quad+f

¯
T

quad
x
¯quad, (28)

where the square matrix Hquad includes the quadratic terms of the formulation and the vector

f
¯
quad the linear terms (these are reported in Appendix B). Likewise, the boundary conditions

of our contact problem may be written in matrix form (see Appendix B). This way of writing

the problem is useful when commercial routines are applied to find the solution to the problem

(e.g. the authors have built their solver using the MATLAB toolbox and its available quadratic

programming routines). The reader may refer to Appendix B for a complete description of the

numerical approach developed and presented here.

3.2 Moving loads

When the applied loads are stationary in space and either constant or oscillating in time, it is

impossible for slip displacement to accumulate to produce a net displacement of the layer with

respect to the substrate, but when the applied loads move this is no longer true, and incremental

creep, or "ratchetting", can take place. The formulation differs only in equations (8) and (10).

In fact, the sign of the relative velocity between layer and substrate, ḣ, is now the same as the

sign of dislocation density, i.e. sgn(ḣ(x)) = sgn(Bx(x)). This implies that the functional (12)

can be written as

F̃M =

+∞Z
−∞

{− [σxy (x, 0)Bx (x) + fσyy (x, 0) |Bx (x)|]} dx (29)

This may also be shown to be positive definite, but the functional has to be discretised dif-

ferently. Similarly, equation (14) may be used as present functional, but with hj replaced by

9
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Bk

F̃M = −
npX
k=1

£¡
σbilxy,k + σcorrxy,k

¢
Bxk + f

¡
σbilyy,k + σcorryy,k

¢
|Bxk|

¤
(30)

where σcorriy,k = σcorriy,j /2 + σcorriy,j+1/2 and σbiliy,k = σbiliy,j/2 + σbiliy,j+1/2.

Then, we substitute the discretised form of the dislocation density (20) into (29) to obtain

F̃M = −
npX

k,j=1

∙¡
σbilxy,k + σcorrxy,k

¢ hj − hj+1
xj+1 − xj

+ f
¡
σbilyy,k + σcorryy,k

¢ ¯̄̄̄hj − hj+1
xj+1 − xj

¯̄̄̄¸
(31)

The difference hj − hj+1 can be replaced by ζj and, as (xj+1− xj) is a positive quantity, it can

be removed from the functional, giving

F̃M = −
npX

k,j=1

£¡
σbilxy,k + σcorrxy,k

¢
ζj + f

¡
σbilyy,k + σcorryy,k

¢ ¯̄
ζj
¯̄¤
. (32)

This time it is the presence of the absolute value of the relative displacement, ζj which com-

plicates the formulation, and it is replaced using the same procedure as that described above,

mutatis mutandis, so that the problem can be written as follows:

F̃M
min

= −
npX

k,j=1

£¡
σbilxy,k + σcorrxy,k

¢ ¡
ζ 0j − ζ 00j

¢
+ f

¡
σbilyy,k + σcorryy,k

¢ ¡
ζ 0j + ζ 00j

¢¤
(33)

where:∙
σcorryy,j

σcorrxy,j

¸
= ASM,DM

npX
k,j=1

ζj
xj+1 − xj

xkZ
3
2
xj−

xj+1
2

µ
1 +

xk
xj+1 − xj

¶ ∙
Gyy (xj, ξ)

Gxy (xj, ξ)

¸
dξ + (34)

+ASM,DM

npX
k,i=1

ζj
xj+1 − xj

3
2
xj+1−

xj
2Z

xk

µ
1− xk

xj+1 − xj

¶ ∙
Gyy (xj, ξ)

Gxy (xj, ξ)

¸
dξ

subject to:
npX
k=1

Bxk (xj+1 − xj) = d (35)

ζ 0j, ζ
00
j ≥ 0, (36)

where d is the net slip accumulated after one passage of the load. Following the same procedure

described in the previous section, the problem can be rewritten in a quadratic form and solved

using commercial routines.
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4 Model validation

4.1 Stationary loads

Extensive comparisons and test cases have been performed, to check the correctness of the for-

mulation and its implementation. These include, for example, the problem of uniform compres-

sion, everywhere, applied to the surface of a strip pressed onto an elastically similar half-plane,

and with a normal line force, N , applied at the origin at the free surface, Figure 3(a).

Figure 3

The bilateral solution to the elastic contact problem is

σbilxy(x) = +
2N

πb

b3x

(b2 + x2)2
(37)

σbilyy(x) = −
2N

πb

b4

(b2 + x2)2
− p0 (38)

where b is the layer thickness, N , the normal load applied to the system and p0 the uniform

constant pressure, or, in dimensionless terms

bσbilxy(x̃)

N
= +

2

π

x̃

(1 + x̃2)2
(39)

bσbilyy(x̃)

N
= −2

π

1

(1 + x̃2)2
− 1

λN
(40)

where x̃ = x/b and λN = N/ (bp0). It is assumed that the surface pressure is applied first

and then the line force is increased from zero to a particular value. Figure 4 shows the slip

regions predicted with the formulation described, for f = 0.25 and λN = 2, compared with

the results achieved with the classic iterative scheme based on an integral equation formulation

and exploiting the symmetry in x [11]. λN is here treated as an unknown of the problem [11].

On the same graph, results for a tensile force, where λN = 1.1 and f = 0.4, are plotted

[11]. The figure shows the accuracy of the numerical scheme in capturing the location and the

extent of the slip region, the local relative displacement and the shear stress distribution at the

layer/substrate interface.

Figure 4
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A variant on this problem is to apply a monotonically increasing surface shearing force, Q, ap-

plied at the origin at the free surface, as depicted in Figure 3(b). This gives a state of interfacial

tractions, which can be expressed in dimensionless form as:

bσbilxy(x̃)

Q
= +

2

π

x̃2

(1 + x̃2)2
(41)

bσbilyy(x̃)

Q
= −2

π

x̃

(1 + x̃2)2
− 1

λQ
(42)

where now λQ = Q/bp0. Figure 5 shows the results obtained with our formulation for λQ =

2.36 and f = 0.5, plotted together with the results calculated with the classical semi-analytical

iterative scheme. Also, in this case, the results are shown to match the semi-analytical results

obtained using the formulation in [11].

Figure 5

4.2 Cyclic loading - Tangential load - similar materials

So far, the load has been increased monotonically. In the following example case, whose geom-

etry and loading conditions are schematically described in the insets to Figure 6, the tangential

load is initially set to reproduce the monotonic loading scenario shown in Figure 3(b) and

whose results are reported in Figure 5 for λQ = 2.36 and f = 0.5. The load is then first

fully reversed (λQ = −2.36, point 2 of the loading cycle in the inset to Figure 6) and cycled

(λQ = −2.36 ¿ 2.36, point 3 of the loading cycle in the inset to Figure 6). This example

enables us to show how the methodology developed allows tracking the "marching-in-time"

solution without having to guess the evolution of the extent and the location of the slip regions

which would require rather cumbersome iterative routines. The loading scenario used as a ve-

hicle for our investigation was first explored by Comninou and Barber [9], who, based on the

numerical results obtained during their investigation, first introduced the frictional shakedown

concept - and its analogy with plastic shakedown - in the context of layered frictional systems.

The tractions at the interface when the load is monotonically increased are given by the

solution of the monotonic loading case and they are here referred to with the index 1 (as they

refer to point 1 of the loading cycle in the inset to Figure 6). When the tangential load is

12

Highlight

Highlight

Highlight



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

reduced, the solution to the problem (point 2 in Figure 6) can be written in dimensionless form,

as follows2:

∙bσ2yy(x̃, 0)
Q1

bσ2xy(x̃, 0)

Q1

¸
=

∙bσ1yy(x̃, 0)
Q1

bσ1xy(x̃, 0)

Q1

¸
+

∙ 2
π
∆Q

x̃2

(1 + x̃2)2

−2
π
∆Q

x̃

(1 + x̃2)2

¸
+

∙
σcorr,2yy (x̃)

σcorr,2xy (x̃)

¸
, (43)

where ∆Q is the difference between Q1 and Q∗, with Q∗ being 2Q1 (see Figure 6), σ1yy(x̃, 0)

and σ1xy(x̃, 0) are the corrected stress field for the condition 1, and σcorr,2yy (x̃) and σcorr,2xy (x̃) the

corrective terms to be superposed to modify the Flamant solution [32] introduced for condition

2. The solutions for the following time steps (starting from point 3 in Figure 6) can be calculated

using exactly the same procedure.

Figure 6 shows the results for both the unloading part of the tangential loading cycle (point

2 in Figure 6) and for the first re-loading trajectory (point 3 in Figure 6) computed by the means

of our numerical scheme for λQ = 2.36. The outputs are plotted in terms of normalised shear

tractions at the interface between the layer and the substrate along with the results achieved

with the classical iterative scheme employed by Comninou and Barber [9]. The colour code

(red for point 2 and black for point 3) is preserved in the curves and the data points displayed

in the graph with the aim to aid the interpretation of the results. The match between the

results obtained with the quadratic programming technique and the classical formulation is

very satisfactory.

Figure 6

As already mentioned, results reported in [9] were calculated for values of pressure such

that the frictional law was violated along the layer/substrate interface at only limited positions

throughout the cycle. Subsequently, further investigations were limited to simplified loading

scenarios. This limitation is here circumvented by the use of the quadratic programming for-

mulation permitting many other loading regimes to be investigated. Figure 7 shows an example

case where multiple slip areas are simultaneously present during the loading and the unloading

2 Note that the solution at the extremes of the loading cycle is always used as the starting point
for the subsequent monotonically increasing or decreasing loading trajectories. Starting from
the previously established state implies that the corrective problem being solved at any given
stage does satisfy equation (3) and that the locked-in residual stresses are adequately captured by the solution.
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phases. In this case, the values of the tangential force, Q, have been set to oscillate such that

λQ varies between ± 3.2. As a result of the increase in the maximum applied load, the contact

between the layer and the substrate is initially characterised by an area where relative (forward)

slip displacements take place which is larger with respect to the slip region shown in Figure 5

(point 1 of the loading cycle in the inset to Figure 7). This area is delimited by the shaded blue

rectangle in Figure 7. Upon unloading and subsequent re-loading (point 2 and 3 of the loading

cycle depicted in the inset to Figure 7), two areas where slip occurs nucleate and evolve at either

side of the point of application of the load. Note again that the color code indicates the point

of the cycle to which the solutions and the areas of slip correspond to (blue for point 1, red for

point 2 and black for point 3). The solution evolves between having slip areas characterised

alternatively by backward and forward slip until a steady-state is reached; this corresponds to

point 3 in Figure 7. At this stage the system has shakendown and subsequent unloading and

re-loading will show the same slip areas and traction distributions obtained at point 3. It should

be noted that the slip areas and the shear tractions will be obviously mirrored horizontally and

both slip directions and tractions will change sign and give rise to backward slip and negative

tractions at the end of the subsequent unloading phases.

Figure 7

The numerical scheme proposed has also been applied to the more practical class of contact

problems already investigated by the authors [15]. A schematic of the contact problem is shown

in the inset to Figure 8. The two-dimensional contact model consists of an elastic strip, resting

on a substrate, and subjected to different rolling contact conditions caused by contact between

the layer and a disc [15]. The interfacial friction coefficient between strip and substrate, f ,

differ from the friction coefficient between disk and layer, μ. An example case is shown in

Figure 8 where f = 0.2, μ = 0.7 and λ = 1, where λ is a function of the constant pressure3,

p0, uniformly applied to the layer surface. In this case the layer is elastic whilst the substrate is

rigid. As can be seen from the figure, the match between the results is very satisfactory for this
3 λ = p0/pH . H stands for Hertzian and it should be noted here that the Hertzian case has
been chosen as a reference for the normalised variables. It corresponds to the case when the
strip thickness b → ∞. pH and the Hertzian contact area, aH , are, therefore, easily computed
once the geometry, the applied normal load and elastic properties of the strip are known [15].

14

Highlight

Highlight

Highlight

Highlight



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

case.

Figure 8

4.3 Moving loads

An extension of the technique described above from stationary loads to model moving loads

[13] was developed. The numerical scheme had been first validated against the case shown in

Figure 3, where the compressive normal load is now moved along the layer surface at constant

speed. The case was treated in [13], where it is shown that, in general, two slip zones are always

present at the interface between layer and substrate. The displacements accumulated in the two

slip zones are opposite in sign, and Figure 9 shows an example case where the results obtained

for λN = 8 and f = 0.5 are plotted, together with the results calculated using the classical

semi-analytical iterative scheme based on the integral equation approach [13]. It should be

noted that the classical semi-analytical scheme requires initial guesses for the location and size

of each individual slip zone and proceeds by iteration, and "this is practically impossible unless

there are some clues" [13]. This problem is overcome here as both size and location of the slip

zones are automatically detected using the proposed quadratic programming formulation.

Figure 10 shows a dimensionless measure of the net displacement, d, accumulated between

layer and substrate as a function of the dimensionless contact pressure, λN , for f = 0.54. The

match between the results is again very satisfactory.

Figure 9

Figure 10

The numerical scheme has also been validated against the equivalent results for the contact

problem illustrated in the inset to Figure 8 where the disc is now moved along the surface of

the layer. Figure 11 shows the results obtained using the present formulation and the marching-

in-time solution developed in [15] for a normalised net displacement Cd/(pHaH) = 0.184,

μ = 0.7, f = 0.2 and λ = 1. The comparison between the two sets of results shows again the

4 Note that the accumulated net displacement, d, corresponds to corresponds to the sum of the contributions
from the two slip areas (d = d1 + d2 from Fig. 9). This corresponds to a negative net displacement
(opposite with respect to the rolling direction - hence the negative sign) for the conditions shown in Fig. 10.
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accuracy of the proposed numerical scheme.

Figure 11

5 Experimental investigation of creep and model corroboration

This novel numerical tool has proved to be accurate and capable of resolving different loading

scenarios. It has also been shown to be superior to standard iterative approaches, especially

when multiple slip areas are generated in the presence of moving loads. These problems are

not easily tackled by techniques which rely on conventional integration schemes [15]. In order

to test our numerical approach further, an experimental investigation was carried out. Tests

were performed by modifying an apparatus conventionally adopted to study micropitting [33].

The rig is shown in Figure 12 and has two main rotating shafts. The first shaft carries a large

disk which drives three smaller shafts, whilst the second shaft drives the central disc against

which the three rollers driven by the first shaft are pressed. Torque-meters are mounted on the

two main shafts in order to monitor and regulate the torque applied to the rollers.

Experimental results were obtained by testing tyred rollers in geometrical and loading con-

 gurations which give rise to incremental slip of the tyre around the roller. The experimental

configuration described above is capable of reproducing loading conditions similar to those

simulated in [13] and [15], as illustrated in Figures 8-11. The three rollers mounted on the first

shaft are made of mild steel (178HV ) and have shrink fitted steel tyres. The tyred rollers are

denoted top ring, left ring and right ring (ring internal radius 26.30mm; thickness 0.08mm;

width 5mm; and average interference 30− 50μm). The resulting test configuration recalls the

cases investigated in [16], [28] and [29], where an elastic layer was pressed onto an elastically

similar substrate. In the inset to Figure 12, the schematic of the contact problem under investi-

gation is illustrated. This can be directly linked to those shown in Figure 3(a) and in the inset

to Figure 11 under the Hertzian and half-plane assumptions [15] [16]. The components are

accurately manufactured so to guarantee a well controlled interference fit between roller and

tyres (with roughness characterised by Ra,disk = 0.82 μm; Ra,ring = 1.31 μm). The tests were

run under pure rolling condition [13] [28]. Frictional properties of the layer-substrate interface

have been investigated and the interfacial friction coefficient was measured by monitoring the
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compressive force required to press the rings onto the discs. The press-fit was carried out using

a standard INSTRON test apparatus - www.instron.co.uk. During the fitting process, the relative

displacement between disk and ring was carefully recorded, together with the pressing force.

The friction coefficient was then estimated by dividing the resultant radial force found from

interference calculations by the measured load used to press-fit the tyred disks5. The final value

corresponds to the elastic layer fully mounted on the roller and is, therefore, the coefficient

of friction that characterises the coupling. This is the value used subsequently to simulate the

system using analytical or numerical approaches. It should be also noted here that, in order to

reduce the friction coefficient between roller and tyres, a layer of dry spray coating (Molycote

D321 - www.dowcorning.com) was applied at the contact interface between the steel rings and

the steel rollers. This reduced the friction coefficient so that creep occurred at lower values

within the load range of the MPR test apparatus. Other surfaces were tested as received. The

net displacement between the rollers and the tyres was obtained by tracking the relative mis-

alignment between two surfaces marks which were applied across the interface between the

two elements after the mounting process. The displacement of the tyres with respect to the

rollers was found to increase in direct proportion to the number of revolutions.

Figure 12

Figure 13 shows a series of experimental results where dimensionless value of the incremen-

tal creepage, characterised by the dimensionless value of the net displacement per revolution,

d, obtained for different values of the layer/substrate friction coefficient, f , is plotted against,

λN , i.e. as a function of the constant pressure uniformly applied to the layer, p0. The quan-

tities d and p0 are normalized with respect to the normal load applied to the counter-disc, N

(load=120N/mm), the shear modulus of the material, G, the Kolosov’s constant, κ, and the

layer thickness, b (0.08mm). Also reported in Figure 13 are the predictions obtained using the

numerical technique developed in this paper. The agreement between the model and the exper-

iments demonstrates that the model is able to capture the behavior of the system. The minor

5 Note that values of the load used to calculate the friction coefficient were those recorded
towards the end of the fitting process, i.e. when the instabilities linked to the mounting process
had been overcome and the effect of the singularities at the corners became negligible.
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discrepancies in the results are mainly due to the uncertainties in measurement of the coeffi-

cient of friction between layer and substrate. Experimental results obtained by Anscombe and

Johnson in 1974 for the same kinematic con guration, pure rolling, are plotted in the inset to

Figure 13 [28]. As already discussed in [13], the experiments show net displacements which are

not perfectly in line with the model predictions assuming that the range of friction coefficients

measured are in the 0.1 − 0.15 range [13]. The discrepancy between the numerical results

and the experimental data can be attributed to misalignment, variations in the average friction

coef cients measured during the press-fitting process and the (lower) coefficients which could

be more appropriate to describe the interfacial slip due to the moving force, and to the presence

of plasticity when large normal forces are applied (see blue diamonds and red squares in Figure

13).

Figure 13

6 Conclusions

An effective numerical method based on the distributed dislocation technique and on a quadratic

programming formulation has been developed to investigate interfacial slip in layered systems.

The numerical scheme has been successfully tested against classical problems and has been

shown to be accurate and efficient. It overcomes the drawbacks of standard semi-analytical

iterative schemes, thus enabling us to extend the applicability of the distributed dislocation

technique to the solution of complex two-dimensional layered systems when slip is present at

the mating interfaces. The proposed approach has been shown to be able to capture the initi-

ation and the evolution of multiple slip regions at the layer/substrate interface in the presence

of moving loads and has been also applied to study rolling contact of tyred systems. We have

shown that, in such systems, the proposed methodology can be used to model accurately in-

terfacial creep by performing quantitative comparisons between our numerical outputs and the

experimental results obtained using an in-house test rig.
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8 Appendix A

The influence functions associated with a single glide dislocation located at the interface be-

tween two similar/dissimilar materials are given.

When the materials are similar, with similar meaning having the same Poisson’s ratio and

the same Young’s modulus, the expressions for the influence functions and the constant A to be

substituted into (22) are

Gyy (x, ξ) = 16

Ã
− 3b3£
4b2 + (x− ξ)2

¤2 + 16b5£
4b2 + (x− ξ)2

¤2
!

(44)

Gxy (x, ξ) = 2

⎛⎜⎜⎜⎝
1

x− ξ
− x− ξ

4b2 + (x− ξ)2
+

+
12b2 (x− ξ)£
4b2 + (x− ξ)2

¤2 − 64b4 (x− ξ)£
4b2 + (x− ξ)2

¤3
⎞⎟⎟⎟⎠ (45)

ASM =
2E

π (κ+ 1)
(46)

where

κ = 3− 4ν (47)

When the materials are dissimilar, if the layer is indicated with 1 and substrate with 2, the

influence functions and the material constant A can be expressed as follows

Gxy (x, ξ) =
1

x− ξ
− 1− α

2b

∞Z
0

N12

D22
e−τ sin

µ
x− ξ

BA
τ

¶
dτ (48)

Gyy (x, ξ) = −πβδ (x− ξ) +
1− α

2b

∞Z
0

N22

D22
e−τ sin

µ
x− ξ

BA
τ

¶
dτ (49)

ADM =
2E2 (1− α)

(κ2 + 1)
¡
1− β2

¢ (50)

where

N12 = 4
£¡
1 + β2

¢
τ 2 + β

¤
eτ − 2β (1 + α) e−τ (51)

N22 = 2
©
2 (1 + β) [(1 + β) τ − (1− β)] τ + 1 + β2

ª
eτ − 2

¡
α+ β2

¢
e−τ (52)
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D12 = D22 =
¡
1− β2

¢
e2τ +

¡
α2 − β2

¢
e−2τ − 4 (1 + β) (α− β) τ 2 − 2

¡
α− β2

¢
(53)

κ2 = 3− 4ν2 (54)

α and β are the Dundur’s parameters, which can be expressed as follows

α =
E2 (κ1 + 1)−E1 (κ2 + 1)

E2 (κ1 + 1) +E1 (κ2 + 1)
(55)

β =
E2 (κ1 − 1)−E1 (κ2 + 1)

E2 (κ1 + 1) +E1 (κ2 + 1)
(56)

The advantage of expressing the materials parameters of a generic bimaterial composite

undergoing plane deformation, speci cally Young’s modulus and Poisson’s ratio, into two pa-

rameters, α and β, is that the stress field can be shown to be dependent on these two parameters

only [14].

9 Appendix B

In this appendix we illustrate how the solution to contact problem subjected to linear equalities

and linear inequalities as formulated by the authors, i.e. expressed in terms of a quadratic

function to be minimised, may be found using MATLAB and/or similar commercial software

which allow implementing quadratic programming routines. The formulation for the steady

stationary case is illustrated here and the numerical routine for the moving load case may be

obtained analogously.

The quadratic programming algorithm implemented in MATLAB allows finding a solution

for the following class of mathematical problems:

min
x
¯quad

1

2
x
¯
T
quadHquadx¯quad+f

¯
T

quad
x
¯quad (57)

such that

ALiex¯quad ≤ b
¯Lie (58)

l
¯b
≤ x

¯quad ≤ x
¯b (59)
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ALex¯quad = b
¯Le (60)

where Hquad is the matrix and f
¯
quad the vector that contain respectively the quadratic and the

linear terms of the functional to be minimised, and the variables of the problem are grouped

into vector x
¯quad

. The boundary conditions required to guarantee the uniqueness of the solution

are expressed in terms of linear inequalities, (58) and/or (59), and linear equalities, (60). ALie

(Lie: linear inequality) and ALe (Lie: linear equality) are matrices while b
¯Lie b

¯Le l
¯b

x
¯b are

vectors.

As already mentioned in section 3.1.2 (see (28)), the first step to solve the problem under

consideration is to re-write the functional form (26) in the matrix form equivalent to (57).

Hence, if we divide the functional (26) into its quadratic, F̃quadratic, and its linear part, F̃linear,

as follows:

F̃quadratic = −
npX
j=1

£
σcorrxy,j

¡
h0j − h00j

¢
+ fσcorryy,j

¡
h0j + h00j

¢¤
dsup (61)

F̃linear = −
npX
j=1

£
σbilxy,j

¡
h0j − h00j

¢
+ fσbilyy,j

¡
h0j + h00j

¢¤
dsup, (62)

The vectors x
¯
T
quad, f

¯
T
quad and the matrix Hquad (see (28)) may then be defined as:

x
¯
T
quad =

h
h01 . . . h

0
np , h

00
1 . . . h

00
np , σ

corr
xy,1 . . . σ

corr
xy,np , σ

corr
yy,1 . . . σ

corr
yy,np , Bx1 . . . Bxnp

i
, (63)

f Tquad =
h
−σbilxy,1 − fσbilyy,1 . . .− σbilxy,np − fσbilyy,np, σ

bil
xy,1 − fσbilyy,1 . . . σ

bil
xy,np − fσbilyy,np, 0 . . . 0, 0 . . . 0, 0 . . . 0

i
,

(64)

Hquad =

⎡⎢⎢⎢⎢⎣
[0]np,np [0]np,np − [I]np,np −f [I]np,np [0]np,np
[0]np,np [0]np,np [I]np,np −f [I]np,np [0]np,np
− [I]np,np [I]np,np [0]np,np [0]np,np [0]np,np
−f [I]np,np −f [I]np,np [0]np,np [0]np,np [0]np,np
[0]np,np [0]np,np [0]np,np [0]np,np [0]np,np

⎤⎥⎥⎥⎥⎦ , (65)

where [0]np,np and [I]np represent the zero np × np matrix and the identity matrixes of order

np × np respectively6.

6 It should be noted here that the number of variables in x
¯quad

could have been reduced by
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Now, we turn our attention to the side conditions which need to be satisfied to find the solu-

tion of the problem under investigation. The equalities (23), (20) and (25), and the inequalities

which provide the bounds for traction and interfacial displacements, i.e.:

|σxy (x, 0)| ≤ −fσyy (x, 0) , (66)

h0j, h
00
j ≥ 0, (67)

need to be re-written in a matrix form equivalent to (60), (58) and (59).

Let us start from the two linear inequalities (66) and (67) . They can be written in the

prescribed matrix form by defining the following vectors and matrixes:

lTb = [0 . . . 0, 0 . . . 0,−∞ . . .−∞,−∞ . . .−∞,−∞ . . .−∞] , (68)

x
¯
T
b = [+∞ . . .+∞,+∞ . . .+∞,+∞ . . .+∞,+∞ . . .+∞,+∞ . . .+∞] , (69)

ALie =

∙
[0]np,np [0]np,np [I]np −f [I]np [0]np,np
[0]np,np [0]np,np − [I]np −f [I]np [0]np,np

¸
, (70)

and

b
¯
T
Lie =

h
−fσbilyy,1 − σbilxy,1 . . .− fσbilyy,np − σbilxy,np,−fσ

bil
yy,1 + σbilxy,1 . . .− fσbilyy,np + σbilxy,np

i
.

(71)

Reverting to the linear equalities, (23), (20) and (25) can be written in a matrix form equivalent

incorporating equalities (23) and (20) into (26), therefore limiting the number of unknowns
to the displacements h0j and h00j . These are indeed the two sets of independent complementarity
variables to be determined at every time step. However, re-casting the problem would have
rendered the formulation more cumbersome and dif cult to follow.
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to (60) by setting:

ALe =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[0]np,np [0]np,np [I]np [0]np,np ASM,DM

⎡⎣ −Fxy11 ... −Fxy1np
... . . . ...

−Fxynp1 ... −Fxynpnp

⎤⎦
[0]np,np [0]np,np [0]np,np [I]np ASM,DM

⎡⎣ −Fyy11 ... −Fyy1np
... . . . ...

−Fyynp1 ... −Fyynpnp

⎤⎦
−[M1]np,np [M1]np,np [0]np,np [0]np,np dsup [I]np

0 0 0 0
£
1 ... 1

¤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(72)

and

b
¯
T
Le = [0 . . . 0, 0 . . . 0, 0 . . . 0, 0 . . . 0, 0 . . . 0] , (73)

with

[M1]np,np =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −1 0 ... 0

0 1 −1 . . . ...
... 0

. . . . . . ...
... . . . . . . . . . −1
0 ... ... 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (74)

The numerical solver built following the scheme described above is robust and it provides

the correct solution to the problem under investigation as long as the physical domain analysed

contains all the slip regions developed upon application of the alternating load. Furthermore,

setting Bx1 or Bxnp to zero in (20), therefore imposing stick at one of the edges of the domain

under investigation, may improve numerical stability.

References

[1] Hills, D.A., Nowell, D., and A. Sackfield, Mechanics of elastic contacts, Butterworth
Heinemann, 1993.

[2] Zografos, A., D. Dini, A. V. Olver, "Fretting fatigue and wear in bolted connections: A
multi-level formulation for the computation of local contact stresses", Tribology Interna-
tional, 2009, 42, 1663.

[3] K. Elleuch, H. Proudhon, C. Meunier, S. Fouvry, "Development of a contact compliance
method to detect the crack propagation under fretting", Tribology International, 2006, 39,
p. 1262.

23

Highlight

Highlight



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[4] Barber, J.R., A. Klarbring, and M. Ciavarella, "Shakedown in frictional contact problems
for the continuum", Comptes Rendus Mécanique, 2008, 336, p. 34.

[5] Truman, C.E., and J.D. Booker, "Analysis of a shrink-fit failure on a gear hub/shaft assem-
bly", Engineering Failure Analysis, 2007, 14, p. 557.

[6] Antoni, N., Q.S. Nguyen, J.L. Ligier, P. Saffré, and J. Pastor, "On the cumulative microslip
phenomenon", European Journal of Mechanics - A/Solids, 2007, 26, p. 626.

[7] Ahn, Y.J., and J.R. Barber, "Response of frictional receding contact problems to cyclic
loading", International Journal of Mechanical Sciences, 2008, 50, p. 1519.

[8] Reina, S., D. Dini, and D.A. Hills, "On the accurate prediction of interfacial micro-slip
in frictional joints using distributed dislocations and quadratic programming techniques",
Procedia Engineering, 2009, 1, p. 181.

[9] Comninou, M., and J.R. Barber, "Frictional slip between a layer and a substrate due to a
periodic tangential surface force", International Journal of Solids and Structures, 1983, 19,
p. 533.

[10]Comninou, M., J.R. Barber, and J. Dundurs, "Interface slip caused by a surface load moving
at constant speed", International Journal of Mechanical Sciences, 1983, 25, p. 41.

[11]Comninou, M., D. Schmueser, and J. Dundurs, "Frictional slip between a layer and a sub-
strate caused by a normal load", International Journal of Engineering Science, 1980, 18,
p. 131.

[12]Comninou, M., and J. Dundurs, "Partial closure of cracks at the interface between a layer
and a half space", Engineering Fracture Mechanics, 1983, 18, p. 315.

[13]Chang, F.K., M. Comninou, and J.R. Barber, "Slip between a layer and a substrate caused
by a normal force moving steadily over the surface", International Journal of Mechanical
Sciences, 1983, 25, p. 803.

[14] Dundurs, J., "Effect of Elastic Constants on Stress In A Composite Under Plane Deforma-
tion", Journal of Composite Materials, 1967, 1, p. 310.

[15]Reina, S., D. Dini, and D.A. Hills, "Interfacial Slip and Creep in Rolling Contact incorpo-
rating a Cylinder with an Elastic Layer", European Journal of Mechanics - A/Solids, 2010,
In Press, doi:10.1016/j.euromechsol.2010.02.009.

[16]Reina, S., D. Dini, and D.A. Hills, "Incipient slip conditions in rolling contact of tyred
wheels", Proceedings of the IMechE Part C, Journal of Mechanical Engineering Science,
2010, In Press, doi: 10.1243/09544062JMES2075.

24



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[17]Kalker, J.J., "A minimum principle for the law of dry friction with application to elas-
tic cylinders in rolling contact. Part 1: fundamentals, application to steady state rolling",
Transaction ASME, Journal of Applied Mechanics, 1971, 38, p. 875.

[18]Kalker, J.J., Three dimensional elastic bodies in rolling contact, Kluwer, Dordrecht, 1990.

[19]Klarbring, A., "A mathematical programming approach to three-dimensional contact prob-
lems with friction", Computer Methods in Applied Mechanics and Engineering, 1986, 58,
p. 175.

[20]Klarbring, A., and G. Björkman, "A mathematical programming approach to contact prob-
lems with friction and varying contact surface", Computers & Structures, 1988, 30, p.
1185.

[21]Nowell, D., and D.N. Dai, "Analysis of Surface Tractions in Complex Fretting Fatigue
Cycles Using Quadratic Programming", Journal of Tribology, 1998, 120, p. 744.

[22]Maier, G., "A quadratic programming approach for certain classes of non linear structural
problems", Meccanica, 1968, 3, p. 121.

[23]Maier, G., "Quadratic programming and theory of elastic-perfectly plastic structures", Mec-
canica, 1968, 3, p. 265.

[24]Maier, G., "A method for approximate solutions of stationary creep problems", Meccanica,
1969, 4, p. 36.

[25]de Matos, P. F. P., and D. Nowell, "On the accurate assessment of crack opening and clos-
ing stresses in plasticity-induced fatigue crack closure problems", Engineering Fracture
Mechanics, 2007, 74, p. 1579.

[26]Su, R.K.L., Y. Zhu, and A.Y.T. Leung, "Parametric quadratic programming method for
elastic contact fracture analysis", International Journal of Fracture, 2002, 117, p. 143.

[27]Chand, R., "Analysis of unbonded contact problems by means of quadratic programming",
Journal of Optimization Theory and Applications, 1976, 20, p. 171.

[28]Anscombe, H., and K.L. Johnson, "Slip of a thin solid tyre press-fitted on a wheel", Inter-
national Journal of Mechanical Sciences, 1974, 16, p. 329.

[29]Bentall, R.H., and K.L. Johnson, "An elastic strip in plane rolling contact", International
Journal of Mechanical Sciences, 1968, 10, p. 637.

[30]Ahn, Y.J., E. Bertocchi, and J.R. Barber, "Shakedown of coupled two-dimensional discrete
frictional systems", Journal of the Mechanics and Physics of Solids, 2008, 56, p. 3433.

25



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[31]Qiu, H., D. Dini, and D.A. Hills, "Torsional contact of an elastic flat-ended cylinder",
Journal of the Mechanics and Physics of Solids, 2008, 56, p. 3352.

[32]Timoshenko, S. and Goodier, J.N., Theory of elasticity, McGraw-Hill, New York, 1970.

[33]E. Lainé, A. V. Olver, T. A. Beveridge, "Effect of lubricants on micropitting and wear",
Tribology International, 2008, 41, 1049.

10 Captions to Figures

Figure 1. Schematic of the layered contact problem and possible interface regimes.

Figure 2. Schematic of the layered system and piecewise linear representation of the dislo-

cation density.

Figure 3.Geometry of the present problem and loading conditions: application of a monoton-

ically increasing (a) normal and (b) tangential concentrated load.

Figure 4. Shear tractions and relative displacement between layer and substrate for f =0.25,

λN = 2 (N < 0) and f =0.4, λN = 1.1 (N < 0) - stationary case.

Figure 5. Shear tractions and relative displacement between layer and substrate for f =0.5,

λQ = 2.36 - stationary case.

Figure 6. Shear tractions for f =0.5 and λQ = ±2.36 (cyclic tangential load) - stationary

case.

Figure 7. Shear tractions for f =0.5 and λQ = ±3.2 (cyclic tangential load) - stationary case.

Figure 8. Shear tractions and relative displacement between layer and substrate for B=1,

f =0.2, μ = 0.7, λ = 1 and ν = 0.3 - stationary case - full sliding of a roller over the layer

surface.

Figure 9. Shear tractions and relative net displacement between layer and substrate for

λN=8, for f =0.5.

Figure 10. Relative net displacement between layer and substrate as a function of the di-

mensionless constant pressure, λN , for f =0.5.

Figure 11. Shear tractions and relative net displacement between layer and substrate for

B=1, f =0.2, μ = 0.7, λ = 1 and ν = 0.3 - steady state solution for the moving load case - full

sliding of a roller over the layer surface.
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Figure 12. PCS MPR (www.pcs-instruments.com/mpr) experimental apparatus consisting of

three tyred rollers and a central roller and schematic of the loading system.

Figure 13. Net displacement, d, per revolution as a function of the dimensionless constant

pressure, λ, and of the interfacial friction coef cient, f. In the same graph, comparison with

experimental results and, in the inset, with Anscombe’s original data (Anscombe and Johnson,

1974; and Chang et al., 1983).
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Figure 1. Schematic of the layered contact problem and possible interface regimes. 

 

 
Figure 2. Schematic of the layered system and piecewise linear representation of the dislocation 

density. 
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(a) 

(b) 

Figure 3.Geometry of the present problem and loading conditions: application of a monotonically 
increasing (a) normal and (b) tangential concentrated load. 
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Figure 4. Shear tractions and relative displacement between layer and substrate for f=0.25, λN=2 

(N<0) and f=0.4, λN =1.1 (N<0) - stationary case. 
 

 
Figure 5. Shear tractions and relative displacement between layer and substrate for f=0.5, λQ =2.36 

- stationary case. 
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Figure 6. Shear tractions for f=0.5 and λQ =±2.36 (cyclic tangential load) - stationary case. 
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Figure 7. Shear tractions for f=0.5 and λQ =±3.2 (cyclic tangential load) - stationary case. 

 
Figure 8. Shear tractions and relative displacement between layer and substrate for B=1, f=0.2, 

μ=0.7, λ=1 and ν=0.3 - stationary case - full sliding of a roller over the layer surface. 
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Figure 9. Shear tractions and relative net displacement between layer and substrate for λN =8, for 
f=0.5. 

 
Figure 10. Relative net displacement between layer and substrate as a function of the dimensionless 

constant pressure, λN, for f=0.5. 
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Figure 11. Shear tractions and relative net displacement between layer and substrate for B=1, 
f=0.2, μ=0.7, λ=1 and ν=0.3 – steady state solution for the moving load case – full sliding of a 

roller over the layer surface. 

 
Figure 12. PCS MPR (www.pcs-instruments.com/mpr) experimental apparatus consisting of three 

tyred rollers and a central roller and schematic of the loading system. 
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Figure 13. Net displacement, d, per revolution as a function of the dimensionless constant pressure, 
λ, and of the interfacial friction coefficient, f. In the same graph, comparison with experimental 

results and, in the inset, with Anscombe's original data (Anscombe et al., 1968 and Chang, 1983).
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Notation 
a Contact semi-width 
aH Hertzian contact semi-width 
A=a/aH Dimensionless contact ratio 
ALe Matrix containing the coefficient of the linear equalities of the boundary conditions to which 

the contact problem is subject 
ALie Matrix containing the coefficient of the linear inequalities of the boundary conditions to 

which the contact problem is subject 
( )( )2 / 1SMA E π κ= +  

( ) ( )( )( ) ( ) ( )( )( )2 2
1 1 2 22 1 / 1 1 2 1 / 1 1DMA E Eα π κ β α π κ β= − + − = + + −  

b Layer thickness 
bLe Vector containing the known terms of the linear equalities of the boundary conditions to 

which the contact problem is subject 
bLie Vector containing the known terms of the linear inequalities of the boundary conditions to 

which the contact problem is subject 
B=b/a Dimensionless thickness parameter   
Bx Glide dislocation density 

( )22 (1 ) / ( 1) 1C G kα β⎡ ⎤= − + −⎣ ⎦  

d Net relative shift between layer and substrate 
dsup Distance between equally spaced points at which traction, displacement and dislocation 

density are sampled 
D12, D22 Kernels used to find the influence functions for a glide dislocations on the layer substrate 

interfacial stress field 
E Young’s modulus 
f Interfacial friction coefficient between layer and substrate 
fquad Vector including the linear terms of the quadratic programming functional F (or FM) 

, MF F% %  Functional of the contact problem 
Fxy, Fyy Influence functions describing the contribute to the layer/substrate shear, Fxy, and normal, 

Fyy, tractions, given by a triangular distribution of glide dislocation density, Bx 
linearF%  Linear part of the functional  

quadraticF%  Quadratic part of the functional 

G Shear modulus 
Gxy, Gyy Influence functions describing the contribute of a glide dislocation to the layer/substrate 

interfacial stress field 
h(x) Tangential shift due to distributed dislocations 

( )h x&  First derivative in time of the tangential shift due to the distributed dislocations, h(x) 
' '', ,j j jh h h  Unknown tangential displacements at node j 

Hquad Square matrix including the quadratic terms of the quadratic programming functional F (or 
FM) 

I Identity matrix 
j Dummy variable 
lb Vector containing the lower limits of the variables contained in xquad 
m Trailing edge of the interfacial slip region – see (ii) in figure 1 
M1 Sub-matrix of ALe 
n Leading edge of the interfacial slip region – see (ii) in figure 1 
np Number of points at which traction, displacement and dislocation density are sampled 
N12,N22 Kernels used to find the influence functions for a glide dislocations on the layer/substrate 

interfacial stress field 
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N Normal load per unit depth 
p0 Interfacial uniform constant contact pressure 
pH Hertzian pressure peak 
p(x,time) Surface normal stress 
q(x,time) Surface traction stress 
Q Tangential load per unit depth 
Ra Surface roughness 
ulayer(x) Layer tangential displacement at the layer/substrate interface 
usubstrate(x) Substrate tangential displacement at the layer/substrate interface 
x Horizontal coordinate 
xb Vector containing the upper limits of the variables contained in xquad 
xj Auxiliary coordinate set used to identify the location of a point belonging to the 

layer/substrate interface in a fixed frame of reference (see figure 2) 
xk=xj/2+xj+1/2  

/x x b=%   
quadx  Vector including the variable of the optimization process 

y Vertical coordinate  
,α β  Dundurs’ constants 

1j j jh hζ += −  Difference between the tangential displacement measured at two adjacent supports 
' '',j jζ ζ  Unknown tangential displacement 

3 4κ ν= −  Kolosov’s constant for plane strain 
( )0/N N bpλ =  Dimensionless loading parameter 

( )0/Q Q bpλ =  Dimensionless loading parameter 

( )0 / Hp pλ =  Dimensionless loading parameter - see figure 8 and 11 (Reina et al., 2010) 
μ  Friction coefficient between disc and tyre - see figure 8 and 11 (Reina et al., 2010)  
ν  Poisson’s ratio 
ξ  Integration variable 

( , )bil
xy x yσ  Tangential component of the layer stress field due to the bilateral solution alone 

( , )bil
yy x yσ  Normal component of the layer stress field due to the bilateral solution alone 

( , )corr
xy x yσ  Corrective component of the tangential component of the layer stress field at the 

layer/substrate interface 
( , )corr

yy x yσ  Corrective component of the normal component of the layer stress field at the layer/substrate 
interface 

( , )xy x yσ  Tangential component of the overall layer stress field 

( , )yy x yσ  Normal component of the overall layer stress field  
τ  Integration variable 

 




