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Abstract

When infectious disease transmission is density-dependent, the risk of infection will
tend to increase with host population density. Since host defence mechanisms can be
costly, individual hosts may therefore benefit from increasing their investment in immu-
nity in response to increasing population density. Such “density-dependent prophylaxis”
(DDP) has now indeed been demonstrated experimentally in several species. However,
it remains unclear how DDP will affect the population dynamics of the host-pathogen
interaction, with previous theoretical work making conflicting predictions. We develop
a general host-pathogen model and assess the role of DDP on the population dynamics.
The ability of DDP to drive population cycles is critically dependent on the time delay
between the change in density and the subsequent phenotypic change in the level of re-
sistance. When the delay is absent or short, DDP destabilises the system. As the delay
increases, its destabilising effect first diminishes and then DDP becomes increasingly sta-
bilising. Our work highlights the significance of the time delay and suggests that it must
be estimated experimentally or varied in theoretical investigations in order to understand
the implications of DDP for the population dynamics of particular systems.

Introduction

Given the ubiquity of parasites and pathogens in nature, and the fitness costs associ-
ated with disease, there is a clear advantage to the host in investment in defence. However,
it is well established that the activation and deployment of the immune system may be
costly (e.g. McKean et al., 2008; Schmid-Hempel, 2003) and indeed a significant part of
the disease that many infectious agents cause results from immuno-pathology (Graham et
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al., 2005; Long et al., 2008; Moret and Schmid-Hempel, 2000; Sadd and Siva-Jothy, 2006).
In addition, there is good evidence that there are evolutionary costs to the maintenance
of defence in the absence of parasites and pathogens (e.g. Boots and Begon, 1993; Kraai-
jeveld and Godfray, 1997). Hence, we would expect natural selection to favour individuals
that invest more when there is the greatest threat of disease. Individuals should benefit
from tailoring their allocation of resources to immunity in order to match the perceived
risk of exposure to disease.

If transmission is positively density dependent (Anderson and May, 1979; Ryder et
al., 2005; Ryder et al., 2007), the risk of infection may increase at high density lead-
ing to the idea that it may be optimal to invest more in defence in crowded conditions
(Barnes and Siva-Jothy, 2000; Wilson and Reeson, 1998; Wilson et al., 2002). There is
now experimental evidence of such “density-dependent prophylaxis” (DDP) in a number
of systems, with further evidence coming from comparative studies of social and solitary
species (Barnes and Siva-Jothy, 2000; Cotter et al., 2004; Hochberg, 1991a; Reeson et
al., 1998; Wilson and Reeson, 1998; Wilson et al., 2002). For example, larvae of both
the Oriental armyworm Mythimna separata and the African armyworm Spodoptera ex-
empta show increased viral resistance when reared at high population densities (Kunimi
and Yamada, 1990; Reeson et al., 1998). Mealworm beetles (Tenebrio molitor) reared at
high larval densities show lower mortality when exposed to a generalist entomopathogenic
fungus, compared to those reared singly (Barnes and Siva-Jothy, 2000). Similarly, Wil-
son et al. (2002) found that desert locusts (Schistocerca gregaria) reared under crowded
conditions were significantly more resistant to an entomopathogenic fungus than solitary
locusts. Furthermore, a recent study on adult bumble-bee workers (Bombus terrestris)
concluded that there is rapid plasticity in immunity levels dependent on social context
(Ruiz-González et al., 2009). This demonstration of DDP in adults suggests that it may
be a widespread phenomenon, and considerably broadens its potential significance. It is
therefore important to examine the impact DDP may have on the population dynamics
of both the host and the parasite.

There has been some theoretical examination of the effect of DDP on host-parasite
population dynamics. White and Wilson (1999) used a discrete-time model, representing
non-overlapping insect generations, and found that if the density-dependent effect is suffi-
ciently small, it stabilises the dynamics. Reilly and Hajek (2008) developed a framework
with a continuous-time model for host and pathogen within the season and a discrete-time
map between seasons with a model structure related to gypsy moth - virus interactions.
In contrast to White and Wilson (1999), they reported that DDP has a destabilising ef-
fect on the population. Here, we present a general continuous-time model framework that
allows the effects of DDP to be understood in more detail. There is a well established
literature on continuous models (e.g. Anderson and May, 1981; Bowers et al., 1993; White
et al., 1996), so a continuous framework is used here to ensure that comparisons can be
drawn with other studies. Our model enables us to produce specific and widely applicable
conclusions. The aim is to thoroughly examine the implications of DDP for population
dynamics and reconcile the current differences in the predictions of the theoretical studies.
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The model

Our aim is to produce a general theoretical framework and we therefore choose a
classic model framework for representing hosts infected by free-living stages. Much of the
evidence for DDP has been found in invertebrate systems and therefore we use a baseline
model without acquired immunity. We examine the effects of DDP on the stability of the
system by examining the likelihood of population cycles. Our framework is an extension
of Anderson and May’s (1981) Model G that includes self-regulation of the host (Bowers
et al., 1993). The Bowers et al. (1993) model was developed to investigate the possible
role of pathogens in the cyclic dynamics of forest insect pests. We consider a system
in which the host population is composed of susceptibles, with density X, and infecteds,
with density Y (total density H = X +Y ), and with a free-living pathogen with density of
infective stages W . The dynamics are represented by the following system of differential
equations:

dH

dt
= rH

(
1− H

K

)
− αY (1)

dY

dt
= βW (H − Y )− (α + b)Y (2)

dW

dt
= λY − μW. (3)

Here we choose to use the differential equation for total host density (equation (1)), but
we could interchange this with one for the susceptible host density (equation (4) below).
For clarity, the model in terms of X, Y and W consists of equations (2) and (3) together
with:

dX

dt
= (r + b)(X + Y )− bX − r

(X + Y )2

K
− βWX. (4)

The model assumes that host self-regulation acts on birth rate and that both suscep-
tible and infected hosts can die naturally. Susceptible hosts can become infected through
contact with free-living infective stages of the pathogen, and once infected experience
additional mortality due to the disease. Infected hosts also release infective stages at a
constant rate and these stages are lost through natural decay. Descriptions of the param-
eters in the model are given in Table 1. We have used as our reference parameter values
those from Bowers et al. (1993). The effective rate of production of infective stages, λ,
is large in relation to the other rate parameters because pathogens are typically highly
productive (Anderson and May, 1981). Throughout this study, units of time are years
and units of abundance are individuals per unit area.
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Parameter Meaning
r Intrinsic rate of net increase of the host (birth rate − death rate b)
K Host carrying capacity
α Rate of disease-induced mortality
β Transmission coefficient of the disease
b Natural host death rate
γ Recovery rate of the host (included in an extension of the model: see Discussion)

λ Rate at which an infected host produces infective stages of the pathogen
μ Decay rate of the infective stages of the pathogen
p Measure of the reduction in β caused by DDP
β0 Transmission coefficient of the disease when there is no DDP
τ Delay in onset of DDP, as a proportion of the average host lifespan (1/b)

Table 1: Model parameter definitions. Values of the parameters that remain unchanged for all figures
are: r = 1, K = 1 and β0 = 0.0001. Units of time are years and units of abundance are individuals per
unit area; see Bowers et al. (1993) for details.

Under DDP, when host density H is high, individuals invest more in resistance mech-
anisms, and therefore the transmission rate of the disease is reduced. To represent this
density-dependent response, we modify the above model by changing β from a constant
parameter to a density-dependent term. For simplicity, we take β to be a simple linear
function that decreases as H(t) increases:

β = β0

(
1− p

100K
H(t)

)
. (5)

Here β0 is a constant and p represents the percentage reduction in β caused by the
prophylactic response when H(t) = K. For example, when p = 20, there is a 20%
reduction in β at H(t) = K (see Figure 1). Note that as H(t) ≤ K, the function β is
always non-negative.

0 K/2 K
0

0.5

1

1.5
x 10

−4

H(t)

β

p=0

p=20

p=40

p=60

p=80

Figure 1: The disease transmission rate β is a function of H(t). This figure shows β for DDP of varying
strengths, i.e. different p values. The horizontal line (p = 0) represents no prophylactic response.
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Population dynamics

The model framework (equations (1)-(3)) has three steady states: the trivial state
(H = 0, Y = 0, W = 0), which is always unstable since we assume r > 0, the disease-free
state (H = K, Y = 0, W = 0) and an infected state (H∗, Y ∗, W ∗) where

Y ∗ =
r

α
H∗

(
1− H∗

K

)

W ∗ =
λ

μ
Y ∗

and H∗ is a solution to the cubic equation

(H∗)3
( pr

100αK2

)
− (H∗)2

( r

αK
+

pr

100αK
− p

100K

)
+ H∗

( r

α
− 1

)
+

μ(α + b)

λβ0
= 0. (6)

This cubic equation always has one negative root, which is not ecologically relevant. The
two roots that remain can both be complex, in which case there is pathogen extinction.
Otherwise there are two positive, real roots. In most cases, one is less than K and one
is greater than K, the latter not being relevant. Both can be greater than K, so neither
is relevant: in this case pathogen extinction occurs. For some parameters, both roots
are less than K. This means that both are potentially relevant to ecological applications.
However, the larger root corresponds to a steady state that is always unstable. We focus on
the smaller of the two roots when this case arises (see Appendix A for further discussion).

The basic reproduction rate of the pathogen is

R(X) =
λβ0

(
1− p

100
X
K

)
X

μ(α + b)
.

The maximum of this, denoted by Rmax, depends on the strength of DDP as follows:

Rmax =

{
R(X =K) for p < 50

R(X =50K/p) for p ≥ 50.

Pathogen extinction occurs for Rmax < 1. Rmax decreases as p increases, so DDP makes
it more difficult for the disease to persist. (See Appendix A for further details.)

For certain parameter values the infected state is unstable, and then one expects
population cycles of host and pathogen to occur (Anderson and May, 1981; Bowers et al.,
1993; White et al., 1996). To investigate the effect of DDP on the population dynamics,
we explore the boundary in parameter space between the occurrence of cycles and the
endemic equilibrium being stable.

Results

We examine how DDP affects the propensity of cycles in disease parameter space.
Figure 2(a) shows α−λ parameter space partitioned into the regions where cycles and no
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cycles occur. Parameters α and λ are key to the characterisation of the disease, since α is
the disease-induced mortality rate, and λ is the rate at which an infected host produces
infective stages of the disease. When there is no DDP (p = 0), the boundary is equivalent
to that calculated in Bowers et al. (1993). As the strength of the prophylactic response
increases (p increases), the parameter region giving cycles becomes larger, and so the
system is destabilised. We therefore conclude that DDP that depends on current host
density acts to induce cycles.

Delay in onset of DDP

Thus far we have incorporated DDP by setting the transmission rate of the disease
to be a function of current host density. In reality, there is likely to be a delay between
the assessment of density and the subsequent adjustment in the investment in defence.
Experimental evidence indicates that this delay may be short, with DDP being elicited
rapidly in adults (Ruiz-González et al., 2009), or relatively long, with early instar den-
sity determining the level of defence in later instars or adults (e.g. Reeson et al., 1998).
Previous theoretical studies (White and Wilson, 1999; Reilly and Hajek, 2008) include
a delay (implicitly or explicitly), but only consider a single fixed delay length. Our aim
is to examine in detail how the delay may affect the population dynamics. To include
the delay in DDP in our model, we change the dependence on H(t) in equation (5) to a
dependence on H(t− τ/b), with delay τ/b. Here, the parameter τ represents the delay as
a proportion of the average lifespan of the host (1/b), and is therefore between 0 and 1.

Figure 2(b) shows the results when the proportional time delay τ = 0.99. At this time
delay, increases in the strength of DDP act to reduce the size of the region of parameter
space that gives rise to population cycles, and therefore DDP stabilises the system. As
the time delay is increased there is a transition from the situation where DDP has a
destabilising effect (Figure 2(a)) to one where DDP has a stabilising effect (Figure 2(b)).
A change in the time delay can cause the effect of DDP to be reversed. Therefore a key
new result is that the effect of DDP depends critically on the length of the delay.

In order to examine the effects of changing the time delay in more detail, we look at
the interactions between τ and other parameters in the model. Non-dimensionalisation
reveals that there are only three independent parameter groupings, in addition to p and τ .
Variations in these parameter groupings can be considered via changes in α, μ and λ (see
Appendix B for mathematical details). Figures 3 and 4 show the boundaries in parameter
space between regions of cycles and no cycles, for different parameter combinations and
different strengths of the DDP response. Cycles occur for low values of the pathogen decay
rate (Figure 3(a)) and for high values of the rate at which infected hosts produce infective
stages of the pathogen (Figure 3(b)). These results support previous findings that did not
involve a prophylactic response or a time delay (Anderson and May, 1981; Bowers et al.,
1993; White et al., 1996), but also emphasize how the region of parameter space giving
rise to cycles is modified by DDP. Additionally, intermediate values of disease-induced
mortality favour cycles, provided the time delay before the onset of DDP is not large
(Figure 4).
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Figure 2: The divisions in α−λ parameter space between cyclic behaviour and no cycling, for a series of
p values. In (a) there is no delay (τ = 0); in (b) there is a within generational delay (τ = 0.99). For the
p = 0 case, as we have no delay term, we can find the boundary between the two regions by consideration of
the Routh-Hurwitz stability criteria. (With the characteristic equation in the form z3+Az2+Bz+C = 0,
cycles occur when AB−C < 0; this partitions parameter space.) However, with p �= 0, the model comprises
delay differential equations, and the characteristic equation can no longer be solved algebraically. Instead,
we take a point on the p = 0 curve and use this as a starting point for numerical continuation in p up
to a particular value of p, for instance p = 20, tracking the passing of eigenvalues across the imaginary
axis. Once a point on the p = 20 boundary curve is obtained, we change to numerical continuation in α,
keeping p fixed. In this way, we can trace the stability boundary curves through parameter space. In this
figure, b = 3.3 and μ = 3.

Figures 3 and 4 additionally allow an examination of the effects of the delay τ on
the population dynamics. There is a consistent trend that as the time delay τ increases,
the parameter region in which cycles are produced diminishes. Thus increasing the delay
stabilises the system. These figures also clarify the effects of increasing the strength of
DDP (increasing p). The value of the delay at which the lines where p = 20 and p = 80
intersect is significant. When τ is below this value, an increase in the DDP strength
p destabilises the population; when τ is above the intersection value, an increase in p
stabilises the population. This corresponds to a transition from a pattern such as that
seen in Figure 2(a) to that in Figure 2(b). The delay at which the curves intersect does
have a very slight dependence on the p values chosen, but this is negligible for practical
purposes (less than 0.2%).

In summary, for short delays, an increase in the strength of DDP is destabilising, and
can significantly expand the parameter region over which population cycles are exhibited.
As the delay increases, this destabilising effect of DDP is reduced, until a critical delay is
reached. For delays longer than this critical value, an increase in the strength of DDP is
stabilising. As the delay increases, the extent of this stabilising effect increases.

Figure 4 indicates how the dynamics are affected by changing underlying model param-
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Figure 3: The effects of the parameters (a) μ and (b) λ on the transition to cyclic dynamics. For each
figure, one parameter is varied and others are fixed. Reference values: λ = 8 × 106, μ = 3, α = 15.5
and b = 3.3. In each plot, the curves for two values of p are depicted, plus the curves for p = 0. In this
way, the effects of changing both p and τ are shown, so that conclusions can be drawn about how both the
strength of prophylaxis and the length of delay affect the population dynamics. In (a), there are cycles
below each line and no cycles above; in (b), there are cycles above each line and no cycles below. The
time delay τ is expressed as a proportion of the average lifespan of the host, (1/b).

eters. As pathogen production λ increases, the parameter region giving cycles becomes
larger, for both p values (compare Figure 4 (a)-(c)). In contrast, as pathogen decay μ
increases, the region giving cycles becomes smaller (compare Figure 4 (d), (b) and (f)).
Therefore, increasing the rate at which an infected host produces infective stages of the
pathogen destabilises the dynamics, whereas increasing the pathogen decay rate is sta-
bilising. In addition to studying the effects of changing the disease parameters, we also
look at changing the natural host death rate b. Increasing b reduces the average lifespan
of the host. As the host death rate increases, the region of cycles becomes smaller, and
therefore the system is stabilised (compare Figure 4 (b) and (e)). This figure shows that
the critical point where the p = 20 and p = 80 lines intersect is parameter-dependent:
it increases as b gets larger and as μ gets smaller. However, it is relatively insensitive to
changes in λ. The implication of this is that for high pathogen decay rates and small host
death rates (i.e. long lifespan), the effect of increasing the strength of DDP reverses at
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Figure 4: The effects of parameter α on the transition to cyclic dynamics, and how these change
when other parameters are varied. For (b) the fixed parameters are μ = 3, λ = 8 × 106 and b = 1.65.
The remaining panels show the results of changing each of these parameters in turn from this reference
parameter set. Parameter values: (a) λ = 5 × 106; (c) λ = 10× 106; (d) μ = 2; (e) b = 3.3; (f) μ = 4.
Note that the value of b in (e) is the value used in previous figures. The time delay τ is expressed as a
proportion of the average lifespan of the host, (1/b). The regions of cycles for p = 20 are dotted black
and the regions of cycles for p = 80 are shaded grey.

time delays that are relatively short as a proportion of the average host lifespan.
Typical population dynamics for parameters in the cycling region are shown in Figure

5. Cycles arise because as host density increases, an epidemic is triggered, and there is a
rapid increase in pathogen numbers. This causes an increase in infection, and a subsequent
fall in host density. This leads to a decline in pathogen numbers, allowing host density to
increase once again. For a fixed parameter set, an increase in the level of DDP can change
the nature of the cycles generated (Figure 5). For all other parameters fixed, changing
the DDP strength p moves the boundary of cycles. Changing the boundary so the point
in parameter spaces lies deeper within the cycle region tends to increase both the period
and amplitude of the cycles (Anderson and May, 1981).
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Figure 5: Cyclic dynamics at equilibrium. Parameter values: τ = 0.33, α = 14, λ = 1 × 107, b = 3.3,
μ = 3 and (a) p = 20, (b) p = 80. The cycles in (b) are of higher amplitude and have a longer period.
These simulations are produced by MATLAB using the delay differential equation solver dde23. Solutions
are shown after running for 200 time units to ensure decay of transients. The initial conditions were
H = 0.2, Y = 0.01 and W = 1 × 102, but the long-term dynamics shown are not sensitive to initial
conditions.

Discussion

Density-dependent prophylaxis (DDP) is hypothesised to be a widespread phenomenon
in natural systems (Wilson and Reeson, 1998). However, the impact of DDP on the
population behaviour of outbreaking species is yet to be critically evaluated (Klemola et
al., 2007). In this study we develop a theoretical framework to explore the population
dynamical impact of DDP. We have shown that increasing the strength of the prophylactic
response can be either stabilising and destabilising, depending on the delay between the
assessment of density and the adjustment in resistance. When the delay is absent or short,
DDP is destabilising; as the delay increases, its destabilising effect diminishes and, once
a threshold in the delay is exceeded, it becomes increasingly stabilising. This highlights
the importance of the delay and indicates that it is essential to either estimate the delay
in natural / laboratory systems or vary the delay in mathematical models to understand
its influence on population dynamics in any given system.

Previous theoretical studies that have examined DDP have (implicitly or explicitly)
considered a single fixed delay for the onset of DDP (White and Wilson, 1999; Reilly and
Hajek, 2008). These studies report conflicting findings for the impact of DDP, with it
either stabilising (White and Wilson, 1999) or destabilising (Reilly and Hajek, 2008) the
population behaviour. Our analysis shows that the dynamical outcomes depend critically
on the delay length and this could explain the apparent contradiction between these
studies.

DDP is most commonly reported in insect-pathogen systems in which the infection is
often lethal and therefore in the above analysis we considered a model without recovery
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from infection. However, to test the generality of our findings, we also studied an extension
of our model framework that includes recovery (γ) (see legend to Figure 6 for details). Our
conclusions are unaffected by the inclusion of recovery: there is a parameter-dependent
delay value below which an increase in the strength of DDP is destabilising, and above
which such an increase is stabilising (Figure 6). Recovery decreases the size of the region
of α− λ parameter space where cycles arise (Figure 6) and therefore increasing recovery
is generally stabilising. This agrees with our intuition and is consistent with previous
findings that indicate that recovery, in the absence of DDP effects, reduces the likelihood
of cycles (Norman et al., 1994).
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Figure 6: Recovery γ stabilises the disease dynamics. (a) shows the results for delay τ = 0.33 and
(b) for τ = 0.99. To add recovery to the model, we add a −γY term to equation (2), giving dY/dt =
βW (H −Y )− (α + b + γ)Y . Curves are shown for two non-zero values of recovery: γ = 3.3 and γ = 6.6,
and for a range of p values. As γ increases, the cycling region is reduced. Increasing p gives the same
trends for γ > 0 as for γ = 0. In this figure, b = 3.3 and μ = 3 and the time delay τ is expressed as a
proportion of the average lifespan of the host, (1/b).

It has been postulated that DDP is likely to be manifested particularly in insect species
exhibiting population cycles and / or outbreaks (Wilson and Reeson, 1998). Indeed, sev-
eral of the species for which DDP has been experimentally demonstrated are prone to
outbreaks which can cause widespread damage to natural vegetation and crops, for exam-
ple the desert locust Schistocerca gregaria (Wilson et al., 2002), the African armyworm
Spodoptera exempta (Reeson et al., 1998) and the Oriental armyworm Mythimna sepa-
rata (Kunimi and Yamada, 1990). Changes in disease-transmission rate due to density-
dependence is known to strongly influence population dynamics (Hochberg, 1991b), and
it has been predicted that the lower rates of transmission among high-density populations
caused by DDP may destabilise host-pathogen interactions and contribute to the large
outbreaks characteristic of the insect populations concerned (Reeson et al., 1998). Our
findings confirm that DDP does have a significant impact on the population dynamics,
and could be a key factor driving outbreaks and cycles, providing the delay in its onset
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is sufficiently small. When the time until the onset of DDP is short, individuals can
rapidly increase resistance at high host densities, resulting in lower than expected rates
of transmission and reducing the capacity for the pathogen to regulate the population.
This destabilises the host-pathogen interaction and may contribute to the boom-and-bust
nature of the population dynamics (Reeson et al., 1998). Furthermore, our results indi-
cate that the peak and period of population cycles are affected by the extent of DDP.
Therefore, DDP may have important implications for the duration and size of outbreaks
and will need to be considered when developing biological control strategies to manage
pest species.

Pathogens are important agents in the regulation of host populations and there has
been extensive debate into their role in driving and modulating host outbreaks (e.g.
Berryman, 1996; Klemola et al., 2007; Sherratt and Smith, 2008). For cyclic insect
populations it has been suggested that although pathogens may promote populations
oscillations they are unlikely to be the sole driver of cycles since in model systems the
population density at the peak of the oscillations is well below outbreak levels (Bowers
et al., 1993; White et al., 1996). Extensions to these models that include a time delay
in host self-regulation or include additional model complexity to better represent insect-
pathogen systems show an increased propensity to cycle (Bonsall et al., 1999, Xiao et al.,
2009). Our findings show that the inclusion of DDP could operate in a similar manner.
In particular, provided the delay before the onset of DDP is short, we predict an increase
in the parameter regions over which cycles are exhibited and an increase in the amplitude
of population oscillations.

Our key result is that the time delay between the assessment of population density and
the change in host defence is critical in determining the influence of DDP on population
dynamics. It would be relatively straightforward to design laboratory experiments to
estimate this delay. This would be highly informative: quantitative predictions could
be made about the impact of DDP and this would further inform the debate on the
role of pathogens in driving population cycles. Outbreak pest species continue to cause
major economic problems and one of the best studied examples of DDP is in a classic
outbreak pest species, the locust (Wilson et al., 2002). It is critical to understand whether
their natural parasites through processes such as DDP help to generate their unstable
population dynamics. Furthermore, pathogens are increasingly proposed as control agents
for insect pests where there is the need for stable control. What our work emphasises is
that it is the delay between increases in density and increased investment in immunity
that is critical. Where it is not possible to measure this delay experimentally, any models
built to assess the role of parasites and pathogenic control agents in specific systems need
to assess the role of the delay. We have found that DDP can be stabilising or destabilising.
Short-lived host species faced with long-lived free-living parasites are most likely to be
destabilised by DDP, but the delay is critical to the outcome.
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influence population fluctuations and level of parasitism in the cyclic geometrid moth?

13



Population Ecology 49: 165-178.

Kraaijeveld, A.R. and Godfray, H.C.J. 1997. Trade-off between parasitoid resistance and
larval competitive ability in Drosophila melanogaster. Nature 389: 278-280.

Kunimi, Y. and Yamada, E. 1990. Relationship between larval phase and susceptibility
of the armyworm, Pseudaletia separata Walker (Lepidoptera: Noctuidae) to a nuclear
polyhedrosis virus and a granulosis virus. Applied Entomology and Zoology 25: 289-297.

Long, G.H., Chan, B.H.K., Allen, J.E., Read, A.F. and Graham, A.L. 2008. Experi-
mental manipulation of immune-mediated disease and its fitness costs for rodent malaria
parasites. BMC Evolutionary Biology 8: 128.

McKean, K.A., Yourth, C.P., Lazzaro, B.P. and Clark, A.G. 2008. The evolutionary costs
of immunological maintenance and deployment. BMC Evolutionary Biology 8: 76.

Moret, Y. and Schmid-Hempel, P. 2000. Survival for immunity: the price of immune
system activation for bumblebee workers. Science 290: 1166-1168.

Norman, R., Begon, M. and Bowers, R.G. 1994. The population dynamics of micropara-
sites and vertebrate hosts: the importance of immunity and recovery. Theoretical Popu-
lation Biology 46: 96-119.

R̊aberg, L., Grahn, M., Hasselquist, D. and Svensson, E. 1998. On the adaptive signifi-
cance of stress-induced immunosuppression. Proceedings of the Royal Society of London
B 265: 1637-1641.

Reeson, A.F., Wilson, K., Gunn, A., Hails, R.S. and Goulson, D. 1998. Baculovirus
resistance in the noctuid Spodoptera exempta is phenotypically plastic and responds to
population density. Proceedings of the Royal Society of London B 265: 1787-1791.

Reilly, J.R. and Hajek, A.E. 2008. Density-dependent resistance of the gypsy moth Ly-
mantria dispar to its nucleopolyhedrovirus, and the consequences for population dynamics.
Oecologia 154: 691-701.
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Appendix A

In this appendix we explain the conditions under which there is pathogen extinction.
For the model without DDP, the basic reproductive rate, R, of the pathogen is

R(X) =
λβX

μ(α + b)

where β is constant. When R < 1 the disease cannot persist (the disease-free steady state
is stable). In the absence of DDP, disease persistence is determined by assessing R in
a disease-free population at the host carrying capacity, R0 = R(K). Disease extinction
occurs if R0 < 1.

For our model, with density-dependent β, R can be written

R(X) =
λβ0

(
1− p

100
X
K

)
X

μ(α + b)
.

To determine when R < 1 holds, we seek the largest value of R(X) which we denote Rmax.
In the absence of DDP this occurred when X = K, however with a density-dependent β
the maximum need not occur at the carrying capacity. We differentiate R with respect
to X and set to zero to give

X =
50K

p
.

For p ≥ 50, 50K/p is on X = [0, K]. So

Rmax = R(X =50K/p) for p ≥ 50.

(Note for p = 50, 50K/p = K.) For p < 50, 50K/p > K, which is not relevant. The
maximum on X = [0, K] is at X = K (see Figure 7), so

Rmax = R(X =K) for p < 50.

From Figure 7, for any given X, as p increases, R(X) decreases, and so pathogen
extinction becomes more likely. Thus DDP acts to make disease persistence more difficult.

For sufficiently large p, and for appropriate values of the other parameters, a stable
disease-free steady state coexists with an ecologically relevant infected steady state. This
links to the roots of cubic equation (6): this case occurs when there are two positive
roots less than K. Numerical studies suggest that there is a separatrix in phase space,
passing through the (unstable) steady state which corresponds to the larger cubic root.
This separatrix determines the basins of attraction for the two steady states. We are
interested in the dynamics when disease is present, so we focus on this region of phase
space, rather than behaviour in the basin of attraction of the disease-free steady state.

16



0 K
0

5

10

15

R

X

p=80

p=60

p=40

p=20

p=0

Figure 7: The basic reproductive rate of the infection (R) needs to be calculated at different values of
the density of susceptible hosts (X) depending on the strength of DDP (i.e. the value of p). This figure
shows function R(X) for different values of p, for representative parameter values, which are λ = 8×106,
μ = 3, α = 15.5 and b = 3.3. For p < 50, the maximum of R(X) occurs for X > K, which is not
relevant. So we take Rmax = R(K) as this is the maximum within X = [0, K]. For p ≥ 50, the maximum
of R(X) lies within X = [0, K] at X = 50K/p. The Rmax value for each p is indicated with a dot.

Appendix B

In this appendix, mathematical details of the non-dimensionalisation of the model
(equations (1)-(3)) are given. This non-dimensionalisation is used to determine which
parameters should be varied when undertaking a sensitivity analysis of the findings. We
first set the following dimensionless variables:

H ′ = H/Hs, Y ′ = Y/Ys, W ′ = W/Ws and t′ = t/ts.

Now we can re-express the model equations as

dH ′

dt′
= rH ′ts

(
1− H ′Hs

K

)
− αY ′Ysts

Hs

dY ′

dt′
=

βW ′Wsts
Ys

(H ′Hs − Y ′Ys)− (α + b)Y ′ts

dW ′

dt′
=

λY ′Ysts
Ws

− μW ′ts.

Parameters can be eliminated by an appropriate selection of ts, Hs, Ys and Ws. Choos-
ing

ts = 1/r, Hs = Ys = K and Ws = r/β

gives

dH ′

dt
= H ′(1−H ′)− α

r
Y ′

dY ′

dt′
= W ′(H ′ − Y ′)− (α + b)

r
Y ′

dW ′

dt′
=

λKβ

r2
Y ′ − μ

r
W ′.
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This dimensionless form shows that there are four independent parameter groupings:

α/r, b/r, μ/r and λKβ/r2.

To cover all cases, it is therefore enough to consider variations in α, b, μ and λ. Note
that in the Discussion, we comment on an extended model which includes recovery γ.
Changing γ is akin to changing b and keeping r constant. Thus, since we look at the
effects of changing γ, we are left with only three other parameters that we need to vary:
α, λ and μ.
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� A host-pathogen model is developed to explore the population dynamical 
impact of DDP. 

� The time delay in the onset of DDP is critical in determining its influence. 
� DDP can drive population cycles when the delay is short. 
� DDP stabilises dynamics when the delay is long. 
 
 
 




