
HAL Id: hal-00734475
https://hal.science/hal-00734475

Submitted on 22 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A polling model with smart customers
M. A. A. Boon, A. C. C. Wijk, I. J. B. F. Adan, O. J. Boxma

To cite this version:
M. A. A. Boon, A. C. C. Wijk, I. J. B. F. Adan, O. J. Boxma. A polling model with smart customers.
Queueing Systems, 2010, 66 (3), pp.239-274. �10.1007/s11134-010-9191-0�. �hal-00734475�

https://hal.science/hal-00734475
https://hal.archives-ouvertes.fr

QUES9191_source.tex; 27/08/2010; 13:00 p. 1

A Polling Model with Smart Customers∗

M.A.A. Boon†

marko@win.tue.nl
A.C.C. van Wijk‡

a.c.c.v.wijk@tue.nl
I.J.B.F. Adan†

iadan@win.tue.nl

O.J. Boxma†

boxma@win.tue.nl

August 27, 2010

Abstract

In this paper we consider a single-server, cyclic polling system with switch-over times.
A distinguishing feature of the model is that the rates of the Poisson arrival processes
at the various queues depend on the server location. For this model we study the joint
queue length distribution at polling epochs and at server’s departure epochs. We also
study the marginal queue length distribution at arrival epochs, as well as at arbitrary
epochs (which is not the same in general, since we cannot use the PASTA property).
A generalised version of the distributional form of Little’s law is applied to the joint
queue length distribution at customer’s departure epochs in order to find the waiting
time distribution for each customer type. We also provide an alternative, more efficient
way to determine the mean queue lengths and mean waiting times, using Mean Value
Analysis. Furthermore, we show that under certain conditions a Pseudo-Conservation
Law for the total amount of work in the system holds. Finally, typical features of the
model under consideration are demonstrated in several numerical examples.

Keywords: Polling, smart customers, varying arrival rates, queue lengths, waiting times,
pseudo-conservation law

1 Introduction

The classical polling system is a queueing system consisting of multiple queues, visited by a
single server. Typically, queues are served in cyclic order, and switching from one queue to
the next queue requires a switch-over time, but these assumptions are not essential to the
analysis. The decision at what moment the server should start switching to the next queue is
important to the analysis, though. Polling systems satisfying a so-called branching property

∗The research was done in the framework of the BSIK/BRICKS project, and of the European Network of
Excellence Euro-NF.

†
Eurandom and Department of Mathematics and Computer Science, Eindhoven University of Technology,

P.O. Box 513, 5600MB Eindhoven, The Netherlands
‡
Eurandom, Department of Industrial Engineering & Innovation Sciences and Department of Mathematics

and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Nether-
lands

1

QUES9191_source.tex; 27/08/2010; 13:00 p. 2

generally allow for an exact analysis, whereas polling systems that do not satisfy this property
rarely can be analysed in an exact way. See Resing [24], or Fuhrmann [14], for more details
on this branching property.

There is a huge literature on polling systems, mainly because of their practical relevance.
Applications are found, among others, in production environments, transportation, and data
communication. The surveys of Takagi [27], Levy and Sidi [21], and Vishnevskii and Semenova
[29] provide a good overview of applications of polling systems. These surveys, and [30],
Chapters 2.2 and 3, are also excellent references to find more information about various
analysis techniques, such as the Buffer Occupancy method, the Descendant Set approach,
and Mean Value Analysis (MVA) for polling systems. The vast majority of papers on polling
models assumes that the arrival rate stays constant throughout a cycle, although it may vary
per queue. The polling model considered in the present paper, allows the arrival rate in each
queue to vary depending on the server location. This model was first considered by Boxma
[5], who refers to this model as a polling model with smart customers, because one way to
look at this system is to regard it as a queueing system where customers choose which queue
to join, based on the current server position. Note that Boxma’s definition of smart customers
is different from the definition used by Mandelbaum and Yechiali [22], who study an M/G/1
queue where smart customers may decide upon arrival to join the queue, not to enter the
system at all, or to wait for a while and postpone the decision.

A relevant application can be found in [16], where a polling model is used to model a dynamic
order picking system (DPS). In a DPS, a worker picks orders arriving in real time during the
picking operations and the picking information can dynamically change in a picking cycle.
One of the challenging questions that online retailers now face, is how to organise the logistic
fulfillment processes during and after order receipt. In traditional stores, purchased products
can be taken home immediately. However, in the case of online retailers, the customer must
wait for the shipment to arrive. In order to reduce throughput times, an efficient enhancement
to an ordinary DPS is to have products stored at multiple locations. The system can be mod-
elled as a polling system with queues corresponding to each of the locations, and customers
corresponding to orders. The location of the worker determines in which of the queues an
order is being placed. In this system arrival rates of the orders depend on the location of
the server (i.e. the worker), which makes it a typical smart customers example. A graphical
illustration is given in Figure 1. We focus on one specific order type, which is placed in two
locations, say Qi and Qj . While the picker is on its way to Qi, say at location 1, all of these
orders are routed to Qi and the arrival rate at Qj is zero. If the picker is between Qi and Qj ,
say at location 2, the situation is reversed and Qj receives all of these orders.

Besides practical relevance, the smart customers model also provides a powerful framework
to analyse more complicated polling models. For example, a polling model where the service
discipline switches each cycle between gated and exhaustive, can be analysed constructing an
alternative polling model with twice the number of queues and arrival rates being zero during
specific visit periods [8]. The idea of temporarily setting an arrival rate to zero is also used
in [2] for the analysis of a polling model with multiple priority levels. Time varying arrival
rates also play a role in the analysis of a polling model with reneging at polling instants [1].

Concerning state dependent arrival rates, more literature is available for systems consisting of
only one queue, often assuming phase-type distributions for vacations and/or service times.
A system consisting of a single queue with server breakdowns and arrival rates depending on

2

QUES9191_source.tex; 27/08/2010; 13:00 p. 3

1

2

Q1

Q2

QN

Qi

Q j

Depot

Picker

Figure 1: A dynamic order picking system. Orders are placed in queues Q1, . . . , QN .

the server status is studied in [26]. A difference with the system studied in the present paper,
besides the number of queues, is that the machine can break down at arbitrary moments
during the service of customers. Polling systems with breakdowns have been studied as
well, cf. [9, 17, 20, 23]. However, only Nakdimon and Yechiali [23] consider a model where
the arrival process stops temporarily during a breakdown. Shanthikumar [25] discusses a
stochastic decomposition for the queue length in an M/G/1 queue with server vacations
under less restrictive assumptions than Fuhrmann and Cooper [15]. One of the relaxations is
that the arrival rate of customers may be different during visit periods and vacations. Another
system, with so-called working vacations and server breakdowns is studied in [18]. During
these working vacations, both the service and arrival rates are different. Mean waiting times
are found using a matrix analytical approach. For polling systems, a model with arrival rates
that vary depending on the location of the server has not been studied in detail yet. Boxma
[5] studies the joint queue length distribution at the beginning of a cycle, but no waiting
times or marginal queue lengths are discussed. In a recent paper [11], a polling system with
Lévy-driven, possibly correlated input is considered. Just as in the present paper, the arrival
process may depend on the location of the server. In [11] typical performance measures for
Lévy processes are determined, such as the steady-state distribution of the joint amount of
fluid at an arbitrary epoch, and at polling and switching instants. The present paper studies
a similar setting, but assumes Poisson arrivals of individual customers. This enables us to find
the probability generating functions (PGFs) of the joint queue length distributions at polling
instants and customer’s departure epochs, and the marginal queue length distributions at
customer’s arrival epochs and at arbitrary epochs (which are not the same, because PASTA
cannot be used). The introduction of customer subtypes, categorised by their moment of
arrival, makes it possible to generalise the distributional form of Little’s law (see, e.g., [19]),
and apply it to the joint queue length distribution at departure epochs to find the Laplace-
Stieltjes Transform (LST) of the waiting time distribution.

The present paper is structured as follows: Section 2 gives a detailed model description and
introduces the notation used in this paper. In Section 3 the PGFs of the joint queue length
distributions of all customer types at polling instants are derived. The marginal queue length
distribution is also studied in this section, but we show in Section 4 that the derivation of

3

QUES9191_source.tex; 27/08/2010; 13:00 p. 4

the waiting time LST for each customer type requires a more complicated analysis, based on
customer subtypes. In Sections 3 and 4 we need information on the lengths of the cycle time
and all visit times, which are studied in Section 5. In Section 6 we adapt the MVA framework
for polling systems, introduced in [31], to our model. This results in a very efficient method
to compute the mean waiting time of each customer type. For polling systems with constant
arrival rates, a Pseudo-Conservation Law (PCL) is studied by Boxma and Groenendijk [6].
In Section 7 we show that, under certain conditions, a PCL is satisfied by our model. Finally,
we give numerical examples that illustrate some typical features and advantages of the model
under consideration.

2 Model description and notation

The polling model in the present paper contains N queues, Q1, . . . , QN , visited in cyclic order
by one server. Switching from Qi to Qi+1 (i = 1, . . . , N , where QN+1 is understood to be Q1,
etc.) requires a switch-over time Si, with LST σi(·). We assume that at least one switch-over
time is strictly greater than zero, otherwise the mean cycle length in steady-state becomes
zero and the analysis changes slightly. See, e.g., [4] for a relation between polling systems
with and without switch-over times. Switch-over times are assumed to be independent. The
cycle time Ci is the time that elapses between two successive visit beginnings to Qi, and C∗

i

is the time that elapses between two successive visit endings to Qi. The mean cycle time
does not depend on the starting point of the cycle, so E[Ci] = E[C∗

i] = E[C]. The visit time
Vi of Qi is the time between the visit beginning and visit ending of Qi. The intervisit time
Ii of Qi is the time between a visit ending to Qi and the next visit beginning at Qi. We
have Ci = Vi + Ii, and Ii = Si + Vi+1 + · · · + Si+N−1, i = 1, . . . , N . Customers arriving at
Qi, i.e. type i customers, have a service requirement Bi, with LST βi(·). We also assume
independence of service times, and first-come-first-served (FCFS) service order.

The service discipline of each queue determines the moment at which the server switches to
the next queue. In the present paper we study the two most popular service disciplines in
polling models, exhaustive service (the server switches to the next queue directly after the last
customer in the current queue has been served) and gated service (only visitors present at the
server’s arrival at the queue are served). The reason why these two service disciplines have
become the most popular in polling literature, lies in the fact that they are from a practical
point of view the most relevant service disciplines that allow an exact analysis. In this respect
the following property, defined by Resing [24] and also Fuhrmann [14], is very important.

Property 2.1 (Branching Property) If the server arrives at Qi to find ki customers there,
then during the course of the server’s visit, each of these ki customers will effectively be
replaced in an i.i.d. manner by a random population having probability generating function
hi(z1, . . . , zN), which can be any N -dimensional probability generating function.

In most cases, a polling model can only be analysed exactly, if the service discipline at each
queue satisfies Property 2.1, or some slightly weaker variant of this property, because in this
case the joint queue length process at visit beginnings to a fixed queue constitutes a Multi-
Type Branching Process, which is a nicely structured and well-understood process. Gated
and exhaustive service both satisfy this property, whereas a service discipline like k-limited
service (serve at most k customers during each visit) does not.

4

QUES9191_source.tex; 27/08/2010; 13:00 p. 5

The feature that distinguishes the model under consideration from commonly studied polling
models, is the arrival process. This arrival process is a standard Poisson process, but the
rate depends on the location of the server. The arrival rate at Qi is denoted by λ

(P)
i , where

P denotes the position of the server, which is either serving a queue, or switching from one
queue to the next: P ∈ {V1, S1, . . . , VN , SN}. One of the consequences is that the PASTA
property does not hold for an arbitrary arrival, but as we show in Section 3, a conditional
version of PASTA does hold. Another difficulty that arises, is that the distributional form of
Little’s law cannot be applied to the PGF of the marginal queue length distribution to obtain
the LST of the waiting time distribution anymore. We explain this in Section 4, where we
also derive a generalisation of the distributional form of Little’s law.

3 Queue length distributions

3.1 Joint queue length distribution at visit beginnings/endings

The two main performance measures of interest, are the steady-state queue length distribution
and the waiting time distribution of each customer type. In this section we focus on queue
lengths rather than waiting times, because the latter requires a more complex approach that
is discussed in the next section. We restrict ourselves to branching-type service disciplines,
i.e., service disciplines satisfying Property 2.1. Boxma [5] follows the approach by Resing [24],
defining offspring and immigration PGFs to determine the joint queue length distribution at
the beginning of a cycle. We take a slightly different approach that gives the same result,
but has the advantage that it gives expressions for the joint queue length PGF at all visit
beginnings and endings as well. Denote by ˜LB

(P)
(z1, . . . , zN) the PGF of the steady-state

joint queue length distribution at beginnings of period P ∈ {V1, S1, . . . , VN , SN}. The relation
between these PGFs, also referred to as laws of motion in the polling literature, is obtained
by application of Property 2.1 to ˜LB

(Vi)(z), where z is a shorthand notation for the vector
(z1, . . . , zN). This property states that each type i customer present at the visit beginning
to Qi will be replaced during this visit by a random population having PGF hi(z), which
depends on the service discipline. The only difference between conventional polling models
and the model under consideration in the present paper, is that the arrival rates depend on
the server location. The relations between ˜LB

(Vi)(z), ˜LB
(Si)(z), and ˜LB

(Vi+1)
(z) are given by:

˜LB
(Si)(z) = ˜LB

(Vi)(z1, . . . , zi−1, hi(z), zi+1, . . . , zN), (3.1)

˜LB
(Vi+1)

(z) = ˜LB
(Si)(z)σi

(
N
∑

j=1

λ
(Si)
j (1 − zj)

)

, (3.2)

where hi(z) is the PGF mentioned in Property 2.1. It is discussed in the context of a polling
model with smart customers in [5]. For gated service, hi(z) = βi

(

∑N
j=1 λ

(Vi)
j (1 − zj)

)

. For

exhaustive service, hi(z) = πi

(

∑

j �=i λ
(Vi)
j (1 − zj)

)

, where πi(·) is the LST of a busy period
distribution in an M/G/1 system with only type i customers, so it is the root in (0, 1] of the
equation πi(ω) = βi

(

ω + λ
(Vi)
i (1 − πi(ω))

)

, ω ≥ 0 (cf. [12], p. 250). Now that we can relate

˜LB
(Vi+1)

(z) to ˜LB
(Vi)(z), we can repeat this and finally obtain a recursion for ˜LB

(Vi)(z). This

5

QUES9191_source.tex; 27/08/2010; 13:00 p. 6

recursive expression is sufficient to compute all moments of the joint queue length distribution
at a visit beginning to Qi by differentiation, but iteration of the expression leads to the steady-
state queue length distribution at polling epochs, written as an infinite product. We refer to
[24] for more details regarding this approach, and for rigorous proofs of the laws of motion.
Stability conditions are studied in more detail in [11], where it is shown that a necessary and
sufficient condition for ergodicity is that the Perron-Frobenius eigenvalue of the matrix R−IN

should be less than 0, where IN is the N × N identity matrix, and R is an N × N matrix
containing elements ρij := λ

(Vj)
i E[Bi]. This holds under the assumption that E[Vi] > 0 for all

i = 1, . . . , N .

3.2 Marginal queue length distribution

Common techniques in polling systems (see, e.g. [3, 13]) to determine the PGF of the steady-
state marginal queue length distribution of each customer type, are based on deriving the
queue length distribution at departure epochs. A level-crossing argument implies that the
marginal queue length distribution at arrival epochs must be the same as the one at departure
epochs, and, finally, because of PASTA this distribution is the same as the marginal queue
length distribution at an arbitrary point in time. In our model, the marginal queue length dis-
tributions at arrival and departure epochs are also the same, but the distribution at arbitrary
moments is different because of the varying arrival rates during a cycle. We can circumvent
this problem by conditioning on the location P of the server (P ∈ {V1, S1, . . . , VN , SN}) and
use conditional PASTA to find the PGF of the marginal queue length distribution at an ar-
bitrary point in time. Let Li denote the steady-state queue length of type i customers at an
arbitrary moment, and let L

(Vj)
i and L

(Sj)
i denote the queue length of type i customers at an

arbitrary time point during Vj and Sj respectively (i, j = 1, . . . , N). The following relation
holds:

E[zLi] =
N
∑

j=1

(

E[Vj]
E[C]

E

[

zL
(Vj)

i

]

+
E[Sj]
E[C]

E

[

zL
(Sj)

i

])

, i = 1, . . . , N. (3.3)

Note that, at this moment, E[Vj] and E[C] are still unknown. In Sections 5 and 6 we illustrate
two different ways to compute them. Since Sj, for j = 1, . . . , N , and Vj, for j �= i, are non-
serving intervals for customers of type i, we use a standard result (see, e.g., [3]) to find the
PGFs of L

(Vj)
i and L

(Sj)
i respectively:

E

[

zL
(Vj)

i

]

=
E[zLB

(Vj)

i] − E[zLB
(Sj)

i]

(1 − z)
(

E[LB(Sj)
i] − E[LB(Vj)

i]
) , i = 1, . . . , N ; j �= i, (3.4)

E

[

zL
(Sj)

i

]

=
E[zLB

(Sj)

i] − E[zLB
(Vj+1)

i]

(1 − z)
(

E[LB(Vj+1)
i] − E[LB(Sj)

i]
) , i, j = 1, . . . , N, (3.5)

where LB(P)
i , for i = 1, . . . , N , are the number of type i customers at the beginning of period

P ∈ {V1, S1, . . . , VN , SN}. Their PGFs can be expressed in terms of ˜LB
(V1)

(z) using the
relations (3.2) and (3.1), and replacing argument z by the vector (1, . . . , 1, z, 1, . . . , 1) where
z is the element at position i. Using branching theory from [24], Boxma [5] gives an explicit

expression for ˜LB
(V1)

(z). The mean values, E[LB(Vj)
i] and E[LB(Sj)

i], can be obtained by
differentiation of the corresponding PGFs and substituting z = 1.

6

QUES9191_source.tex; 27/08/2010; 13:00 p. 7

It remains to compute E

[

zL
(Vi)
i

]

, i = 1, . . . , N , i.e., the PGF of the number of type i customers

at an arbitrary point within Vi. As far as the marginal queue length of type i customers is
concerned, the system can be viewed as a vacation queue with the intervisit time Ii corre-
sponding to the server vacation. We can use the Fuhrmann-Cooper decomposition [15], but
we have to be careful here. In a polling system where type i customers arrive with constant
arrival rate λ

(Vi)
i , the Fuhrmann-Cooper decomposition states that

E[zLi] =
(1 − λ

(Vi)
i E[Bi])(1 − z)βi

(

λ
(Vi)
i (1 − z)

)

βi
(

λ
(Vi)
i (1 − z)

)

− z
×

E

[

zLB
(Si)
i

]

− E

[

zLB
(Vi)
i

]

(1 − z)
(

E[LB(Vi)
i] − E[LB(Si)

i]
) . (3.6)

The two parts in this decomposition can be recognised as the PGFs of the number of type
i customers respectively at an arbitrary moment in an M/G/1 queue, and at an arbitrary
point during the intervisit time Ii. Of course, the following relation also holds:

E[zLi] =
E[Vi]
E[C]

E[zL
(Vi)
i] +

E[Ii]
E[C]

E[zL
(Ii)
i]. (3.7)

Combining (3.6) with (3.7), results in:

E[zL
(Vi)
i] =

1 − λ
(Vi)
i E[Bi]

λ
(Vi)
i E[Bi]

z
(

1 − βi(λ
(Vi)
i (1 − z))

)

βi(λ
(Vi)
i (1 − z)) − z

×
E

[

zLB
(Si)
i

]

− E

[

zLB
(Vi)
i

]

(1 − z)
(

E[LB(Vi)
i] − E[LB(Si)

i]
) , (3.8)

for i = 1, . . . , N . The second part of this decomposition is, again, the PGF of the number of
customers at an arbitrary point during the intervisit time Ii. The first part can be recognised
as the PGF of the queue length of an M/G/1 queue with type i customers at an arbitrary
point during a busy period.

Now we return to the model with varying arrival rates. The key observation is that the
behaviour of the number of type i customers during a visit period of Qi, is exactly the same
in this system as in a polling system with constant arrival rates λ

(Vi)
i for type i customers.

Equation (3.8) no longer depends on anything that happens during the intervisit time, because
this is all captured in LB(Vi)

i , the number of type i customers at the beginning of a visit to Qi.
This implies that, for a polling model with smart customers, the queue length PGF of Qi at
a random point during Vi is also given by (3.8). The only difference lies in the interpretation
of (3.8). Obviously, the first part in (3.8) is still the PGF of the queue length distribution of
an M/G/1 queue at an arbitrary point during a busy period. However, the last term can no
longer be interpreted as the PGF of the distribution of the number of type i customers at an
arbitrary point during the intervisit time Ii.

Substitution of (3.4), (3.5), and (3.8) in (3.3) gives the desired expression for the PGF of the
marginal queue length in Qi.

Remark 3.1 The marginal queue length PGF (3.3) has been obtained by conditioning on
the position of the server at an arbitrary epoch in a cycle, which explains the probabil-
ities E[Vj]

E[C] (server is serving Qj) and E[Sj]
E[C] (server is switching to Qj+1). It is easy now

to obtain the marginal queue length PGF at an arrival epoch, simply by conditioning on
the position of the server at an arbitrary arrival epoch. The probability that the server is

7

QUES9191_source.tex; 27/08/2010; 13:00 p. 8

at position P ∈ {V1, S1, . . . , VN , SN} at the arrival of a type i customer, is λ
(P)
i E[P]

λiE[C]
, with

λi = 1
E[C]

∑N
j=1

(

λ
(Vj)
i E[Vj] + λ

(Sj)
i E[Sj]

)

. This results in the following expression for the
PGF of the distribution of the number of type i customers at the arrival of a type i customer:

E[zLi |arrival type i] =
N
∑

j=1

⎛

⎝

λ
(Vj)
i E[Vj]
λiE[C]

E

[

zL
(Vj)

i

]

+
λ

(Sj)
i E[Sj]
λiE[C]

E

[

zL
(Sj)

i

]

⎞

⎠ , (3.9)

for i = 1, . . . , N . A standard up-and-down crossing argument can be used to argue that (3.9)
is also the PGF of the distribution of the number of type i customers at the departure of a type
i customer. As stated before, it is different from the PGF of the distribution of the number
of type i customers at an arbitrary epoch, unless λ

(Vj)
i = λ

(Sj)
i = λi for all i, j = 1, . . . , N (as

is the case in polling models without smart customers).

Remark 3.2 Equations (3.4) and (3.5) rely heavily on the PASTA property and are only
valid if type i arrivals take place during the non-serving interval. If no type i arrivals take
place (i.e. λ

(P)
i = 0 for the non-serving interval P), both the numerator and the denominator

become 0. This situation has to be analysed differently. Now assume that λ
(P)
i = 0 for a spe-

cific customer type i = 1, . . . , N , during a non-serving interval P ∈ {V1, S1, . . . , VN , SN}\Vi.
We now distinguish between visit periods and switch-over periods. Let us first assume that
P is a switch-over time, say Sj, j = 1, . . . , N . The length of a switch-over time is independent
from the number of customers in the system, so the distribution of the number of type i
customers at an arbitrary point in time during Sj is the same as at the beginning of Sj :

E

[

zL
(Sj)

i

]

= E

[

zLB
(Sj)

i

]

, i, j = 1, . . . , N.

The case where P is a visit time, say P = Vj for some j �= i, requires more attention, because
the length of Vj depends on the number of type j customers present at the visit beginning.
Since this number is positively correlated with the number of customers in the other queues,
we have to correct for the fact that it is more likely that a random point during an arbitrary
Vj , falls within a long visit period (with more customers present at its beginning) than in a
short visit period. The first step, is to determine the probability that the number of type i

customers at an arbitrary point during Vj is k. Since we consider the case where λ
(Vj)
i = 0,

this implies that we need the probability that the number of customers at the beginning of
Vj is k. Standard renewal arguments yield

P[L(Vj)
i = k] =

P[LB(Vj)
i = k] E[Vj |LB(Vj)

i = k]
∑∞

l=0 P[LB(Vj)
i = l] E[Vj |LB(Vj)

i = l]

=
E[Vj 1[LBi

(Vj) = k]]
E[Vj]

,

(3.10)

where 1[A] is the indicator function for event A. The first line in (3.10) is based on the
fact that the probability is proportional to the length of visit periods Vj that start with k
type i customers, and to the number of such visit periods Vj. The denominator is simply a
normalisation factor.

8

QUES9191_source.tex; 27/08/2010; 13:00 p. 9

Now we can write down the expression for the number of type i customers at an arbitrary
point during Vj if λ

(Vj)
i = 0:

E

[

zL
(Vj)

i

]

=
∞
∑

k=0

zk
P[L(Vj)

i = k]

=
1

E[Vj]

∞
∑

k=0

zk
E[Vj 1[LBi

(Vj) = k]]

=
1

E[Vj]
E[Vj

∞
∑

k=0

zk 1[LBi
(Vj) = k]]

=
1

E[Vj]
E[Vj zLB

(Vj)

i]

= − 1
E[Vj]

∂

∂ω
E

[

zLB
(Vj)

i e−ωVj

]

∣

∣

∣

∣

∣

ω=0

, (3.11)

for i = 1, . . . , N and j �= i.

Now we only need to determine E[zLB
(Vj)

i e−ωVj]. We use the joint queue length distribution
of all customers present at the beginning of Vj , which is given implicitly by (3.2). Define Θj

as the time that the server spends at Qj due to the presence of one customer there, with
LST θj(·). For gated service θj(·) = βj(·), and for exhaustive service θj(·) = πj(·). The
length of Vj , given that lj type j customers are present at the visit beginning, is the sum of
lj independent random variables with the same distribution as Θj, denoted by Θj,1, . . . ,Θj,lj .
The joint distribution of the number of type i customers present at the beginning of Vj and
the length of Vj is given by:

E

[

zLB
(Vj)

i e−ωVj

]

=
∞
∑

li=0

∞
∑

lj=0

E

[

zlie−ω(Θj,1+···+Θj,lj
)
]

P

[

LB(Vj)
i = li,LB(Vj)

j = lj
]

=
∞
∑

li=0

∞
∑

lj=0

zliE

[

e−ωΘj,1

]

× · · · × E

[

e−ωΘj,lj

]

P

[

LB(Vj)
i = li,LB(Vj)

j = lj
]

=
∞
∑

li=0

∞
∑

lj=0

zliθj(ω)lj P
[

LB(Vj)
i = li,LB(Vj)

j = lj
]

= ˜LB
(Vj)(1, . . . , 1, z, 1, . . . , 1, θj(ω), 1, . . . , 1), (3.12)

where z corresponds to customers in Qi, and θj(ω) corresponds to customers in Qj. Substi-
tution of (3.12) in (3.11) gives the desired result.

4 Waiting time distribution

In the previous section we gave an expression for the PGF of the distribution of the steady-
state queue length of a type i customer at an arbitrary epoch, Li. If the arrival rates do not
depend on the server position, i.e. λ

(Vj)
i = λ

(Sj)
i = λi for all i, j = 1, . . . , N , we can use the

distributional form of Little’s law (see, e.g., [19]) to obtain the LST of the distribution of the

9

QUES9191_source.tex; 27/08/2010; 13:00 p. 10

waiting time of a type i customer, Wi, i = 1, . . . , N . Because of the varying arrival rates,
there is no λi for which the relation E[zLi] = E

[

e−λi(1−z)(Wi+Bi)
]

holds (even if we choose

λi = λi). In the present section, we introduce subtypes of each customer type. Each subtype
is identified by the position of the server at its arrival in the system. We show that one can
use a generalised version of the distributional form of Little’s law that leads to the LST of the
waiting time distribution of a type i customer, when applied to the PGF of the joint queue
length distribution of all subtypes of a type i customer. Determining this PGF requires a
separate treatment of exhaustive and gated service, so results in this section do not apply to
any arbitrary branching-type service discipline.

4.1 Joint queue length distribution at visit beginnings/endings for all sub-
types

In the present section we distinguish between subtypes of type i customers, arriving during
different visit/switch-over periods. We define a type i(P) customer to be a customer arriving
at Qi during P ∈ {V1, S1, . . . , VN , SN}. Therefore, only in this section, we define z in the
following way:

z = (z(V1)
1 , . . . , z

(SN)
1 , . . . , z

(V1)
N , . . . , z

(SN)
N).

Note that z has 2N2 components: N customer types times 2N subperiods within a cycle (N

visit times plus N switch-over times). Let ˜VB
(P)

i (z) be the PGF of the joint queue length
distribution of all these customer types at the moment that the server starts serving type i

customers that have arrived when the server was located at position P . ˜VC
(P)

i (z) is defined
equivalently for the moment that the server completes service of type i(P) customers.

For exhaustive service, the visit period Vi can be divided into the following subperiods: Vi =
V

(Si)
i + V

(Vi+1)
i + · · · + V

(Si+N−1)
i + V

(Vi)
i . First the type i(Si) customers that were present at

the visit beginning are served, followed by the type i(Vi+1) customers, and so on. Note that
during these services only type j(Vi) customers arrive in Qj , j = 1, . . . , N . Visit period Vi

ends with V
(Vi)
i , i.e., the exhaustive service of all type i(Vi) customers that have arrived during

Vi so far. The joint queue length process at polling instants of each of the subperiods is still a
Multi-Type Branching Process, because the service discipline in each subperiod satisfies the
Branching Property. Hence, the laws of motion can be obtained by applying this property
successively. As an example, we show the relations for the PGFs of the joint queue length

10

QUES9191_source.tex; 27/08/2010; 13:00 p. 11

distributions at beginnings and endings of the subperiods of V1:

˜VB
(V2)

1 (z) = ˜VC
(S1)

1 (z) = ˜VB
(S1)

1

⎛

⎝z
(V1)
1 , β1

(

N
∑

j=1

λ
(V1)
j (1 − z

(V1)
j)

)

, z
(V2)
1 , . . . , z

(SN)
N

⎞

⎠ ,

˜VB
(S2)

1 (z) = ˜VC
(V2)

1 (z) = ˜VB
(V2)

1

⎛

⎝z
(V1)
1 , 1, β1

(

N
∑

j=1

λ
(V1)
j (1 − z

(V1)
j)

)

, z
(S2)
1 , . . . , z

(SN)
N

⎞

⎠ ,

...

˜VB
(V1)

1 (z) = ˜VC
(SN)

1 (z) = ˜VB
(SN)

1

⎛

⎝z
(V1)
1 , 1, . . . , 1, β1

(

N
∑

j=1

λ
(V1)
j (1 − z

(V1)
j)

)

, z
(V1)
2 , . . . , z

(SN)
N

⎞

⎠ ,

˜VC
(V1)

1 (z) = ˜VB
(V1)

1

⎛

⎝π1
(
∑

j �=1

λ
(V1)
j (1 − z

(V1)
j)

)

, 1, . . . , 1, z(V1)
2 , . . . , z

(SN)
N

⎞

⎠ .

During a switch-over time Sj only type i(Sj) customers arrive, i, j = 1, . . . , N . We can relate
the PGF of the joint queue length distribution at the beginning of a visit to Q2 (starting with

the service of type 2(S2) customers) to ˜VC
(V1)

1 (z):

˜VB
(S2)

2 (z) = ˜VC
(V1)

1 (z)σ1

(
N
∑

j=1

λ
(S1)
j (1 − z

(S1)
j)

)

.

The above expressions can be used to express ˜VB
(S2)

2 (·) in terms of ˜VB
(S1)

1 (·), and this can

be repeated to obtain a recursion for ˜VB
(S1)

1 (·).

Remark 4.1 For gated service we take similar steps, but they are slightly different because
arriving customers will always be served in the next cycle. This means that a visit to Qi starts
with the service of all type i(Vi) customers present at that polling instant: Vi = V

(Vi)
i +V

(Si)
i +

V
(Vi+1)
i + · · ·+ V

(Si+N−1)
i . The relations for the PGF of the joint queue length distribution at

beginnings and endings of the subperiods of V1 are:

˜VB
(S1)

1 (z) = ˜VC
(V1)

1 (z) = ˜VB
(V1)

1

⎛

⎝β1
(

N
∑

j=1

λ
(V1)
j (1 − z

(V1)
j)

)

, z
(S1)
1 , . . . , z

(SN)
N

⎞

⎠ ,

˜VB
(V2)

1 (z) = ˜VC
(S1)

1 (z) = ˜VB
(S1)

1

⎛

⎝z
(V1)
1 , β1

(

N
∑

j=1

λ
(V1)
j (1 − z

(V1)
j)

)

, z
(V2)
1 , . . . , z

(SN)
N

⎞

⎠ ,

...

˜VC
(SN)

1 (z) = ˜VB
(SN)

1

⎛

⎝z
(V1)
1 , 1, . . . , 1, β1

(

N
∑

j=1

λ
(V1)
j (1 − z

(V1)
j)

)

, z
(V1)
2 , . . . , z

(SN)
N

⎞

⎠ .

The remainder of this section is valid for any branching-type service discipline treating cus-
tomers in order of arrival in each queue, such as, e.g., exhaustive, gated, globally gated and
multi-stage gated [28]. Having determined the joint queue length distribution at beginnings

11

QUES9191_source.tex; 27/08/2010; 13:00 p. 12

and endings of all subperiods within each visit period, we are ready to determine the joint
queue length distribution at departure epochs of all customer subtypes. We follow the ap-
proach in [3, 4], which itself is based on Eisenberg’s approach [13], developing a relation
between joint queue lengths at service beginnings/completions and visit beginnings/endings.
In [3], for conventional polling systems, the joint distribution of queue length vector and
server position at service completions leads to the marginal queue length distribution. De-
veloping an equivalent for our model, requires distinguishing between customer subtypes.
Firstly, the queue length vector z contains all customer subtypes. Secondly, the type of ser-
vice completion is not just defined by the location i of the server, but also by the subtype
P of the customer that has been served. Therefore, let M

(P)
i (z) denote the PGF of the

joint distribution of the subtypes of customers being served (combination of i = 1, . . . , N
and P ∈ {V1, S1, . . . , VN , SN}) and queue length vector of all customer subtypes at service
completions. Equation (3.4) in [3], applied to our model, gives:

M
(P)
i (z) =

1
λE[C]

βi

(

∑N
j=1 λ

(Vi)
j (1 − z

(Vi)
j)

)

z
(P)
i − βi

(

∑N
j=1 λ

(Vi)
j (1 − z

(Vi)
j)

)

[

˜VB
(P)

i (z) − ˜VC
(P)

i (z)
]

, (4.1)

for i = 1, . . . , N ;P ∈ {V1, S1, . . . , VN , SN}, and λ =
∑N

i=1 λi. Thus, M
(P)
i (z) is the generating

function of the probabilities that, at an arbitrary departure epoch, the departing customer
is a type i(P) customer and the number of customers left behind by this departing customer
is l

(V1)
1 , . . . , l

(SN)
N . We now focus on the queue length vector of subtypes of type i customers

only, given that the departure takes place at Qi. The probability that an arbitrary service
completion (regardless of the subtype of the customer) takes place at Qi, is λi/λ. It is
convenient to introduce the notation zi = (1, . . . , 1, z(V1)

i , . . . , z
(SN)
i , 1, . . . , 1). The PGF of the

joint queue length distribution of all subtypes of type i customers at an arbitrary departure
from Qi is:

E

[

(

z
(V1)
i

)D
(V1)
i · · ·

(

z
(SN)
i

)D
(SN)

i

]

=
λ

λi

N
∑

j=1

(

M
(Vj)
i (zi) + M

(Sj)
i (zi)

)

(4.2)

where D
(P)
i is the number of type i(P) customers left behind at a departure from Qi (which

should not be confused with L
(P)
i , the number of type i customers at an arbitrary moment

while the server is at position P).

Remark 4.2 Substitution of z
(P)
i = z for all P ∈ {V1, S1, . . . , VN , SN} in (4.2) gives the

marginal queue length distribution of type i customers at departure epochs, which is equal
to (3.9), the marginal queue length distribution at arrival epochs of a type i customer.

Now we present a generalisation of the distributional form of Little’s law that can be applied
to the joint queue length distribution of all subtypes of a type i customer at departure epochs
from Qi, to obtain the waiting time LST of a type i customer.

Theorem 4.3 The LST of the distribution of the waiting time Wi of a type i customer,
i = 1, . . . , N , is given by:

E

[

e−ωWi

]

=
1

βi(ω)
E

⎡

⎢

⎣

(

1 − ω

λ
(V1)
i

)D
(V1)
i

· · ·
(

1 − ω

λ
(SN)
i

)D
(SN)

i

⎤

⎥

⎦
. (4.3)

12

QUES9191_source.tex; 27/08/2010; 13:00 p. 13

Proof We focus on the departure of a type i customer that arrived during PA ∈ {V1, S1, . . . , VN , SN}.
We make use of the fact that the sojourn time (i.e., waiting time plus service time) of this
tagged type i(PA) customer can be determined by studying the subtypes of all type i cus-
tomers that he leaves behind on his departure. We need to distinguish between two cases,
which can be treated simultaneously, but require different notations. Firstly, the case where
a customer arrives in the system and departs during another period. In the second case, the
customer departs during the same period in which he arrived. Obviously, in our model the
second case can only occur if a customer arrives at a queue with exhaustive service while it
is being visited by the server.

Case 1: departure in a different period. In this case we have that PA �= Vi, or PA = Vi

but the cycle in which the arrival took place is not the same as the cycle in which the departure
takes place (this situation cannot occur with exhaustive service). All type i customers that
are left behind, have arrived during the residual period PA, all periods between PA and Vi (if
any), and during the elapsed part of Vi. Denote by PI the set of visit periods and switch-over
periods that lie between PA and Vi. Furthermore, let PA,res be the residual period PA. Finally
denote by Vi,past the age of Vi at the departure instant of the tagged type i customer.

Case 2: departure during the period of arrival. If the customer arrived during the
same visit period in which his departure takes place, take PA,res = 0, PI = ∅, and Vi,past is
the time that elapsed since the arrival of the tagged type i(Vi) customer.

In both cases, the joint queue length distribution of all customer i subtypes at this departure
instant is given by (4.2). Since we assume FCFS service, at such a departure instant no type
i customers are present anymore that have arrived before the arrival epoch of the tagged type
i customer. This results in:

E

[

(

z
(V1)
i

)D
(V1)
i · · ·

(

z
(SN)
i

)D
(SN)

i

]

= E

[

e
−λ

(PA)

i (1−z
(PA)

i)PA,res−
∑

p∈PI
λ
(p)
i (1−z

(p)
i)p−λ

(Vi)
i (1−z

(Vi)
i)Vi,past

]

.

(4.4)
Equation (4.3) follows from the relation Wi + Bi = PA,res +

∑

p∈PI
p + Vi,past and substitution

of z
(P)
i = 1 − ω

λ
(P)
i

for all P ∈ {V1, S1, . . . , VN , SN} in (4.4). �

Remark 4.4 Theorem 4.3 only holds if λ
(P)
i > 0 for all i = 1, . . . , N , and P ∈ {V1, S1, . . . , VN , SN}.

If λ
(P)
i = 0 for a certain i and P , we can still find an expression for E

[

e−ωWi

]

, but we might
have to resort to some “tricks”. In Section 8, Example 2, we show how the introduction of
an extra (virtual) customer type can help to resolve this problem.

5 Cycle time, intervisit time and visit times

In the previous sections we repeatedly needed the mean cycle time E[C] and the mean visit
times E[Vi], i = 1, . . . , N . In this section we study the LSTs of the cycle time distribution
and visit time distributions, which can be used to obtain the mean and higher moments. The
LSTs of the distributions of the visit times Vi, i = 1, . . . , N , can easily be determined for any

13

QUES9191_source.tex; 27/08/2010; 13:00 p. 14

branching-type service discipline using the function θi(·), introduced in Remark 3.2, and the
joint queue length distribution at the visit beginning of Qi (not taking subtypes into account):

E[e−ωVi] = ˜LB
(Vi)(1, . . . , 1, θi(ω), 1, . . . , 1). (5.1)

The cycle time Ci is defined as the time that elapses between two consecutive visit beginnings
to Qi. We consider branching-type service disciplines only, i.e., service disciplines for which
Property 2.1 holds. The cycle time LST for polling models with branching-type service
disciplines and arrival rates independent of the server position, has been established in [10].
We adapt their approach to the model with arrival rates depending on the server location.
Using θi(·), i = 1, . . . , N , we define the following functions in a recursive way:

ψ(VN)(ω) = ω,

ψ(Vi)(ω) = ω +
N
∑

k=i+1

λ
(Vi)
k

(

1 − θk(ψ(Vk)(ω))
)

, i = N − 1, . . . , 1.

Similarly, define:

ψ(SN)(ω) = ω,

ψ(Si)(ω) = ω +
N
∑

k=i+1

λ
(Si)
k

(

1 − θk(ψ(Vk)(ω))
)

, i = N − 1, . . . , 1.

Theorem 5.1 The LST of the distribution of the cycle time C1 is:

E

[

e−ωC1

]

= ˜LB
(V1) (

θ1(ψ(V1)(ω)), . . . , θN (ψ(VN)(ω))
)

N
∏

i=1

σi

(

ψ(Si)(ω)
)

. (5.2)

Proof Similar to the proof of Theorem 3.1 in [10], by giving an expression for the cycle
time LST conditioned on the numbers of customers in all queues at the beginning of a cycle,
and then by subsequently unconditioning one queue at a time. �

The LST of the distribution of the intervisit time I1 can be found in a similar way:

E

[

e−ωI1
]

= ˜LB
(S1) (

1, θ2(ψ(V2)(ω)), . . . , θN (ψ(VN)(ω))
)

N
∏

i=1

σi

(

ψ(Si)(ω)
)

. (5.3)

Equations (5.2) and (5.3) hold for general branching-type service disciplines. For gated and
exhaustive service we can give expressions that are more compact and easier to interpret,
using the joint queue length distribution of all customer subtypes at visit beginnings, as given
in Subsection 4.1.

Theorem 5.2 If Qi receives exhaustive service, the LST of the distribution of the cycle time
C∗

i , starting at a visit ending to Qi, and the LST of the distribution of the intervisit time Ii,
are given by:

E
[

e−ωC∗
i
]

= ˜VB
(Si)

i

(

1, . . . , 1, πi(ω) − ω

λ
(V1)
i

, . . . , πi(ω) − ω

λ
(SN)
i

, 1, . . . , 1
)

, (5.4)

E
[

e−ωIi
]

= ˜VB
(Si)

i

(

1, . . . , 1, 1 − ω

λ
(V1)
i

, . . . , 1 − ω

λ
(SN)
i

, 1, . . . , 1
)

, (5.5)

14

QUES9191_source.tex; 27/08/2010; 13:00 p. 15

provided that λ
(P)
i �= 0 for all P ∈ {V1, S1, . . . , VN , SN}. In the right hand sides of (5.4) and

(5.5), the components z
(P)
j with j �= i are 1.

If Qi receives gated service, the LST of the distribution of the cycle time Ci, and the LST of
the distribution of the intervisit time Ii, are given by:

E
[

e−ωCi
]

= ˜VB
(Vi)

i

(

1, . . . , 1, 1 − ω

λ
(V1)
i

, . . . , 1 − ω

λ
(SN)
i

, 1, . . . , 1
)

,

E
[

e−ωIi
]

= ˜VB
(Vi)

i

(

1, . . . , 1, 1, 1 − ω

λ
(V1)
i

, . . . , 1 − ω

λ
(Si−1)
i

, 1, 1 − ω

λ
(Si)
i

, . . . , 1 − ω

λ
(SN)
i

, 1, . . . , 1
)

,

(5.6)

again provided that λ
(P)
i �= 0 for all P ∈ {V1, S1, . . . , VN , SN}. Note that z

(Vi)
i = 1 in (5.6).

Proof We prove the exhaustive case only, the proof for gated service proceeds along the
same lines. Using Ii = Si+Vi+1+Si+1+· · ·+Si+N−1, and the fact that no type i(Vi) customers
are present at the beginning of the intervisit period (and hence also at the beginning of a
cycle C∗

i), we obtain:

˜VB
(Si)

i

(

1, . . . , 1, z(V1)
i , . . . , z

(SN)
i , 1, . . . , 1

)

= E

[

e−λ
(Si)

i (1−z
(Si)

i)Si−···−λ
(Si+N−1)

i (1−z
(Si+N−1)

i)Si+N−1

]

.

(5.7)
Substitution of z

(P)
i = 1 − ω

λ
(P)
i

for all P ∈ {V1, S1, . . . , VN , SN} proves (5.5). Equation (5.4)

follows by using the relation C∗
i = Ii + Vi, and noting that Vi is the sum of the busy periods

initiated by all type i customers that have arrived during Ii. In terms of LSTs:

E

[

e−ωC∗
i

]

= E

[

e
−
(

ω+λ
(Si)
i (1−πi(ω))

)

Si−···−
(

ω+λ
(Si+N−1)

i (1−πi(ω))

)

Si+N−1

]

= E

⎡

⎢

⎢

⎢

⎣

e
−λ

(Si)
i

(

1−
(

πi(ω)− ω

λ
(Si)

i

)

)

Si−···−λ
(Si+N−1)

i

(

1−
(

πi(ω)− ω

λ
(Si+N−1)

i

)

)

Si+N−1

⎤

⎥

⎥

⎥

⎦

,

which, by (5.7), reduces to (5.4). �

Differentiation of the LSTs of Ci and C∗
i for i = 1, . . . , N , shows that, just like in polling

models with constant arrival rates, the mean cycle time does not depend on the starting
point of the cycle, i.e. E[Ci] = E[C∗

i] = E[C]. The mean cycle time E[C] and mean visit times
E[Vi] can be obtained by differentiating the corresponding LSTs. In the next section a more
efficient method is described to compute them.

6 Mean Value Analysis

In this section we extend the Mean Value Analysis (MVA) framework for polling models,
originally developed by Winands et al. [31], to suit the concept of smart customers. For
this purpose, we first outline the main ideas of MVA for polling systems. Subsequently, we
determine the mean visit times and the mean cycle time in a numerically more efficient way
than in the previous section, and, finally, we present the MVA equations for a polling system
with smart customers.

15

QUES9191_source.tex; 27/08/2010; 13:00 p. 16

6.1 Main idea MVA

For “ordinary” polling models, where the arrival rates at a queue do not depend on the
position of the server, in [31] an approach is described for deriving the steady-state mean
waiting times at each of the queues, E[Wi] for i = 1, . . . , N , by setting up a system of linear
equations, where each equation has a probabilistic and intuitive explanation. We sketch the
main ideas of MVA for exhaustive service; the cases of gated or mixed service disciplines
require only minor changes.

The mean waiting time E[Wi] of a type i customer, excluding his service time, can be expressed
in the following way: upon arrival of a (tagged) type i customer, he has to wait for the
(remaining) time it takes to serve all type i customers already present in the system, plus
possibly the time before the server arrives at Qi. By PASTA, the arriving customer finds in
expectation E[L̂i] waiting type i customers in queue, each having an expected service time
E[Bi]. Note that we use L̂i to denote the queue lengths excluding customers in service. The
expected time until the server returns to Qi, is denoted by E[Ti] (which depends on the
service discipline of all queues). A fraction ρi := λi E[Bi] of the time, the server is serving Qi,
and hence, with probability ρi, an arriving customer has to wait for a mean residual service
time, denoted by E[RBi]; otherwise he has to wait until the server returns. This gives, for
i = 1, . . . , N :

E[Wi] = E[L̂i] E[Bi] + ρi E[RBi] + (1 − ρi) E[Ti].

Little’s law gives E[L̂i] = λi E[Wi], for i = 1, . . . , N , and so it remains to derive E[Ti]. For
this, first a system of equations is composed for the conditional mean queue lengths, which
can be expressed in mean residual durations of (sums of) visit and switch-over times. The
solution of this system of equations can be used to determine E[Ti], and hence E[L̂i] and
E[Wi] follow.

6.2 Mean visit times and mean cycle time

For the case of smart customers, the visit times to a queue depend on all arrival rates λ
(Vj)
i

and λ
(Sj)
i . In order to extend MVA to this case, we first derive the mean visit times to each of

the queues, E[Vi], for i = 1, . . . , N . We set up a system of N linear equations where the mean
visit time of a queue is expressed in terms of the other mean visit times. We again focus on
the exhaustive service discipline.

At the moment the server finishes serving Qi, there are no type i customers present in the
system any more. From this point on, the number of type i customers builds up at rates
λ(Si), λ(Vi+1), . . . , λ(Si+N−1) (depending on the position of the server), until the server starts
working on Qi again. Each of these customers initiates a busy period, with mean E[BPi] :=
E[Bi]/(1 − λ

(Vi)
i E[Bi]). This gives:

E[Vi] = E[BPi]

⎛

⎝λ
(Si)
i E(Si) +

i+N−1
∑

j=i+1

(

λ
(Vj)
i E[Vj] + λ

(Sj)
i E[Sj]

)

⎞

⎠ ,

for i = 1, . . . , N . The E[Vi] follow from solving this set of equations. This method is computa-
tionally faster than determining (and differentiating) the LSTs of the visit time distributions

16

QUES9191_source.tex; 27/08/2010; 13:00 p. 17

(5.1). Once the mean visit times have been obtained, the mean cycle time follows from
E[C] =

∑N
i=1(E[Vi] + E[Si]).

6.3 MVA equations

We extend the MVA approach to polling systems with smart customers. First, we briefly
introduce some extra notation, then we give expressions for the mean waiting times, and
the mean conditional and unconditional queue lengths.After eliminating variables, we end up
with a system of linear equations. The system can (numerically) be solved in order to find
the unknowns, in particular, the mean unconditional queue lengths and the mean waiting
times. Although all equations are discussed in the present section, for the sake of brevity of
this section, some of them are presented in Appendix A.

The fraction of time the system is in a given period P ∈ {V1, S1, . . . , VN , SN} is denoted by
q(P) := E[P]

E[C] . The mean residual duration of a period P , at an arbitrarily chosen point in this

period, is denoted by E[RP] = E[P 2]
2E[P] . The mean conditional number of type j customers in

the queue during a random point in P is denoted by E[L̂(P)
j], and the mean (unconditional)

number of type j customers in queue is denoted by E[L̂j]. Note that L̂j and L̂
(P)
j do not

include a potential customer in service, whereas Lj and L
(P)
j , introduced in Section 3, denote

queue lengths including customers being served.

We define an interval, e.g. (Vi : Sj), as the consecutive periods from the first mentioned
period on, until and including the last mentioned period, here consisting of the periods
Vi, Si, Vi+1, Si+1, . . . , Vj, Sj . The mean residual duration of an interval, e.g. (Vi : Sj), is
denoted by E[RVi:Sj]. Analogously, we define E[RVi:Vj], E[RSi:Vj] and E[RSi:Sj].

An important concept in the remainder of the analysis is the concept of conditional durations
of a period. This is an extension of the well-known residual duration, or the age of a period.
It deals with the length of a period within the cycle (i.e., a visit time or a switch-over time),
given that the system is being observed from another period. Before we proceed, we clarify
this important concept by a simple example. Consider a vacation system, i.e., a polling system
with N = 1. A cycle consists of a switch-over time (or: vacation) S1, followed by a visit time
V1. We assume that service is exhaustive. Now assume that the system is being observed at a
random epoch during the switch-over time S1. We derive an expression for E[

−→
V1

(S1)], which is
the conditional mean visit time following the switch-over time, given that the system is being
observed during S1. Since service is exhaustive, the visit time consists of the busy periods of
the customers that arrived during the elapsed part of S1, denoted by S1,past, plus the busy
periods of the customers that will arrive during the residual switch-over time, denoted by
S1,res. Hence, it can be seen that in this system

E[
−→
V1

(S1)] =
λ

(S1)
1 E[B1]

1 − λ
(V1)
1 E[B1]

(E[S1,past] + E[S1,res]) =
λ

(S1)
1 E[B1]

1 − λ
(V1)
1 E[B1]

E[S2
1]

E[S1]
.

Instead of studying the mean visit time following the switch-over time during which the
system is observed, we can also study the mean visit time preceding this particular switch-
over time, denoted by E[

←−
V1

(S1)]. Now the expression is easier, because a switch-over time is

17

QUES9191_source.tex; 27/08/2010; 13:00 p. 18

independent of the preceding visit time, so

E[
←−
V1

(S1)] = E[V1] =
λ

(S1)
1 E[B1]

1 − λ
(V1)
1 E[B1]

E[S1].

This example simply serves the purpose of illustrating the concept of these conditional du-
rations. In a polling system consisting of multiple queues, these expressions become more
complicated and can only be found by solving sets of equations, as will be shown in the
remainder of this section. Note that, because of conditional PASTA, an arbitrary customer
arriving during S1 finds the system in the same state as an observer who observes the sys-
tem at an arbitrary epoch during S1. Hence, the conditional durations of periods play an
important role in determining the mean waiting times.

For the mean conditional durations of a period, we have the following: E[
←−
Vi

(Vj)] denotes
the mean duration of the previous period Vi, seen from an arbitrary point in Vj (i.e., Vi

seen backward in time from the viewpoint of Vj), and E[
−→
Vi

(Vj)] denotes the mean duration
of the next period Vi (i.e., Vi seen forward in time from the viewpoint of Vj). For i = j
they both coincide, and represent the mean age, resp. the mean residual duration of Vi.
Since the distribution of the age of a period is the same as the distribution of the residual
period, we have E[

←−
Vi

(Vi)] = E[
−→
Vi

(Vi)] = E[RVi]. Generally, however, E[
←−
Vi

(Vj)] �= E[
−→
Vi

(Vj)]
for i �= j, because of the dependencies between the durations of periods. Analogously, we
define E[

←−
Vi

(Sj)], E[
−→
Vi

(Sj)], E[
←−
Si

(Vj)] and E[
−→
Si

(Vj)]. Note that, e.g., E[
−→
Si

(Vj)] = E[Si], but
E[
←−
Si

(Vj)] �= E[Si]. As switch-over times are independent, the following quantities directly
simplify:

E[
←−
Si

(Sj)] = E[
−→
Si

(Sj)] =

{

E[Si] for i �= j,

E[RSi] for i = j.

Having introduced the required notation, we now present the main theorem of this section,
which gives a set of equations that can be solved to find the mean waiting times of customers
in the system.

Theorem 6.1 The mean waiting times, E[Wi], for i = 1, . . . , N , and the mean queue lengths,
E[L̂i], satisfy the following equations:

E[Wi] =
q(Vi)λ

(Vi)
i

λi

(

E[L̂(Vi)
i]E[Bi] + E[RBi]

)

+
i+N−1
∑

j=i+1

q(Vj)λ
(Vj)
i

λi

⎛

⎝E[L̂(Vj)
i]E[Bi] +

i+N−1
∑

k=j

(

E[Sk] + E[
−→
Vk

(Vj)]
)

⎞

⎠

+
i+N−1
∑

j=i

q(Sj)λ
(Sj)
i

λi

⎛

⎝E[L̂(Sj)
i]E[Bi] + E[RSj] +

i+N−1
∑

k=j+1

(

E[Sk] + E[
−→
Vk

(Sj)]
)

⎞

⎠ , (6.1)

E[L̂i] = λiE[Wi], (6.2)

E[L̂i] =
i+N
∑

j=i+1

(

q(Vj)E[L̂(Vj)
i] + q(Sj)E[L̂(Sj)

i]
)

, (6.3)

18

QUES9191_source.tex; 27/08/2010; 13:00 p. 19

where the conditional mean queue lengths E[L̂(Vj)
i] and E[L̂(Sj)

i], for j = i + 1, . . . , i + N − 1,
are given by

E[L̂(Vj)
i] =

j
∑

k=i+1

λ
(Vk)
i E[

←−
Vk

(Vj)] +
j−1
∑

k=i

λ
(Sk)
i E[

←−
Sk

(Vj)], (6.4)

E[L̂(Sj)
i] =

j
∑

k=i+1

λ
(Vk)
i E[

←−
Vk

(Sj)] +
j

∑

k=i

λ
(Sk)
i E[

←−
Sk

(Sj)], (6.5)

and where all E[
←−
P1

(P2)] and E[
−→
P1

(P2)], for P1, P2 ∈ {V1, S1, . . . , VN , SN}, satisfy the set of
equations (6.6) – (6.8) below, and (A.2)–(A.7) in Appendix A.

Proof In order to derive the mean waiting time E[Wi], we condition on the period in which a
type i customer arrives. A fraction q(Vj)λ

(Vj)
i /λi, and q(Sj)λ

(Sj)
i /λi respectively, of the type i

customers arrives during period Vj, and during period Sj respectively. If a tagged type i
customer arrives during period Vi (i.e., while his queue is being served), he has to wait for
a residual service time, plus the service times of all type i customers present in the system
upon his arrival, which is (by conditional PASTA), E[L̂(Vi)

i]. As a fraction q(Vi)λ
(Vi)
i /λi of the

customers arrives during Vi, this explains the first line of (6.1). If the customer arrives in any
other period, he has to wait until the server returns to Qi again. For this, we condition on
the period in which he arrives. If the arrival period is a visit to Qj, say Vj for j �= i, he has
to wait for the residual duration of Vj and the interval (Sj :Si−1), and for the service of the
type i customers present in the system upon his arrival. This gives the second line of (6.1).
The third line, the case where the customer arrives during the switch-over time from Qj to
Qj+1 (period Sj), can be interpreted along the same lines as the case Vj.

Equation (6.3) is obtained by unconditioning the conditional queue lengths E[L̂(P)
i]. The

mean number of type i customers in the queue at an arbitrary point during Vj , given by
(6.4), is the mean number of customers built up from the last visit to Qi (when Qi became
empty) until and including a residual duration of Vj (as the mean residual duration of Vj is
equal to the mean age of that period), taking into account the varying arrival rates. The
mean number of type i customers queueing in the system during period Sj , given by (6.5),
can be found similarly. Equations (6.4) and (6.5) show one of the difficulties in adapting the
“ordinary” MVA approach to that of smart customers. If the arrival rates remain constant
during a cycle, these expressions would reduce to λi multiplied by the mean time passed since
the server has left Qi. However, for the smart customers case, we have to keep track of the
duration of all the intermediate periods, from the viewpoint of period Vj respectively Sj.

As indicated in Theorem 6.1, at this point, the number of equations is insufficient to find all
the unknowns, E[

←−
P1

(P2)] and E[
−→
P1

(P2)], for P1, P2 ∈ {V1, S1, . . . , VN , SN}. In the remainder of
the proof, we develop additional relations for these quantities to complete the set of equations.
We start by considering E[

−→
Vi

(Vj)], which is the mean duration of the next period Vi, when
observed from an arbitrary point in Vj. For i = j this is just the residual duration of Vi,
consisting of a busy period induced by a customer with a residual service time left, and the
busy periods of all type i customers in the queue. The cases i �= j need some more attention.
The duration of Vi now consists of the busy period induced by the type i customers in
the queue, which are in expectation E[L̂(Vj)

i] customers. During the periods Vj , Sj , . . . , Si−1,
however, new type i customers are arriving, each contributing a busy period to the duration

19

QUES9191_source.tex; 27/08/2010; 13:00 p. 20

of Vi. Hence, summing over these periods and taking into account the varying arrival rates, we
get the mean total of newly arriving customers in this interval. This yields, for i = 1, . . . , N
and j = i + 1, . . . , i + N − 1:

E[
−→
Vi

(Vi)] = E[BPi] E[L̂(Vi)
i] + E[RBi]/

(

1 − λ
(Vi)
i E[Bi]

)

, (6.6)

E[
−→
Vi

(Vj)] = E[BPi]

⎛

⎝E[L̂(Vj)
i] +

i+N−1
∑

k=j

(

λ
(Vk)
i E[

−→
Vk

(Vj)] + λ
(Sk)
i E[Sk]

)

⎞

⎠ . (6.7)

Analogously E[
−→
Vi

(Sj)] denotes the mean duration of the next period Vi, when observed from
an arbitrary point in Sj. The explanation of its expression is along the same lines as that of
E[
−→
Vi

(Vj)], although it should be noted that i = j is not a special case. See (A.1) in Appendix
A.

The last step in the proof of Theorem 6.1, needs the following lemma to find the final relations
between E[

←−
P1

(P2)] and E[
−→
P1

(P2)]:

Lemma 6.2 For i = 1, . . . , N , and j = i + 1, . . . , i + N :

j−1
∑

k=i

E[Sk]
E[(Si :Vj)]

⎛

⎝E[
←−
Si

(Sk)] +
k

∑

l=i+1

(

E[
←−
Sl

(Sk)] + E[
←−
Vl

(Sk)]
)

−E[RSk
] − E[

−→
Vj

(Sk)] −
j−1
∑

l=k+1

(

E[Sl] + E[
−→
Vl

(Sk)]
)

⎞

⎠

=
j

∑

k=i+1

E[Vk]
E[(Si :Vj)]

⎛

⎝E[
−→
Vj

(Vk)] +
j−1
∑

l=k

(

E[Sl] + E[
−→
Vl

(Vk)]
)

−E[
←−
Si

(Vk)] − E[
←−
Vk

(Vk)] −
k−1
∑

l=i+1

(

E[
←−
Sl

(Vk)] + E[
←−
Vl

(Vk)]
)

⎞

⎠ . (6.8)

Proof Equation (6.8) can be proven by studying all mean residual interval lengths E[RSi:Vj],
E[RSi:Sj], E[RVi:Vj] and E[RVi:Sj]. Consider E[RSi:Vj], the mean residual duration of the
interval Si, Vi+1, . . . , Vj . We condition on the period in which the interval is observed. As
the mean duration of the interval is given by E[(Si :Vj)], it follows that E[Sk]/E[(Si : Vj)] is
the probability that the interval is observed in period Sk. The remaining duration of the
interval consists of the remaining duration of Sk plus the mean durations of the (coming)
periods Vk+1, Sk+1, . . . , Vj , when observed from period Sk. When observing E[(Si :Vj)] from
Vk, a similar way of reasoning is used. This gives, for i = 1, . . . , N , and j = i + 1, . . . , i + N :

E[RSi:Vj] =
j−1
∑

k=i

E[Sk]
E[(Si :Vj)]

⎛

⎝E[RSk
] + E[

−→
Vj

(Sk)] +
j−1
∑

l=k+1

(

E[Sl] + E[
−→
Vl

(Sk)]
)

⎞

⎠

+
j

∑

k=i+1

E[Vk]
E[(Si :Vj)]

⎛

⎝E[
−→
Vj

(Vk)] +
j−1
∑

l=k

(

E[Sl] + E[
−→
Vl

(Vk)]
)

⎞

⎠ . (6.9)

We now use that the distribution of the residual length of an interval is the same as the
distribution of the age of this interval. Again, focus on E[RSi:Vj], conditioning on the period

20

QUES9191_source.tex; 27/08/2010; 13:00 p. 21

in which the interval is observed, but now looking forward in time. Consider all the periods
in (Si : Vj) that have already passed when observing during Sk. The interval has lasted for
the sum of these periods, plus the age of Sk. The same can be done for an arbitrary point in
Vk. This gives, for i = 1, . . . , N , j = i + 1, . . . , i + N :

E[RSi:Vj] =
j−1
∑

k=i

E[Sk]
E[(Si :Vj)]

⎛

⎝E[
←−
Si

(Sk)] +
k

∑

l=i+1

(

E[
←−
Sl

(Sk)] + E[
←−
Vl

(Sk)]
)

⎞

⎠

+
j

∑

k=i+1

E[Vk]
E[(Si :Vj)]

⎛

⎝E[
←−
Si

(Vk)] + E[
←−
Vk

(Vk)] +
k−1
∑

l=i+1

(

E[
←−
Sl

(Vk)] + E[
←−
Vl

(Vk)]
)

⎞

⎠ .

(6.10)

The proof of Lemma 6.2 is completed by equating (6.9) and (6.10) and rearranging the terms.
�

Similar to the proof of Lemma 6.2, we can develop two different expressions for each of the
terms E[RSi:Sj], E[RVi:Vj] and E[RVi:Sj]. For the sake of brevity of this section, they are
presented in Appendix A, Equations (A.2)–(A.7). Equating each pair of these expressions,
completes the set of (linear) equations for the mean waiting times and mean queue lengths.
This concludes the proof of Theorem 6.1. �

7 Pseudo-Conservation Law

In this section we derive a so-called Pseudo-Conservation Law (PCL), which gives an expres-
sion for the weighted sum of the mean waiting times at each of the queues. For “ordinary”
cyclic polling systems, Boxma and Groenendijk [6] derive a PCL under various service disci-
plines. This PCL, in commonly used notation ρi = λiE[Bi], ρ =

∑N
i=1 ρi, S =

∑N
i=1 Si, states

that:
N
∑

i=1

ρiE[Wi] = ρ

∑N
i=1 ρiE[RBi]

1 − ρ
+ ρE[RS] +

E[S]
2(1 − ρ)

(

ρ2 −
N
∑

i=1

ρ2
i

)

+
N
∑

i=1

E[Zii], (7.1)

with Zii denoting the amount of work left behind by the server at Qi at the ending of a visit.
For exhaustive service at Qi, we have E[Zii] = 0, and for gated service E[Zii] = ρ2

i E[S]
1−ρ .

We base our approach on [6], and adapt their ideas to derive a PCL for a polling model
with smart customers. The approach focusses on the mean amount of work in the system
at an arbitrary point in time. A required restriction for our approach in this section, is that
the Poisson process according to which work arrives in the system, has a fixed arrival rate
during all visit periods. We also require that the amounts of work brought by an individual
arrival are identically distributed for all visit periods. We mention two typical cases where this
requirement is satisfied. Firstly, the case when the arrival rate at a given queue stays constant
during different visit times, and secondly when the total arrival rate remains constant during
visit times and the service times are identically distributed:

Case 1: λ
(V1)
i = λ

(V2)
i = . . . = λ

(VN)
i =: λ

(V)
i , i = 1, . . . , N, (7.2)

Case 2:
N
∑

i=1

λ
(Vj)
i =: Λ(V), and B1

d= . . .
d= BN , j = 1, . . . , N. (7.3)

21

QUES9191_source.tex; 27/08/2010; 13:00 p. 22

Note that Case 1 does allow for different arrival rates during switch-over times. During visit
periods, let Λ(V) be the total arrival rate of all customer types, and let B(V) denote the
generic service time of an arbitrary customer entering the system. In particular, this means
for Case 1 that Λ(V) =

∑N
i=1 λ

(V)
i and B(V) d= Bi with probability λ

(V)
i /Λ(V) for i = 1, . . . , N .

We introduce ρ(V) to denote the mean amount of work entering the system per time unit
during a visit period, so ρ(V) = Λ(V)

E[B(V)].

Denote by Y the amount of work in the polling system at an arbitrary point in time, and
by Y (V) and Y (S) the amount of work at an arbitrary point during respectively a visit period,
and a switch-over period. Then

Y
d=

{

Y (V) w.p. ρ,

Y (S) w.p. 1 − ρ,
(7.4)

where ρ :=
∑N

i=1 ρi =
∑N

i=1 λiE[Bi] is the mean offered amount of work per time unit. Hence,

E[Y] = ρ E[Y (V)] + (1 − ρ)E[Y (S)]. (7.5)

Another way to obtain the mean total amount of work in the system, is by taking the sum of
the mean workloads. The mean workload in Qi is the mean amount of work of all customers
in the queue, plus, with probability ρi = λiE[Bi], the mean remaining amount of work of a
customer in service at Qi:

E[Y] =
N
∑

i=1

(

E[L̂i]E[Bi] + ρiE[RBi]
)

. (7.6)

In the next subsections we show that equating (7.5) and (7.6), and applying Little’s law,
E[L̂i] = λiE[Wi], gives a PCL for the mean waiting times in the system. But first we have to
find E[Y (V)] and E[Y (S)]. We start with the latter.

7.1 Work during switch-over periods

The term E[Y (S)] denotes the mean amount of work in the system when observed at a random
point in a switch-over interval. Denoting by E[Y (Si)] the mean amount of work in the system
at an arbitrary moment during Si, we can condition on the switch-over interval in which the
system is observed:

E[Y (S)] =
N
∑

i=1

E[Si]
E[S]

E[Y (Si)]. (7.7)

We can split E[Y (Si)] into two parts: the mean amount of work present at the start of Si, plus
the mean amount of work built up since the start of the switch-over time. In expectation, a
duration E[RSi] has passed since the beginning of the switch-over time, in which work arrived
at rate λ

(Si)
j E[Bj] at Qj . Hence, this gives a contribution to E[Y (Si)] of

∑N
j=1 λ

(Si)
j E[Bj]E[RSi].

For the work present at the start of the switch-over period, we start looking at the moment
that the server left Qj, leaving a mean amount of work E[Zjj] behind in this queue. For
exhaustive service, E[Zjj] = 0, for gated service E[Zjj] = λ

(Vj)
j E[Bj]E[Vj]. Since then, the

interval (Sj : Vi+N) has passed, for j = i + 1, . . . , i + N − 1. In this interval the amount of

22

QUES9191_source.tex; 27/08/2010; 13:00 p. 23

type j work increased at rates λ
(Sj)
j E[Bj], λ

(Vj+1)
j E[Bj], . . . , λ

(Si−1)
j E[Bj], λ

(Vi)
j E[Bj] during the

various periods. This leads to the following expression for E[Y (Si)]:

E[Y (Si)] =
N
∑

j=1

(

λ
(Si)
j E[Bj]E[RSi] + E[Zjj]

)

+
i+N−1
∑

j=i+1

i+N−1
∑

k=j

(

λ
(Sk)
j E[Bj]E[Sk] + λ

(Vk+1)
j E[Bj]E[Vk+1]

)

.

(7.8)

7.2 Work during visit periods

The key observation in the proof of [6] is the work decomposition property in a polling sys-
tem. This property states that the amount of work at an arbitrary epoch in a visit period is
distributed as the sum of two independent random variables: the amount of work in the “cor-
responding” M/G/1 queue at an arbitrary epoch during a busy period, denoted by Y

(V)
M/G/1,

and the amount of work in the polling system at an arbitrary epoch during a switch-over time,
Y (S). In a polling model with smart customers, this decomposition does not typically hold,
but a minor adaptation is required. We follow the proof in [6] as closely as possible, meaning
that we use the concepts of ancestral line and offspring of a customer, as introduced in [15].
We also copy the idea of comparing the polling system to an M/G/1 queue with vacations
and Last-Come-First-Served (LCFS) service. The traffic process offered to this M/G/1 queue
is identical to the traffic process of the polling system. The server of the M/G/1 queue takes
vacations exactly during the switching periods of the polling system. These vacations might
interrupt the service of a customer in the M/G/1 queue. This service is not resumed until
all customers that have arrived during the vacation and their offspring have been served (in
LCFS order).

We now focus on the amount of work in this M/G/1 system at an arbitrary moment during a
visit (busy) period. Let K be the customer being served at this observation moment, and let
KA be his ancestor. By definition, KA has arrived during a vacation period (or: switch-over
period in the corresponding polling system). Denote by YKA

the amount of work present
in the system at the moment that KA enters the system. An important difference with the
situation studied in [6] is that we cannot use the PASTA property, so in general YKA

�= Y (S).
We now condition on the customer type of KA. The mean duration of the service of a type i
ancestor and his entire ancestral line is E[Bi]/(1 − ρ(V)). This can be regarded as the mean
busy period commencing with the service of an exceptional first customer (namely a type i

customer). Each type i customer arriving during Sj , with arrival rate λ
(Sj)
i , i, j = 1, . . . , N ,

starts such a busy period, so the probability that KA is a type i customer is:

pi =
∑N

j=1 λ
(Sj)
i E[Sj]E[Bi]/(1 − ρ(V))

∑N
k=1

∑N
j=1 λ

(Sj)
k E[Sj]E[Bk]/(1 − ρ(V))

=
∑N

j=1 λ
(Sj)
i E[Sj]E[Bi]

∑N
k=1

∑N
j=1 λ

(Sj)
k E[Sj]E[Bk]

. (7.9)

Given that KA is a type i customer, we again pick up the proof of the work decomposition
in [6]. Denote by BKA

the service requirement of KA. Then, because of the LCFS service
discipline of the M/G/1 queue, the amount of work when KA goes into service is exactly
YKA

+ BKA
, and the amount of work when the last descendant of KA has been served equals

YKA
again (for the first time, since the arrival of KA). Ignoring the amount of work present

at KA’s arrival, the residual amount of work evolves just as during a busy period in an

23

QUES9191_source.tex; 27/08/2010; 13:00 p. 24

M/G/1 queue with an exceptional first customer (having generic service requirement Bi).
The only exception is caused by the vacations (or switch-over times in the polling model),
during which the work remains constant or may increase because of new arrivals. However,
just as in [6], if we ignore these vacations and the (LCFS) service of the ancestral lines of the
customers that arrive during these vacations, what remains is the workload process during a
busy period initiated by a type i customer. Denote by Y

(V)
M/G/1|i the amount of work at an

arbitrary moment during this busy period, and denote by Y
(S)
Ai

the amount of work present
in the polling system at an arbitrary arrival epoch of a type i customer during a switch-over
time. Note that YKA

is distributed like Y
(S)
Ai

. Then we have the following decomposition:

Y (V) d= Y
(V)
M/G/1|i + Y

(S)
Ai

w.p. pi, i = 1, . . . , N, (7.10)

with pi as given in (7.9), and Y
(V)
M/G/1|i and Y

(S)
Ai

being independent. This leads to

E[Y (V)] =
N
∑

i=1

pi

(

E[Y (V)
M/G/1|i] + E[Y (S)

Ai
]
)

, (7.11)

with

E[Y (V)
M/G/1|i] = E[RBi] +

ρ(V)

1 − ρ(V)
E[RB(V)], (7.12)

E[Y (S)
Ai

] =
N
∑

j=1

λ
(Sj)
i E[Sj]

∑N
k=1 λ

(Sk)
i E[Sk]

E[Y (Sj)]. (7.13)

For (7.12) we use standard theory on an M/G/1 queue with an exceptional first customer
(cf. [32]), and (7.13) is established by conditioning on the switch-over period in which a type
i customer arrives.

7.3 PCL for smart customers

We are now ready to state the PCL.

Theorem 7.1 Provided that (7.2) or (7.3) is valid, the following Pseudo-Conservation Law
holds:

N
∑

i=1

ρi E[Wi] = (1 − ρ)
N
∑

i=1

E[Si]
E[S]

E[Y (Si)] −
N
∑

i=1

ρiE[RBi]

+ ρ
N
∑

i=1

pi

⎛

⎝

N
∑

j=1

λ
(Sj)
i E[Sj]

∑N
k=1 λ

(Sk)
i E[Sk]

E[Y (Sj)] + E[RBi] +
ρ(V)

1 − ρ(V)
E[RB(V)]

⎞

⎠ ,

(7.14)

where E[Y (Si)] are as in (7.8), and the pi as in (7.9).

Proof We have two equations, (7.5) and (7.6), for mean total amount of work in the system.
Combining these two equations, and plugging in (7.7) and (7.11), we find

N
∑

i=1

(

E[L̂i]E[Bi] + ρiE[RBi]
)

= (1 − ρ)
N
∑

j=1

E[Sj]
E[S]

E[Y (Sj)] + ρ
N
∑

i=1

pi

(

E[Y (V)
M/G/1|i] + E[Y (S)

Ai
]
)

.

24

QUES9191_source.tex; 27/08/2010; 13:00 p. 25

By application of Little’s law, E[L̂i] = λiE[Wi], using that ρi = λiE[Bi], plugging in (7.12)
and (7.13), after some rewriting we obtain (7.14), which is a PCL for a polling model with
smart customers. �

Remark 7.2 When λ
(S1)
i = λ

(S2)
i = . . . = λ

(SN)
i = λ

(V1)
i = · · · = λ

(VN)
i = λi, for all i =

1, . . . , N , Equation (7.14) reduces to (7.1). E.g., because of PASTA, E[Y (S)
Ai

] = E[Y (S)], and
pi = λi/Λ for all i.

Case 2, where assumptions (7.3) hold, has a nice practical interpretation if we add the addi-
tional requirement that

∑N
i=1 λ

(Sj)
i =

∑N
i=1 λ

(Vj)
i =: Λ for all j = 1, . . . , N . Now, the model

can be interpreted as a polling system with customers arriving in one Poisson stream with
constant arrival rate Λ, and generic service requirement B, but joining a certain queue with
a fixed probability that may depend on the location of the server at the arrival epoch. In
Section 8, we discuss an example on how these probabilities may be chosen to minimise the
mean waiting time of an arbitrary customer. The PCL (7.14) can be simplified considerably
in this situation.

Corollary 7.3 If (7.3) is valid, the PCL (7.14) reduces to:

N
∑

i=1

ρi E[Wi] =
N
∑

i=1

E[Si]
E[S]

E[Y (Si)] +
ρ2

1 − ρ
E[RB]. (7.15)

Proof This is a direct consequence of assumptions (7.3). E.g., in the computation of (7.12)
there is no need to condition on a special first customer, and hence the term E[YM/G/1|i] does
not depend on i anymore:

E[YM/G/1|i] =
E[RB]
1 − ρ

,

where ρ = ΛE[B]. Additionally, the term
∑N

i=1 piE[Y (S)
Ai

] also simplifies considerably:

N
∑

i=1

piE[Y (S)
Ai

] =
N
∑

i=1

E[Si]
E[S]

E[Y (Si)].

Combining this, multiple terms cancel out and (7.15) follows. It is easily seen that (7.15) is
in line with (7.1), when the arrival rates do not change during various visit and switch-over
times. �

8 Numerical examples

8.1 Example 1: smart customers

In the first numerical example, we study a polling system where arriving customers choose
which queue they join, based on the current position of the server. In [5, 7] a fully symmetric
case is studied with gated service, and it is proven that the mean sojourn time of customers
is minimised if customers join the queue that is being served directly after the queue that
is currently being served. Although the exhaustive case is not studied, it is intuitively clear

25

QUES9191_source.tex; 27/08/2010; 13:00 p. 26

that in this situation smart customers join the queue that is currently being served. Or, in
case an arrival takes place during a switch-over time, join the next queue that is visited. In
this example, we study this situation in more detail by adding an extra parameter that can
be varied. The polling model is fully symmetric, except for the service time of customers
in Q1, which is varied. The practical interpretation is the following: as in the previously
described examples, customers arrive with a fixed arrival intensity, say Λ, and choose which
queue they join. This does not affect their service time, except when they choose Q1. In this
case the service time has a different distribution. To illustrate the dynamics of this system,
we choose the following setting. The system consists of three queues with exhaustive service.
The switch-over times are all exponentially distributed with mean 1. The service times are
also exponentially distributed with E[B2] = E[B3] = 1, and E[B1] is varied between 0 and
2. Arriving customers choose one queue which they want to join. This queue is the same
for all customers, so there is no randomness involved in the selection, which is only based on
the location of the server at their arrival epochs. We intend to find the optimal queue for
customers to join. In terms of the model parameters: we seek to find values for λ

(Vj)
i and

λ
(Sj)
i , i, j = 1, 2, 3, that minimise the mean sojourn time of an arbitrary customer, under the

restriction that for each value of j, exactly one λ
(Vj)
i and exactly one λ

(Sj)
i is equal to Λ, and

all the other values are 0. A valid combination of these arrival intensities is called a strategy,
and we introduce the short notation for a strategy by the indices of the queues that are joined
in respectively (V1, S1, V2, S2, V3, S3). E.g., for the fully symmetric case, with E[B1] = 1, it is
intuitively clear that the optimal strategy is to join Qi, if the arrival takes place during Vi, and
to join Qi+1 if the arrival takes place during Si. This strategy is denoted by (1, 2, 2, 3, 3, 1),
and corresponds to λ

(V1)
1 = λ

(V2)
2 = λ

(V3)
3 = Λ, and λ

(S1)
2 = λ

(S2)
3 = λ

(S3)
1 = Λ. The other

arrival intensities are 0. As stated before, we vary E[B1] between 0 and 2, and focus on the
overall mean sojourn time. It is clear that making E[B1] smaller, makes it more attractive to
join Q1 (even if another queue is served), whereas making E[B1] larger, makes it less attractive
to join Q1. In order to obtain numerical results, we choose the (arbitrary) value Λ = 3

5 . It
turns out that as much as seven different strategies can be optimal, depending on the value of
E[B1]. We refer to these strategies as I through VII, listed in Table 1, along with their region
of optimality. For each of these strategies, the mean sojourn time of an arbitrary customer is
plotted versus E[B1] in Figure 2.

As expected, Q1 is most popular if E[B1] is very small. In particular, for very small values
of E[B1], customers always join this queue (Strategy I). As E[B1] becomes larger, Q2 and
later also Q3 are chosen in more and more situations (Strategies II–V). Strategy V, which is
optimal if the system is (nearly) symmetric, is the one where customers join the queue that
is being served, or is going to be served next if the arrival takes place during a switch-over
time. Strategy VI, which is optimal in only a very small range of values of E[B1], states that
customers only join Q1 during the switch-over time S3. Strategy VII, in which customers
never join Q1, is optimal for large values of E[B1]. The ergodicity constraint, considering
all parameters are fixed except for E[B1], for the different strategies is also interesting to
mention. For strategies I-V, the necessary and sufficient condition for stability is E[B1] < 5

3 .
Strategies VI and VII always result in a stable system, regardless of E[B1]. For illustration
purposes, we show how to compute the ergodicity constraint for Strategy V. As indicated
in Section 3, the ergodicity constraint requires computation of the eigenvalues of the matrix
R−IN , where IN is the N×N identity matrix, and R is an N×N matrix containing elements

26

QUES9191_source.tex; 27/08/2010; 13:00 p. 27

Strategy Queue to join during Region of optimality
V1 S1 V2 S2 V3 S3

I 1 1 X 1 X 1 0.00 ≤ E[B1] ≤ 0.41
II 1 2 1 1 X 1 0.41 ≤ E[B1] ≤ 0.66
III 1 2 2 1 X 1 0.66 ≤ E[B1] ≤ 0.73
IV 1 2 2 3 1 1 0.73 ≤ E[B1] ≤ 0.84
V 1 2 2 3 3 1 0.84 ≤ E[B1] ≤ 1.10
VI 2 2 2 3 3 1 1.10 ≤ E[B1] ≤ 1.16
VII X 2 2 3 3 2 1.16 ≤ E[B1]

Table 1: The seven smartest strategies in Example 1 that minimise the mean waiting time
of an arbitrary customer who can choose the queue in which he wants to be served. An ‘X’
means that the length of the corresponding visit time equals 0 because customers never join
this queue.

I II III
IV

V

VI

VII

0.0 0.5 1.0 1.5
E�B1�

2.5

3.0

3.5

4.0

4.5

5.0
Mean sojourn time

Figure 2: The mean sojourn time of an arbitrary customer for the seven smartest strategies
in Example 1, against the mean service time in Q1.

ρij := λ
(Vj)
i E[Bi]. For Strategy V, we find

R − I3 =

⎛

⎜

⎝

ΛE[B1] − 1 0 0
0 Λ − 1 0
0 0 Λ − 1

⎞

⎟

⎠
.

The eigenvalues of this matrix are ΛE[B1]−1,Λ−1, and again Λ−1. The ergodicity constraint
in this situation states that the largest (and, hence, all) of these eigenvalues should be negative.
This means that E[B1] < 1

Λ is a sufficient and necessary condition for stability of this system,
given that Λ < 1. The ergodicity constraints of the other strategies are computed similarly,
but all rows and columns corresponding to visit times that are zero should be deleted from
the matrix R− I3 (cf. [11]). For Strategies VI and VII this implies that the first row and the
first column should be deleted. Since the first row is the only row which contains E[B1], these

27

QUES9191_source.tex; 27/08/2010; 13:00 p. 28

strategies always result in a stable system. Note that the arrival rates during switch-over
times do not play a role in the ergodicity constraint.

It is also interesting to discuss what stupid customers would do in this system. Stupid
customers choose the worst possible strategy, in order to maximise the mean sojourn time of
an arbitrary customer. We do not go into details and do not mention exactly which strategy
is worst for each value of E[B1], but we pick out some interesting cases. Obviously, when
E[B1] = 0, the worst possible thing to do is never to join Q1. The worst strategy in this case
is (X, 3, 3, 2, 2, 3), where X means that any queue can be chosen (because the length of the
corresponding visit time equals 0, since customers never join this queue). This strategy leads
to an overall mean sojourn time of 7.48. As E[B1] grows larger, Q1 gradually will be chosen
more frequently. In the symmetric case, E[B1] = 1, customers arriving during Vi choose Qi−1,
and customers arriving during Si choose Qi, resulting in a mean sojourn time of 8.5. For
large E[B1], the worst possible strategy might be a bit surprising. It is not simply to always
join Q1, but it is (1, 1, 1, 2, 1, 3). During visit periods, customers always join Q1, but during
Si customers join Qi. For E[B1] ↑ 5

3 , this strategy results in the highest mean sojourn time of
an arbitrary customer. For the situation E[B1] ≥ 5

3 , there are many strategies for which the
system becomes unstable and sojourn times become infinite. The worst possible strategy for
E[B1] ≥ 5

3 that still results in a stable system, is (3, 1,X, 1, 1, 1).

8.2 Example 2: no arrivals during a specific period

In this example we illustrate how to deal with polling models with arrival rates being zero
during certain periods. For MVA, this is no problem. The equations presented in Section
6 still give the correct solution if some of the arrival rates during periods are zero. The
problem arises when determining the LST of the waiting time distribution (4.3) and can only
be circumvented by a work-around, which is explained using a simple example. The polling
model in this example contains two queues, Q1 and Q2, which are served exhaustively. All
switch-over times and all service times are exponentially distributed with parameter 1. All
arrival rates are 1

2 , except for the arrival rate of type 1 customers arriving during the service
of type 2 customers: λ

(V2)
1 = 0. This brings along some complications. First of all, (5.4)

cannot be used to determine the cycle time LST. This is no real problem, because (5.2) can
be used instead. Because of λ

(V2)
1 being zero, we should use (3.11) instead of (3.4) for type

1(V2) customers to determine the PGF of the steady-state queue length of Q1. Again, no real
problem but just something to be careful about. Determining the waiting time LST for type
1 customers does raise some issues, though. The (generalisation of the) distributional form of
Little’s law, given by (4.3), uses the joint distribution of customers left behind by a departing
type i customer to determine his time spent in the system. As can be seen in the proof of
Theorem 4.3, this technique requires that type i customers may arrive during each period
within a cycle. In our model this is not the case, because no type 1 customers arrive during
V2. This implies that the number of customers left behind by a departing type 1 customer,
does not give any information about the waiting time of type 1 customers (more specifically,
of those that arrived during S1), because a departing type 1 customer does not leave behind
any customers (of any type) that have arrived during V2.

A work-around for this problem, is to introduce an extra queue, QX , with type X customers
that have no service requirement (BX = 0), and λ

(V2)
X > 0. Customers in this queue are served

28

QUES9191_source.tex; 27/08/2010; 13:00 p. 29

exhaustively somewhere between the end of V1 and the beginning of V2, because type X(V2)

customers have to be present at departure epochs of type 1 customers. In our approach, we
choose to treat QX as a regular queue between Q1 and Q2 with no switch-over time from
QX to Q2 because this gives us a “normal”, three-queue polling system. Determining the
waiting time LST of type 1 customers, requires a careful application of the distributional
form of Little’s law to the various customer subtypes in Equation (4.2). For convenience,
we introduce the following two vectors, where the elements correspond to customer subtypes
(1(V1), . . . , 1(S2),X(V1), . . . ,X(S2), 2(V1), . . . , 2(S2)):

ω1 = (1 − ω

λ
(V1)
1

, 1 − ω

λ
(S1)
1

, 1, 1 − ω

λ
(S2)
1

, 1, 1, 1, 1, 1, 1, 1, 1),

ω∗
1 = (1 − ω

λ
(V1)
1

, 1 − ω

λ
(S1)
1

, 1, 1 − ω

λ
(S2)
1

, 1, 1, 1 − ω

λ
(V2)
X

, 1, 1, 1, 1, 1),

the difference being in the element corresponding to the type X customers that arrive during
V2. Note that we do not introduce customer subtypes that arrive during VX or SX , because the
lengths of these periods are 0. The LST of the waiting time distribution of type 1 customers
is given by:

E

[

e−ωW1

]

=
1

β1(ω)
λ

λ1

(

M
(V1)
1 (ω1) + M

(S1)
1 (ω∗

1) + M
(V2)
1 (ω1) + M

(S2)
1 (ω1)

)

.

The interpretation is that we use the type X(V2) customers left behind by a departing 1(S1)

customer to determine the length of V2, which is part of the total waiting time of a type 1(S1)

customer. The other type 1 customers arrive after the visit to Q2 and can be handled in the
regular way. The numerical results of this example are shown in Table 2.

Q1 Q2

Mean queue length at arrival epochs 1.750 3.375
Mean queue length at departure epochs 1.750 3.375
Mean queue length at arbitrary epochs 1.188 3.375
Mean waiting time 3.750 5.750
Standard deviation waiting time 5.093 6.280

Table 2: Numerical results for the polling model discussed in Example 2.

We can modify (5.4) and (5.5) accordingly to obtain the LSTs of the cycle time distribution
C∗

1 , starting at a visit ending to Q1, and the intervisit time distribution I1:

E
[

e−ωC∗
1
]

= ˜VB
(S1)

1

(

π1(ω) − ω

λ
(V1)
1

, π1(ω) − ω

λ
(S1)
1

, 1, π1(ω) − ω

λ
(S2)
1

, 1, 1, 1 − ω

λ
(V2)
X

, 1, 1, 1, 1, 1
)

,

E
[

e−ωI1
]

= ˜VB
(S1)

1

(

ω∗
1

)

.

29

QUES9191_source.tex; 27/08/2010; 13:00 p. 30

Appendix

A MVA equations

In this appendix we present all MVA equations that have been omitted in Section 6.

The mean duration of the next period Vi, when in Sj is denoted by E[
−→
Vi

(Sj)]. A difference
with E[

−→
Vi

(Vj)], is that E[
−→
Vi

(Si)] is not different from E[
−→
Vi

(Sj)] for j �= i. Similar to (6.7), we
have for i = 1, . . . , N , j = i, . . . , i + N − 1:

E[
−→
Vi

(Sj)] = E[BPi]

⎛

⎝E[L̂(Sj)
i] + λ

(Sj)
i E[RSj] +

i+N−1
∑

k=j+1

(

λ
(Vk)
i E[

−→
Vk

(Sj)] + λ
(Sk)
i E[Sk]

)

⎞

⎠ . (A.1)

Equation (6.9) for E[RSi:Vj], the mean residual duration of the interval Si, Vi+1, . . . , Vj , is
obtained by conditioning on the period in which the interval is observed, looking forward in
time. Similarly, we find expressions for E[RSi:Sj], E[RVi:Vj], and E[RVi:Sj]. For i = 1, . . . , N ,
j = i + 1, . . . , i + N − 1:

E[RSi:Sj] =
j

∑

k=i

E[Sk]
E[(Si :Sj)]

⎛

⎝E[RSk
] +

j
∑

l=k+1

(

E[Sl] + E[
−→
Vl

(Sk)]
)

⎞

⎠

+
j

∑

k=i+1

E[Vk]
E[(Si :Sj)]

⎛

⎝

j
∑

l=k

(

E[Sl] + E[
−→
Vl

(Vk)]
)

⎞

⎠ . (A.2)

For i = 1, . . . , N , j = i + 1, . . . , i + N − 1:

E[RVi:Vj] =
j−1
∑

k=i

E[Sk]
E[(Vi :Vj)]

⎛

⎝E[RSk
] + E[

−→
Vj

(Sk)] +
j−1
∑

l=k+1

(

E[Sl] + E[
−→
Vl

(Sk)]
)

⎞

⎠

+
j

∑

k=i

E[Vk]
E[(Vi :Vj)]

⎛

⎝E[
−→
Vj

(Vk)] +
j−1
∑

l=k

(

E[Sl] + E[
−→
Vl

(Vk)]
)

⎞

⎠ . (A.3)

For i = 1, . . . , N , j = i + 1, . . . , i + N − 1:

E[RVi:Sj] =
j

∑

k=i

E[Sk]
E[(Vi :Sj)]

⎛

⎝E[RSk
] +

j
∑

l=k+1

(

E[Sl] + E[
−→
Vl

(Sk)]
)

⎞

⎠

+
j

∑

k=i

E[Vk]
E[(Vi :Sj)]

⎛

⎝

j
∑

l=k

(

E[Sl] + E[
−→
Vl

(Vk)]
)

⎞

⎠ . (A.4)

30

QUES9191_source.tex; 27/08/2010; 13:00 p. 31

In Section 6, a second set of equations is discussed for E[RSi:Vj], E[RSi:Sj], E[RVi:Vj], and
E[RVi:Sj]. This set is obtained by conditioning on the period in which the interval is observed,
but now looking backward in time. We use that the residual length of an interval has the
same distribution as the elapsed time of this interval. The equation for E[RSi:Vj] is given by
(6.10). The other equations are given below. For i = 1, . . . , N , j = i + 1, . . . , i + N − 1:

E[RSi:Sj] =
j

∑

k=i

E[Sk]
E[(Si :Sj)]

⎛

⎝E[
←−
Si

(Sk)] +
k

∑

l=i+1

(

E[
←−
Sl

(Sk)] + E[
←−
Vl

(Sk)]
)

⎞

⎠

+
j

∑

k=i+1

E[Vk]
E[(Si :Sj)]

⎛

⎝E[
←−
Si

(Vk)] + E[
←−
Vk

(Vk)] +
k−1
∑

l=i+1

(

E[
←−
Sl

(Vk)] + E[
←−
Vl

(Vk)]
)

⎞

⎠ .

(A.5)

For i = 1, . . . , N , j = i + 1, . . . , i + N − 1:

E[RVi:Vj] =
j−1
∑

k=i

E[Sk]
E[(Vi :Vj)]

(

k
∑

l=i

(

E[
←−
Sl

(Sk)] + E[
←−
Vl

(Sk)]
)

)

+
j

∑

k=i

E[Vk]
E[(Vi :Vj)]

(

E[
←−
Vk

(Vk)] +
k−1
∑

l=i

(

E[
←−
Sl

(Vk)] + E[
←−
Vl

(Vk)]
)

)

. (A.6)

For i = 1, . . . , N , j = i, . . . , i + N − 1:

E[RVi:Sj] =
j

∑

k=i

E[Sk]
E[(Vi :Sj)]

(

k
∑

l=i

(

E[
←−
Sl

(Sk)] + E[
←−
Vl

(Sk)]
)

)

+
j

∑

k=i

E[Vk]
E[(Vi :Sj)]

(

E[
←−
Vk

(Vk)] +
k−1
∑

l=i

(

E[
←−
Sl

(Vk)] + E[
←−
Vl

(Vk)]
)

)

. (A.7)

References

[1] M. A. A. Boon. A polling model with reneging at polling instants. To appear in Annals
of Operations Research, 2010. DOI: 10.1007/s10479-010-0758-2.

[2] M. A. A. Boon and I. J. B. F. Adan. Mixed gated/exhaustive service in a polling model
with priorities. Queueing Systems, 63:383–399, 2009.

[3] S. C. Borst. Polling Systems, volume 115 of CWI Tracts. 1996.

[4] S. C. Borst and O. J. Boxma. Polling models with and without switchover times. Oper-
ations Research, 45(4):536 – 543, 1997.

[5] O. J. Boxma. Polling systems. In: From universal morphisms to megabytes: A Baayen
space odyssey. Liber amicorum for P.C. Baayen. CWI, Amsterdam, pages 215–230, 1994.

[6] O. J. Boxma and W. P. Groenendijk. Pseudo-conservation laws in cyclic-service systems.
Journal of Applied Probability, 24(4):949–964, 1987.

31

QUES9191_source.tex; 27/08/2010; 13:00 p. 32

[7] O. J. Boxma and M. Kelbert. Stochastic bounds for a polling system. Annals of Opera-
tions Research, 48:295–310, 1994.

[8] O. J. Boxma, A. C. C. van Wijk, and I. J. B. F. Adan. Polling systems with a gated-
exhaustive discipline. ValueTools 2008 (Third International Conference on Performance
Evaluation Methodologies and Tools, Athens, Greece, October 20-24, 2008).

[9] O. J. Boxma, J. A. Weststrate, and U. Yechiali. A globally gated polling system with
server interruptions, and applications to the repairman problem. Probability in the En-
gineering and Informational Sciences, 7:187–208, 1993.

[10] O. J. Boxma, J. Bruin, and B. H. Fralix. Waiting times in polling systems with various
service disciplines. Performance Evaluation, 66:621–639, 2009.

[11] O. J. Boxma, J. Ivanovs, K. Kosiński, and M. Mandjes. Lévy-driven polling systems and
continuous-state branching processes. Eurandom report 2009-026, Eurandom, 2009.

[12] J. W. Cohen. The Single Server Queue. North-Holland, Amsterdam, revised edition,
1982.

[13] M. Eisenberg. Queues with periodic service and changeover time. Operations Research,
20(2):440–451, 1972.

[14] S. W. Fuhrmann. Performance analysis of a class of cyclic schedules. Technical memo-
randum 81-59531-1, Bell Laboratories, March 1981.

[15] S. W. Fuhrmann and R. B. Cooper. Stochastic decompositions in the M/G/1 queue with
generalized vacations. Operations Research, 33(5):1117–1129, 1985.

[16] Y. Gong and R. de Koster. A polling-based dynamic order picking system for online
retailers. IIE Transactions, 40:1070–1082, 2008.

[17] O. C. Ibe and K. S. Trivedi. Two queues with alternating service and server breakdown.
Queueing Systems, 7:253–268, 1990.

[18] M. Jain and A. Jain. Working vacations queueing model with multiple types of server
breakdowns. Applied Mathematical Modelling, 34(1):1–13, 2010.

[19] J. Keilson and L. D. Servi. The distributional form of Little’s Law and the Fuhrmann-
Cooper decomposition. Operations Research Letters, 9(4):239–247, 1990.

[20] D. Kofman and U. Yechiali. Polling systems with station breakdowns. Performance
Evaluation, 27–28:647–672, 1996.

[21] H. Levy and M. Sidi. Polling systems: applications, modeling, and optimization. IEEE
Transactions on Communications, 38:1750–1760, 1990.

[22] A. Mandelbaum and U. Yechiali. Optimal entering rules for a customer with wait option
at an M/G/1 queue. Management Science, 29(2):174–187, 1983.

[23] O. Nakdimon and U. Yechiali. Polling systems with breakdowns and repairs. European
Journal of Operational Research, 149:588613, 2003.

32

QUES9191_source.tex; 27/08/2010; 13:00 p. 33

[24] J. A. C. Resing. Polling systems and multitype branching processes. Queueing Systems,
13:409 – 426, 1993.

[25] J. G. Shanthikumar. On stochastic decomposition in M/G/1 type queues with general-
ized server vacations. Operations Research, 36(4):566–569, 1988.

[26] A. W. Shogan. A single server queue with arrival rate dependent on server breakdowns.
Naval Research Logistics Quarterly, 26(3):487–497, 1979.

[27] H. Takagi. Queuing analysis of polling models. ACM Computing Surveys (CSUR), 20:
5–28, 1988.

[28] R. D. van der Mei and J. A. C. Resing. Analysis of polling systems with two-stage
gated service: fairness versus efficiency. In L. Mason, T. Drwiega, and J. Yan, editors,
Managing traffic performance in converged networks: the interplay between convergent
and divergent forces, pages 544–555. Berlin: Springer-Verlag, 2007.

[29] V. M. Vishnevskii and O. V. Semenova. Mathematical methods to study the polling
systems. Automation and Remote Control, 67(2):173–220, 2006.

[30] E. M. M. Winands. Polling, Production & Priorities. PhD thesis, Eindhoven University
of Technology, 2007.

[31] E. M. M. Winands, I. J. B. F. Adan, and G.-J. van Houtum. Mean value analysis for
polling systems. Queueing Systems, 54:35–44, 2006.

[32] R. Wolff. Stochastic Modeling and the Theory of Queues. Prentice-Hall, Englewood Cliffs
(NJ), 1989.

33

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 841.890]
>> setpagedevice

