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Abstract

We generalize here the classical stochastic substitution models of nucleotides to genetic motifs of
any size. This generalized model gives the analytical occurrence probabilities of genetic motifs as
a function of a substitution matrix containing up to three formal parameters (substitution rates)
per motif site and of an initial occurrence probability vector of genetic motifs. The evolution
direction can be direct (past-present) or inverse (present-past). This extension has been made due
to the identification of a Kronecker relation between the nucleotide substitution matrices and the
motif substitution matrices. The evolution models for motifs of size 4 (tetranucleotides) and 5
(pentanucleotides) are now included in the SEGM (Stochastic Evolution of Genetic Motifs) web

server.

1. INTRODUCTION

We present here a generalization of the classical stochastic substitution models of nucleotides
to genetic motifs of any size. The first gene evolution model was proposed by Jukes and Cantor
[5] with 1-parameter substitution (probability « for all nucleotide substitution types). It was
generalized to a 2-parameter substitution model [6] (probability v for the nucleotide transitions
A«—G and C+—T, and probability 8 for the nucleotide transversions A«—C, A«—T, C+—G
and G«—T) and then, to a 3-parameter substitution model [7] (probability a for transitions,
probability b for the transversion type A«—T and C+—@G, and probability ¢ for the transversion
type A«——C and G——T). Later, these substitution models were generalized to a greater number
of substitution parameters, e.g. a 6-parameter substitution model with equal base frequencies [15].

Nucleotide substitution models were extended to genetic motif substitution models, e.g. [1, 2]
for the pioneer work. The most recent motif substitution models [11, 12, 13], i.e. trinucleotide
models with three substitution rates per motif site, are based on a block matrix factorization [14].
However, this approach cannot be used to generalize the substitution models to genetic motifs
of any size. Indeed, the construction of large substitution matrices and their eigenvalues and
eigenvectors determination are impossible by applying classical methods of formal calculus with
the current software (e.g. Mathematica 8.1 in 2011).

By exploring new mathematical strategies, we identify an unexpected Kronecker relation be-
tween the nucleotide substitution matrices and the motif substitution matrices. This new property
in this evolution research field allows to construct large motif substitution matrices from nucleotide
ones as well as to determine the eigenvalues and eigenvectors associated with genetic motifs from
the elementary eigenvalues and eigenvectors associated with nucleotides.

The SEGM (Stochastic Evolution of Genetic Motifs) web server is a web application which was
built in 2009 to study evolution of nucleotides, dinucleotides and trinucleotides [3]. Based on this

Kronecker property, a new version of this SEGM web server is developed which includes several
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improved functionalities (in particular a faster computation) and an extension to motifs of size 4
(tetranucleotides) and 5 (pentanucleotides). This research software extension allows biologists to
study evolution of large motifs, for example promoter sites (CAAT box, TATA box, etc.). The
theory proposed here is valid for genetic motifs of any size. Thus, application to hexanucleotides
is obviously possible, for example, to study evolution of recoding signals stimulating read-through
stop codons [4]. The current limit is only the PC power (CPU and memory). Indeed, the com-
putation of the evolution probability of one pentanucleotide leads to an analytical solution with
4'0 terms, i.e. more than one million of terms. The SEGM web server is freely available at

http://lsiit-bioinfo.u-strasbg.fr:8080/webMathematica/SEGM /SEGM.html.

2. MATHEMATICAL MODEL

The generalized model will give here the analytical occurrence probabilities of genetic motifs as
a function of a substitution matrix containing up to three formal parameters (substitution rates)
per motif site and of an initial occurrence probability vector of genetic motifs. Let us consider a
motif of size n on the genetic alphabet {A,C,G,T}. By convention, a genetic motif is represented
by its index 4, 1 <7 < 4™, according to the lexicographical order, e.g. if n = 3 (trinucleotides), the
index ¢ = 1 refers to the first motif AAA and i = 64 to the last motif TTT. There are 4™ motifs
of size n. For all 1 < i < 4" we denote by P;(t), the occurrence probability of motif i of size n at

time ¢ > 0.

2.1. Stochastic substitution model of genetic motifs of size n. The substitution process is
handled by a differential equation which determines the occurrence probabilities of the 4™ genetic
motifs at time ¢ > 0. The motifs mutate according to constant substitution probabilities. Let
us consider two motifs 4,5 of size n, 1 < 4,5 < 4™, We denote by Pr(j — 1), the substitution
probability of motif j into motif ¢ during time 7', T' > 0. The occurrence probability P;(t + T') of
motif ¢ at time ¢ + 7" is equal to the sum of probabilities P;(t) of the 4" motifs j at previous time

t times their substitution probabilities Pr(j — 4) into motif 4 during T, i.e.

(2.1) P(t+T)= Y Pi(t)Pr(j— 1)

Probability of motif ¢ to appear
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From Equation (2.1), the derivative with respect to time P} (t) = 8}3t(t) of the occurrence proba-
bility of motif ¢ at time ¢ is
. [P+ T)— P(t)
Pi(t) = }lg}) —
. Z b()Pr(j — 1) — Pi(t)]
= lim
T—0 | T
[ 2 B0 Pr(G — i) + K@) Pr(i — i) — Pi(t)
= Jm | = T

where Pp(i — i) represents the probability that motif ¢ does not mutate into a different motif

j # i during T'. Then,

R = %Lmo{ T ]
o [Zis BOPIG = ) = Plt) Sy Pr(i— )
N Tlino{ T ]
. [Pr(j—i . [Pr(i—j
- ;Pj(t) Jim {T(JT)} — Pi(t) 2 Jim [T(TJ)} _

For all motifs ¢, j, the instantaneous substitution probability P(j — ¢) of motif j into motif 7 is
assumed to be constant along time. When 7' is small enough, there is no more than one motif
substitution per motif site. Then, the following approximation applies

Pr(j—i) = PG =T

and consequently

lim <PT(7_”)> = P(j — ).

T—0 T

Finally, for any motif ¢, the derivative P/(t) is

P/(t) = ZPj(t) (j —1) ZPZ—>]

J#i J#i
= ZP P(j—i)— P(t)(1—P(i —1))
J#i
(2.2) = ZP P(j — i) — Pi(t).

Let P, (t) = [P;(t)]1<;<4n be the column vector of size 4" made of the probabilities F;(t) for all
1 <4 < 4™ From Equation (2.2), we derive a matrix differential equation which describes the
substitution process for genetic motifs
Pr/z(t) = My- Pn(t) - Pn(t)

(2.3) = (Mn - In) ) Pn(t)



SUBSTITUTION EVOLUTION MODELS OF GENETIC MOTIFS

ot

where the symbol - is the matrix product, I;, is the identity matrix (4",4") and M,, = [m; j|1<i j<ar
is the instantaneous substitution probability matrix whose element m; ; in row 4 and column j

refers to the substitution probability of motif j into motif ¢
m;; = P(] — Z)

The instantaneous substitution probability matrix M,, is stochastic in column. Indeed, for all 1 <
J < 4", the elements of matrix M, satisfy >, ;cynmij = D 1<cjeqn P(j — i) = 1. Forall 1 <

J < 4", the diagonal elements m; ; of M,, satisfy

mig=1- Y mi

1<i<dn, i#j

Equation (2.3) is equal to Equation (2) in Michel [11] obtained by a similar approach.
Let A, = M,, — I,,. Then, Equation (2.3) becomes

(2'4) P;L(t) = Apn - Pn(t)

If A, is diagonalizable, i.e. A, = Q, - D, - Q! where D,, is the spectral matrix (4",4") and Q,

is its associated eigenvector matrix (4", 4"), then Equation (2.4) becomes
(25) P'rlb(t) :QnDnQ;IPn(t)
This differential Equation (2.5) has the classical solution [8]

(2.6) Pult) = Qu - ™t - Q1 - P (0)

Dy,

where ePn? is the exponential spectral matrix (4", 4") of matrix A,, @, is its associated eigenvector

matrix (4",4") and P, (0) is the vector of the 4™ initial occurrence probabilities of motifs at ¢ = 0.

2.2. Substitution matrices of genetic motifs of size n. For substitution matrices of genetic
motifs of size n containing up to three substitution parameters per motif site (extension of the 3-
parameter substitution model [7] of nucleotides to any motifs of size n), an unexpected Kronecker
property is identified for constructing these classes of substitution matrices. This property was
found after a detailed analysis of the dinucleotide matrix § (Figure 1 in [13]) and the trinucleotide
matrix § (Figure B.1 in [12]).

Let k£ be the nucleotide site of a genetic motif of size n, 1 < k < n. For a given site k, let ag,
br and ¢ be the parameter of transitions A«—G and C<——T, transversions A«—T and C+——G
and transversions A«—C and G«—T, respectively. Thus, a motif of size n has 3n substitution

parameters.
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The substitution matrix A, (4",4™) associated with motifs of size n is a block matrix which is

classically constructed recursively by varying k =n to k = 1 as follows [11, 12, 13]

Apq Cn—kt+1lk—1  @pn—k+1lk—1 bn—pr1lp—1

Ay — Cn—kt11k—1 A1 bnki1lk—1 an—py1lp1

n—ks1le—1 bp_py1li—1 Ap_1 Cn—k+11k—1
bnkiile—1 anpr1lk—1 cnkr1li—1 Apq

where [Ij,_1 is the identity matrix (4’“1, 4’“*1) with Iy = 1, Aj_1 is the recursive matrix (4’“71, 4’“71)
with Ag = —>"7_; (ak + b + ¢x) and ay, by, ¢, 1 < k < n, are the substitution parameters for the
kth motif site. As the matrix A, is real and symmetric, precisely a symmetric circulant matrix,
A, is diagonalizable, i.e. A, = Q, - D, -Q,,} where D,, is the spectral matrix of A4, and @, is its
associated eigenvector matrix. This property allows the occurrence probabilities P;(¢) of motifs 4
to be determined, i.e. Equation 2.6.

Let Ni, 1 <k < n, be the nucleotide substitution matrix (4,4) of a site k of a motif of size n

dip cx ap by

ey di by ay

Ny =
ap by dp e
bk ar Cg dk
with d = — (ag + b + ¢k ). As the matrix Ny, is real and symmetric (symmetric circulant matrix),

Ny, is diagonalizable for all 1 < k <n
Ny=R-S,-R7!

where the nucleotide spectral matrix S of Ny is

0 0 0 0
0 —2(ap+b 0 0
(2.7) S, = (ar + bi)
0 0 -2 (a + cx) 0
0 0 0 =2 (by, + cx)

and its associated nucleotide eigenvectors matrix R is

1 1 1
1 -1 -1
-1 -1 1
-1 1 -1

—_ = = =

Remark 1. For the substitution matriz of nucleotides (n = 1), Ay = Ny = Q1 - Dy - Ql_l =
R- Sy - R leading to Dy = S; and Q1 = R.
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We identify an interesting relation between the matrices A4,, and N.
Indeed, the recursive construction of the substitution matrix A, is similar to a Kronecker sum
of nucleotide substitution matrices IVj, associated to each site k& of motifs of size n. For a motif

sizen >0 and k > 0,

Ap Cn—kt1lk—1  apn—ki1lk—1 bn—pr1lp—1
A, — Cn—k+11k—1 Ag-1 bn—kt1lek—1 @npy1li1

p—ty1dp—1 bp—pr1li—1 Ap-1 Cn—k+11k—1

bnkiile—1 anpr1lk1 cnkr1lp—1 Ap_q
0 Cnk+1l On—kt1 bkl Ak

_ Cn—k+1 0 bp_pr1 An_ky1 ® Io4 Ap—1
p—k+1 bn—ky1 0 Cn—k+1 1 Ap—1
bn_ki1 Gn—ky1 Cn—kt1 0 Ap

where the diagonal block matrix with Aj_; on the main diagonal is a matrix (4*~1 4¥~1). Then,

0 Cn—k+1 On—k+1 bpn—k+t1
A = Cp—k+1 0 bn—k+1  Op_kt+1 ® , . ]1® y
An—k+1  bpn—k+1 0 Cn ka1 k-1 k1
bn—k+1 Gn—k+1 Cp—kt1 0

with I; the identity matrix (4,4). Therefore, by definition of the Kronecker sum,

0 Cnktl On—kt1 bp_pi1
Cn—k+1 0 bnkarl Apn—k+1
(2.9) Ay = P Ar-1.
an—k+1  bpn—k+1 0 Cn—k+1
bnkarl An—k+1  Cn—k+1 0
Moreover, by noticing that
0 Cn—ktl Qn—ky1 bp_pi1 dn—k+1 0 0 0
Cn—k+1 0 bnk+1 Gn—ki1 0 dn—k11 0 0
Nn—k:+1 = +
an—k+1  bp—k+1 0 Cn—k+1 0 0 dn—k+1 0
bn—k+1 Qn—k+1 Cn—k+1 0 0 0 0 dpn—k+1
0 Cn—k+1 On—k+1 bn—k+1
Cn—k+1 0 bn—k+1 Ap—fk+1
= +dp—gr1 X 11
An—k41 bnkarl 0 Cn—k+1

bpn—k+1 Gn—kt1 Cn—kt1 0
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with dy_p11 = —(an—g+1 + bn_ks1 + Cn_k+1), we can rewrite the recursive Equation (2.9) with

the recursive Kronecker sum equation
A = (Np—pg1 — dp—p1 x I1) @Ak—l-

Thus,

3

A, = (Nk—deI1)+AOXIn
k=1
= PN - P x ) + Ag x I,
k=1 k=1

n n
PN =D di x I+ Ay x I,
k=1 k=1

with Ag = — > 7 (ak + bk + cx) = — > jp_1dg, and finally,

n
(2.10) A, = EPN;.
k=1

Appendix A illustrates this recurrence relation with a substitution matrix for dinucleotides.
Classical mathematical results [9] allows the spectral matrix D,, and the eigenvectors matrix

@y, to be deduced from Sj and R, respectively

Dy =@ Sk
kT:Ll
Qn = ® R
k=1 .
0;! —<® R) - ®R!
k=1 k=1

Thus, the substitution matrix A, can be directly determined from the Kronecker sum of the n
nucleotide spectral matrices Sy and the Kronecker product of the n nucleotide eigenvectors matrix

R as follows

n n n

An:®R- S-SR
k=1 k=1 k=1

2.3. Analytical solutions giving the occurrence probabilities of genetic motifs of size
n at time t. By rewriting Equation (2.6), the occurrence probability P, (t) of motifs of size n at

time t can be expressed as a function of elementary eigenvalues and eigenvectors associated with
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nucleotides of each site k

n é S T
Pt)= Q)R- QR Pu(0)

k=1 k=1

- Q@@ A

k=1

3

(2.11) (R e R7Y) - P,(0)

Skt

where e*" is the exponential spectral matrix of matrices Ny.

Proposition 1. Equation (2.11) gives the occurrence probability P, (t) of motifs of size n at time
t from its past one P,(0). If we express P,(0) as a function of P,(t) in Equation (2.11) then
Fquation
~ n ~
(2.12) Pt) =) (R-e " R7Y) - P,(0)
k=1
by replacing t by —t gives the past probability Pn(t) of motifs of size n from its current probability

P,(0), i.e. by inverting the direction of the evolution time t.

2.4. Analytical solution giving the occurrence probability of a genetic motif of size
n at time t. Equation (2.11) determines the analytical solutions for all the 4™ motifs of size n.
For n > 3 (tetranucleotides, pentanucleotides, etc.), the resolution of this equation system on a
current standard PC needs much time and memory. Therefore, for larger motifs, we have also
derived an equation allowing to compute directly the occurrence probability P, (t) of a genetic
motif i1 of size n at time £. After some algebraic manipulation, we obtain

(2.13)

4" t><n k10(d2, 4" n
Pz-1<t>=4%Z ( Z, Ll ’“”XZ< H 8(i1, k), 8(iz, k)] X R [8(ia, >6<z'3,k>1>>>

=1 iz=1

where P;,(0) is the initial occurrence probability of motif i3 of size n at t = 0, R the nucleotide

eigenvectors matrix (2.8), §(iz, k) = Liﬁ:“ [4] + 1,1 < (i, k) < 4, a function associated with the
motif i, and the site k, | z] is the integer part of z, and Ly = [0, —2(ax+bg), —2(ax+ck), —2(brp+ci)]
is the vector of the 4 eigenvalues of the nucleotide substitution rates matrix Ny (see matrix (2.7))

associated with the site k. The detail of algebraic manipulation is given in Appendix B.

Remark 2. The 4™ coefficients of initial occurrence probability P;,(0) in Equation (2.13) are
obtained by multiplying the coefficients R [0(i1, k), d(iz, k)] xR [d(i2, k), 8 (i3, k)] of each nucleotide
site k. Moreover, the 4™ eigenvalues in Equation (2.18) are obtained from the sum of the k

eigenvalues of index §(iz, k) associated with each nucleotide site k.
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Remark 3. As R71 = %R here, the coefficients R[6(i1, k), d(iz, k)] X R [0(i2, k), I (i3, k)] in Equa-
tion (2.13) can be seen as coefficients of matrices Oy, defined in [10] by O[i, j] = Rli, k] x R~1[k, j].

Remark 4. Fquation (2.13) gives a full simplified analytical solution of the occurrence probability
P;, (t) of a motif iy of size n at time t composed of 4™ exponents, each exponent being multiplied by
a sum of the 4™ initial occurrence probabilities P;,(0), i.e. a total of 42" terms. Thus, an analytical

solution of a pentanucleotide, for example, has more than one million of terms.

Example 1. An example of application of Equation (2.13) is given for determining the analytical
solution of the occurrence probability of the dinucleotide AG at time t. The index of AG is iy =3
among 42 = 16 dinucleotides (n = 2). The closed formula of Ps(t) obtained is given in Appendiv

16 x 2 L [6(ia, 16 2
Pi=s(t) = 11(%2_1 (e & k)]xigz_l(Pig(o)xE(R[(S(S,k),é(iz,k)]xR[é(iz,k),é(iy,,k)])))
1y (tx(L1[5<i2,1>1+L2[5(i2,2>1>
16 =
X Z s ( R[1,8(i9,1)] xR [6(i2,1),6(i3, 1)]) % (R[3,8(ig,2)] xR [6(ia, ),5(@,2)})))
i3=1

_ L Z ( tx (L1 [6(i2,1)]+L2[6(i2,2)])
ZQ 1

x (P1(0)x (R[L,0(iz, 1)} x R[6(i2, 1), 1]) x (R[3,6(i2,2)] x R [0(i2, 2),1])
+. Prg(0)x (R[L,0(i2, 1)] xR [0(i2, 1), 4]) x (R[3,0(i2,2)] x R [3(i2,2),4])))
% ( O (LalF+L2lD s (Py(0)x (R[1,1) xR[1,1]) x (R[3,1] xR[1,1])

F.. 4 Pg(0)x (R[1,1] xR[1,4]) x (R[3,1] xR[1,4]))

e Bl L2R) o (P (0)x (R[1,1] xR[1,1]) x (R[3,2] xR [2,1])

...+ Pis(0)x (R[1,1] xR [1,4]) x (R[3,2] xR[2,4]))

+ . XL (P (0)x (R[1,4] xR [4,1]) x (R[3,4] xR [4,1])

+...+ Pis(0)x (R[1,4] xR [4,4]) x (R[3,4] xR [4,4])))
3. APPLICATION: EXTENSION OF THE SEGM WEB SERVER

3.1. Functionalities. The biomathematical model developed here allows to extend the SEGM
(Stochastic Evolution of Genetic Motifs) web server [3] from trinucleotides to tetranucleotides and
pentanucleotides, to improve the computation of analytical solutions with a faster calculus and also
to add new functionalities, e.g. the result display. SEGM allows the determination of analytical

occurrence probabilities P(t) of genetic motifs of size n (nucleotides to pentanucleotides) at time
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SEGM homepage | | yser action

SEGM action

Choice of the motifs of size n !
i Upload of the initial occurrence :
| probability vector ;

initial
occurrence
probability
vector
valid 2

SEGM n-nucleotide page

‘ Description of errors

YES

first computation *

Modification of options
Modification of ogt/'ons, | o Modification of the substitution parameters

Substitutios
parameters
valid ?

t SEGM n-nucleotide page

YES ‘ Description of errors

all the
parameters
numeric 2,

SEGM n-nucleotide page

computation P
Basic options

YES

computation

Display of the selected
' analytical occurrence
SEGM n-nucleotide page probability solutions

| Basic options

Basic options:

oo e 1. Time direction

: Time options for plots 2. Number of substitution parameters
F 3. Substitution parameters

4a. Motifs to study

Display of the selected
analytical occurrence
probability solutions

Display of evolution
plots

Display of numerical
solutions if a particular
value for time tis given

4b. Output format of analytical solutions
Time options (optional):

5. Time interval

6. Value of t for numerical solutions

* first computation:

Computation of analytical occurrence
probability solution for the motif

A" of size n in direct evolution
direction with 3 substitution

par s per motif site

FI1GURE 1. Flowchart of the SEGM web server.

t as a function of substitution parameters a; (A«—G and C+—T), b, (A«—T and C+—G)
and ¢ (A——C and G+—T) per nucleotide site k and an initial occurrence probabilities P(0)
of motifs at time ¢ = 0. The evolution direction can be direct (past-present) or inverse (present-
past). The results are displayed according to several modes defined by the user: general analytical
solutions, numerical solutions, evolution plots and analytical solutions converted in C, Fortran or
TEX formats in order to facilitate their integration in user-programs. Figure 1 gives the flowchart

of the SEGM web server and an overview of its functionalities.

3.2. Size and initial occurrence probabilities of genetic motifs. The size n and the initial
occurrence probability vector P(0) of studied motifs of size n at time ¢t = 0 are chosen on the
homepage of the SEGM (Fig. 2). The initial vector P(0) is uploaded thanks to a xIs file containing

the 4™ initial occurrence probabilities of studied motifs of size n at time ¢t = 0. A link gives to
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, Iy r..
e o @ o

Stochastic Evolution of Genetic Motifs

Emmanuel Benard and Christian J. Michel

Theoretical Bioinformatics, LSIT/CHNRES UMRTO0S - University of Strashourg

1. Choose the motif size:

'::Trinucleatides 3 v

2. Upload the initial occurrence probabilities file:

Enter a XL= file containing the G4 initial occurrence probabilties of maotifs of size 3

Farcourir..

Example of a valid XLS file containing 64 inttial occurrence probakilties of Trinucledtides available here

F1GURE 2. Homepage of the SEGM web server: choice of the size of the studied
genetic motifs and upload of the initial occurrence probability vector of genetic

motifs.

the user the possibility of downloading a template for the xIs file. After submission, the vector
P(0) is checked by SEGM: its values must be numerical and positive, and its sum must be equal
to 1. If errors are detected, a description of these errors is given (Figure 1). Otherwise, the
corresponding n-nucleotide page is displayed and the result of a first computation using default
options and parameters gives the analytical occurrence probability P(t) of the motif A™ of size
n in the direct evolution direction and with three formal substitution parameters ay , by and ¢
per motif site. The user can modify these default options and the parameters to get new results
with the same initial vector P(0). To study evolution of motifs of different size n or with different
initial probabilities P(0) of motifs, he must go back to the homepage of SEGM and upload a new
xls file (Figure 2).

Example 2. The choice of the initial vector P(0) depends on the evolutionary problem studied. For
example, in order to study "primitive” dinucleotides at donor site, precisely their past occurrence
probabilities P(t) by inverting the time direction, then the initial vector P(0) could be the 16
dinucleotides probabilities at donor site at current time, e.g. probabilities obtained from the ICE
(Information for the Coordinates of Exons) database from current genes (see Table 2 in [3]).
Another example, suppose that a DNA sequence is a series of A, e.g. a poly(A) tail to an RNA

molecule. Then, the 256 occurrence probabilities P(t) of tetranucleotides in this sequence subjected
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1. Evolutionary time direction:

Direct (past-> present)

2. Number of substitution parameters per motif site:
3 parameters: 1 transition rate (A—G = C—=T), 1 transversion | rate (A—=T = C—G), 1 transversion Nl rate (A—C = G—=T).

2 parameters: 1 fransition rate (A—G = C=T), 1 transversion rate (AT = A0 = CaG = G=T)
ufxf=afx], vix}2=bixj=clx]

1 parameter: 1 substitution rate (A=C = 4G = AT = GG = G T = GT)
plxl3=alxj=blx]=clx]

3 parameters ~ Wore about mutation matrices and substitution parameters

FiGure 3. Option 1. Choice of the evolutionary time direction. Option 2. Choice

of the number of substitution parameters.

to substitutions can be studied with an initial vector P(0) associated to this sequence, i.e. precisely

P1(0) =1 for the motif AAAA and P;(0) = 0 for the 255 other motifs i # 1.

3.3. Basic options.

3.3.1. Tume direction. After the submission of the initial occurrence probability vector P(0), the
first option is the choice of the evolutionary time direction (Figure 3). The determination of
analytical occurrence probabilities P(t) of motifs can be carried out in direct time direction (past-
present) using Equation (2.11) or in inverse time direction (present-past) using Equation (2.12).

By default, solutions are calculated in direct time direction.

3.3.2. Number of substitution parameters per motif site. Option 2 permits to choose the number
of substitution parameters per motif site (Figure 3). The biomathematical model of SEGM is
an extension of the 3-parameter substitution model [7] of nucleotides to motifs based on three
types of substitutions for each motif site k: transitions a; (A—G and C—T), transversions by,
(A—T and C—G) and transversions ¢; (A—C and G<T). It is the model by default. SEGM
can also study particular cases extending the 2-parameter nucleotide substitution model [6] and
the 1-parameter nucleotide substitution model [5] to motifs. For the model of two substitution
parameters per motif site, the parameters are the transitions ux = a; (A—G and C—T) and the
transversions 4 = b, = ¢, (A—=C, AT, C—G and G—T). For the model of one substitution
parameter per motif site, the parameters are defined by %’“ = ap = by = c. The different models

and their associated substitution matrices are explained in a pdf file accessible in Option 2 (Figure

3).
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3. Substitution parameters:

Enter valies for the sibstiubion parameters,
Nop purmerical or rational vaines will be repiaced by the name of the corresponding parameter.

Al the substitotion parameters must bave g nomerical value to pet plots,
Alf the substitotion parameters and thelr sy mast be 2 0 and < ).

Ste 0 Jiop| an wiop| ki ciop| e

Stel iy al b b1 e[}

Sub=titution parameters statut:

Parameters sum = "al" + "a1" + "o0" + "b1" + "c0" + "c1"

FIGURE 4. Option 3. Substitution parameters which can be formal or numerical.

3.3.3. Substitution parameters. The substitution parameters can be left formal or set with numer-
ical values in Option 3 (Figure 4). Numerical values must be positive and their sum must be
less or equal to 1. After submission, a description of the encountered errors is displayed if these
conditions are not verified (Figure 1). By default, the substitution parameters are left formal to

derive formal analytical solutions.

Remark 5. The motif sites in SEGM are indexed from 0 to n — 1, n being the size of the studied

motifs.

3.3.4. Choice of the studied motifs. Option 4a in this version of SEGM offers the possibility to
study evolution up to four large motifs simultaneously. The user selects one motif per list (Figure

5).

3.3.5. Output format of the analytical solutions. By default, the analytical occurrence probabilities
P(t) of genetic motifs are displayed in a readable text format. In order to facilitate their integration

in external user-programs, Option 4b allows others formats: C, Fortran and TgX(Figure 5).

3.4. Results. The analytical occurrence probabilities P(t) of genetic motifs are given with formal
substitution parameters (Figure 6) in the first computation (Figure 1) or when the substitution
parameters are left formal (Figure 4). When all the substitution parameters are set with numerical
values (Option 3, Figure 4), evolution plots of the chosen motifs (Option 4a, Figure 5) are displayed:
a comparative evolution plot containing the evolution curves of the chosen motifs and a plot
drawing their sum curve (Figure 7). In this case, two additional options regarding evolution time

t are available.
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4. Choice of the probabilities to study and plot:

Chooge oo to 4 gpaldical soiutions.
By defaiuit, anly the analtical solution of the molif A4 Is displaved and piokted.
motif b v | | — &l — =l — W

4b. Choice of the analytical solutions output format:

The apaitical soibions cah be digplaved In £ formats: Standard, C, Fortrap and TeX,
By defauit, the analtical solotions are displaved in Standard farmat.

F1GURE 5. Option 4a. Choice of the studied motifs. Option 4b.  Choice of the
output format for the analytical occurrence probabilities P(t) of genetic motifs at

time ¢.

Results

Analytical solutions (Standard format):

00625 + 00525 @0 +00Ft 4 g neps g3l + 017t | g pgpgg?Tal + 3t + b0+ BIFt | nppg p2"E0+0ft 4 ggog
l,-EZ"[bIJ +clft D.EIBZSJ'E?(ED +al +bl +elrt D.DE2SJE2K(EI +b0 +b1 4207 EI.EIB2SJ'E2X(E1 +clft 0.0625

J.EE"(aI] +al +bl +a1ft U.DEQS."E?@I +olft U.DEQS."E?(ED +b0 +b1 401t D.UBQSJ’EP(ED +al +ol +61ft 0.0625
J.EE"(31 +b0 + el + 21t DDEstE"(aD +bl +el+clft | U.DE25J’E2R¢'D +b1 +el + a1t

FrobtActt)

FIGURE 6. Example of analytical occurrence probability P (¢) of the dinucleotide
AA at time ¢ with three formal substitution parameters per site and a particular

initial occurrence probability vector of genetic motifs.

The time interval of plots (Figure 7) can be modified thanks to Option 5 (Figure 8). The times
tmin and tmax must be always positive even if the inverse time direction is chosen. By default,
the time ¢ varies from tmin = 0 to tmaxz = 5 whatever the time direction chosen.

A particular value of time ¢ can be set in Option 6 (Figure 8) to have the values of the occurrence
probabilities P(t) of studied motifs (Figure 9). As for the evolution plots, a value of the probability

sum of studied motifs is also given.

4. DISCUSSION

We proposed here a generalization of stochastic substitution models of nucleotides to genetic
motifs of any size. This generalized model is based on the identification of a Kronecker relation

between the nucleotide substitution matrices and the motif substitution matrices. It gives the
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Plats: Plot sum:

{ProbtAA(t), ProbtATi(t), } ProbtAA(E) + ProbtAT(t) + ProbtGA(t)
Probti

Lof

0of |

05 N\

o4l .

FiGURE 7. Example of evolution curves for the three dinucleotides AA, AT and

GA (left) and their sum (right).

5. Time interval for plots {optional):

d=tmin=tmax

tmin: | O tma | b

6. Time walue for numerical solutions (optional):
ast

FiGuRrRE 8. Option 5. Choice of the time interval for plots. Option 6. Choice of a

time value for numerical solutions.

analytical occurrence probabilities of genetic motifs as a function of a substitution matrix con-
taining up to three formal parameters (substitution rates) per motif site and an initial occurrence
probabilities of genetic motifs. This biomathematical model was included in a new version of the
SEGM web server offering now several improved functionalities, in particular a faster computa-
tion, and an extension to genetic motifs of size 4 (tetranucleotides) and 5 (pentanucleotides). The
current limit of the computer implementation of this model is the PC power (CPU and memory).
We are currently investigating a parallel approach based on GPU (Mathematica 8.1 integrates
GPU programming) in order to allow the evolution analysis of genetic motifs greater than five

nucleotides.
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Mumerical solutions:
Probtasit] witht = 2.5 0177266

ProbtaTlt) witht = 2.5 | 0.130661

ProbtGaf) witht = 2.5 00819174

Sum: Probtadgt] + ProbtATE] + ProbtGA) witht = 2.5 | 0.339544

F1cUure 9. Example of numerical solutions for the three dinucleotides AA, AT and
GA and their sum at time ¢ = 2.5 for particular substitution parameters and a

given initial occurrence probability vector of genetic motifs.
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5. APPENDIX A. SUBSTITUTION MATRIX FOR DINUCLEOTIDES WITH THE KRONECKER METHOD

Construction of the dinucleotide substitution matrix Ay (16,16) from the Kronecker sum of
the two matrices N1 and No of size (4,4) associated to the nucleotide substitution matrices at

dinucleotide sites 1 and 2, respectively, using Equation (2.10).

d1 c1 a1 bl d2 Co Qa9 bg

C1 d1 b1 a1 C9 d2 b2 a9
Ni®Ny = ®

al b1 d1 C1 ag bQ d2 C9

by a1 a d; by az ca da

with di = — (a1 + b1 + C]) and dy = — (ag + by + 62). Then,

d1 1 ai b1 1 0 0 0 1 0 0O d2 Cy Qa2 b2
C1 dl b1 aq 01 00 01 00 C2 dg bg ag
Ni@®&Ny = ® + ®
al b1 d1 C1 0010 0 010 ag b2 dQ C2
bl ay C1 d1 00 01 00 01 b2 as Co d2
d1[1 01[1 a1[1 b1[1 N2 0 0 0
. 61I1 dlfl b1I1 a1]1 i 0 N2 0 0
a1I1 blfl d1I1 61]1 0 0 NQ 0
b1]1 a1]1 01[1 dlfl 0 0 0 N2
where I; is the identity matrix (4,4). Then,
dilh + N clh arlr b1 1
NyGNy — el diIh + N bi1h a1l
a1l b1y diI; + No clh

bi1q arlr cilh diI1 + Ny
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6. APPENDIX B. DETAILED DERIVATION OF THE ANALYTICAL OCCURRENCE PROBABILITY OF A

MOTIF %¢; OF SIZE n AT TIME ¢

In order to avoid the computation of the occurrence probabilities of the 4™ motifs of size n, we
also derived from Equation (2.11) a formula that determines the analytical occurrence probability

P;, (t) at time t of a motif 41 of size n. Indeed,

P (t) = Pnt

Il
N
B
Il
i

:U

m
n
-
o~

*-R7) -Pn<o>> [i1]

o)) ()

Thus, the computation of the analytical occurrence probability of the motif 43 does not require

(6.1)

'®:

n
the construction of the whole eigenvectors matrix @ = @ R but only the i;th row of Q[i1,] =

(&)

Moreover, the matrix @ (4™,4") is constructed from a Kronecker product of n matrices R (4,4).
Then, the i;th row of @ can be determined from a Kronecker product of n rows of R of indexes
corresponding to the indexes (i1, k), 1 < d(i1, k) < 4, of nucleotides of each site k, 1 < k <mn, in
the motif ;. For example, the row of @) corresponding to the occurrence probability of the motif
GCT of size n = 3 and of index 43 = 40 is the result of the Kronecker product of the following
three rows of R of indexes d(i1, k): row d(i1,1) = 3 corresponding to the nucleotide G for the site
k =1, row §(i1,2) = 2 corresponding to the nucleotide C for the site k¥ = 2 and row §(i1,3) = 4
corresponding to the nucleotide T for the site & = 3. Thus, the corresponding row of index i; = 40
in @ is obtained by Q[40,] = R[6(i1,1),] Q@ R[5(i1,2),] Q R[0(i1,3),] = R[3,]Q R[2,] Q R[4,].
The indexes (i1, k) of nucleotides of each site k of a motif i; of size n are calculated by the
formula

5(in, k) = B{,}J 4] + 1

[] is the modulo function. As an illustration with the

where Uﬁ;i J i

previous example, i.e. the motif GCT of size n = 3 and index ¢; = 40, §(i1,1) = Lj‘gjj [4]+1=3.

Thus, Equation (6.1) can be rewritten

(6.2) P (t) = (éRw(il’k)’O . (é eskt> ) (é Rl) . P(0
k=1 1 =1

Equation (6.2) can still be simplified. Indeed, the matrix product (@ R[0(i1, k), ]> <® eSkt>
k=1

uses a row vector Q[i1,] and a diagonal matrix eSt whose diagonal elements are exponents of

eigenvalues of the substitution rates matrix A, (4",4"). This matrix e can also be obtained by
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S

a Kronecker product of n matrices e’+!. The matrix product Qli1,] - €' can then be replaced by

a scalar product between the row vector Q[i1,] and a row vector e

composed of the diagonal
elements of e5t. Let Lj be such a row vector associated with the site k of a motif of size n and
containing the diagonal elements of S, i.e. the eigenvalues of the nucleotide substitution matrix
Ny, associated with a motif site k, i.e. Ly = [0, —2(ax + by), —2(ar + ck), —2(bk + c)] (see matrix

(2.7)). By using the row vector eX+!, Equation (6.2) can be rewritten

(6.3) Py (t) = (@R[é(il,k),]> X (@ ewa) : <®31> - P,(0).
k=1 k=1

k=1

n
As & e+t is also a row vector, Equation (6.3) divides by 4" the number of operations of Equation
k=1
(6.2).

Let U;, be the row vector associated with the motif ¢; and defined by U;, = <® R[(i1, k), }) X ( X eth>
k=1 k=1
with its ith element Uj, [i] = <® R> [i1,4] x eMt where e*? is the ith element of the row vector
k=1

& et Let Vi, be the row vector associated with the motif 41 and defined by V;, = U;, - ( X R_1>
k=1 k=1
4m n
with its ith element V, [i] = > U;, [4] % <® R_1> [4,4]. Then,
1 k=1

4m n n
Valil = ( R) [i1, 4] x e x <® R*) 5. ].
1 k=1
From Equation (6.3),

Pil(t) = V;'l'Pn(O)

qn
Z ‘/;1 [12] X Plz(o)

10=1
4m 4n n n

= > (Z ((@ R) [i1,43] x st x <®R—1> [ig,¢2}> x P; (o)) .
i2=1 \iz=1 k=1 k=1

A

By expressing P;, () as a sum of 4" exponents of eigenvalues e*i2!, each one associated with a

sum of 4™ initial occurrence probabilities, we obtain

4n 4 n i
Y (Pig(O) X <® R) [11,42] X <® R_1> [i2’i3]>
ig=1 i3=1

qn

Pil (t)

1% 33 Lif8(in k)]
k=1

I
-

(131‘3(0) x [T (R[6Gi1, k), 6(ia, k) x [ (R [5(2'27/6)75(1'3,/6)]))

k=1 k=1

tx 3> Lild(ink)]
k=1

(PZ-S(O) X H (R[0(i1, k), 6(i2, k)] x R~ [5(i2,k),5(i3,k)])>



ACCEPTED MANUSCRIPT
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with 0(iy, k) = | %=% | [4] + 1. As R~! = { R (Remark 3), Equation (6.4) simplifies

4n

1 £ 3 Li3(i2 b) 4
Py(t) = e = Xy ( 5 (0) X H (R[8(i1, k), 0(ia, k)] x R[8(iz, k), (i3, k)])

ig=1 i3=1 k=1

23
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7. APPENDIX C. ANALYTICAL SOLUTION OF THE OCCURRENCE PROBABILITY OF THE

DINUCLEOTIDE AG AT TIME t

= = [°(P1(0) + P»(0) + P3(0) + P4(0) + P5(0) + Ps(0) + Pr(0) + Ps(0)+

16
Pg(O) + Pm(O) + Pu(O) + P12(0) + P13(0) + P14(0) + P15(0) + P16(0))

+e2(a2Fb2)t(_ Py (0) — Py(0) + P3(0) + P4(0) — Ps5(0) — P5(0) 4+ P7(0) + Ps(0)
—Py(0) — P1o(0) + P11(0) 4 Pr2(0) — P13(0) — P14(0) + Pi5(0) + Pyg(0))
+e2(@Fe2)t(_ P (0) 4 Py(0) + P3(0) — P4(0) — Ps5(0) + P5(0) 4+ P7(0) = Ps(0)
—Py(0) + P1o(0) + Py1(0) — Pia(0) — Pi3(0) + P14(0) + Pi5(0) = Pyg(0))

+e 2ttt (P (0) — Py(0) + P3(0) — P4(0) + P5(0) — Ps(0) + P;(0) — Pg(0)

+Py(0) — Pyo(0) + Py1(0) — P1a(0) + Pi3(0) — P14(0) + Pi5(0) — Pyg(0))

+e~ At (P (0) 4 Py(0) + P3(0) + P4(0) + P5(0) + Ps(0) + P7(0) + Ps(0)

—=Py(0) = P1o(0) — P11(0) = P12(0) — P13(0) = P14(0) — P15(0) — P16(0))

te~ Hartbitaztba)t(_p () — Py(0) + P3(0) 4+ P4(0) — P5(0) — Ps(0) + P7(0) + Pg(0)
+Py(0) + Pio(0) — P11(0) — P12(0) + Pi3(0) + P14(0) — Pi5(0) — Py(0))

e~ Hartbitaztetp () 4 Py(0) + P3(0) — Py(0) — P5(0) + Ps(0) + P(0) — Py(0)
+Py(0) — Pyo(0) — Pyy(0) + Pra(0) + Pi3(0) — P14(0) — Py5(0) + Pys(0))

tem Hartbitbatet (P () — Py(0) + P3(0) — Py(0) + P5(0) — Ps(0) + P7(0) — Py(0)
—Py(0) + P1o(0) — Py1(0) 4 Pi2(0) — Pi3(0) + P14(0) — Pi5(0) + Pyg(0))

e Aartel)t(py(0) 4 Py(0) + P3(0) + P4(0) — Ps5(0) — Ps(0) — P7(0) — P3(0)

~Py(0) — P19(0) — P11(0) — P12(0) + P13(0) + P14(0) + Pi5(0) + Pi(0))
fe~Hartertaztb)t(_p () — Py(0) + P3(0) 4+ P4(0) + P5(0) + Ps(0) — P7(0) — Py(0)
+Py(0) + Pio(0) — Py1(0) — P1a(0) — P13(0) — P14(0) + Pi5(0) + Pyg(0))
teAatertazte)t _p () + Py(0) + P3(0) — P4(0) 4+ P5(0) — Ps(0) — P7(0) 4 Px(0)
+Py(0) — Pio(0) — Py1(0) + Pya(0) — Pi3(0) + P14(0) + Pi5(0) — Pyg(0))

e~ Hatertbate)l(p () — Py(0) + P3(0) — Py(0) — P5(0) + Ps(0) — P7(0) + Py(0)
—Py(0) + Pyo(0) — P11(0) + P12(0) + Py3(0) — Ppa(0) + Py5(0) — Pi6(0))

+e 20Dt (P (0) + Py(0) + P3(0) + P3(0) — P5(0) — Ps(0) — P7(0) — Py(0)

+Py(0) 4+ P1o(0) + P11(0) + P12(0) — P13(0) — P14(0) — P15(0) — P16(0))
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e 2brtertaxtb)l(p () — Py(0) + P3(0) + Py(0) + P5(0) + Ps(0) — P7(0) — Ps(0)
—Py(0) — Pio(0) + P11(0) + P12(0) + P13(0) + P14(0) — P15(0) — P16(0))

te 2 btertazte)t _p(0) 4 Py(0) 4 P3(0) — P4(0) 4 Ps(0) — Ps(0) — P7(0) + Pg(0)
—Py(0) + P1o(0) + P11(0) — Pi2(0) + P13(0) — P14(0) — Pi5(0) + Pi(0))
te2bterthatea)t (p(0) — Py(0) + P3(0) — P4(0) — P5(0) + Ps(0) — P(0) 4 Px(0)

+Py(0) — P1o(0) + P11(0) — P12(0) — P13(0) + Py4(0) — P15(0) 4+ P16(0))]

25



» Generalization of stochastic substitution models of nucleotides
Determination of analytical occurrence probabilities of genetic motifs at time ¢
Evolution direction either direct (past-present) or inverse (present-past)
Kronecker relation between substitution matrices of nucleotides and motifs

Development of the SEGM (Stochastic Evolution of Genetic Motifs) web server





