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Improving The Performance of Linear Systems by Adding a Hybid
Loop: The Output Feedback Case

Francesco Fichera, Christophe Prieur, Sophie TarbouaadhLuca Zaccarian

Abstract— In this paper, we extend the state feedback results to decide the optimal reset value (as in [10]), but also to

of Prieur et al. (NOLCOS 2010) to the linear output feedback detect whether the state is in the jump or flow set (namely,
case, when the plant state is not available and is estimatedava decide whether or not to reset the controller).

Luenberger observer. Two techniques, based on different set .
maps and flow and jump sets and guaranteeing global practical " thiS paper, we extend the work of [13], [14] by

asymptotic stability of the origin of the closed-loop systm, are removing the heavy assumption that the plant state is

proposed. The effectiveness of the solutions is illustrateon a  available. To this aim, similar to [10], we introduce a
simulation example where we show suitable reduction of the | yenberger observer in the closed loop and rely on the
output overshoot. arising plant state estimate for the design of flow and jump
Index Terms—Hybrid systems, practical stability, reset con- sets and_ reset maps, Wh|ch_asymptot|cally recover those of
trollers. our previous work as the estimation error converges to zero.
Our approach shares some similarities with [10]. However,

I. INTRODUCTION while [10] focuses on the design of the switching law (or

In an attempt to enlarge the frontiers of control theory/€S€t map), here we also design the flow and jump sets
hybrid systems have proved to be capable to remoR@Sed on the estimated plant state.
some fundamental limitations of classical theory. New Since the plant state is not accessible, we cannot reuse the
mathematical tools that go beyond classical analysis hay@Me Proof technique of [13], [14], where the knowledge of
been developed to handle this class of dynamical syster{® Whole state allowed to prevent increase of the Lyapunov
having both continuous and discrete behavior, [1]_[3]functlon by triggering suitable resets in certain regions.
Hybrid systems are useful, for example, to robustly stabili Here, in the output feedback case, we are constrained
nonlinear systems not stabilizable by smooth feedbacl? Only define jump and flow sets based on a partial
[4]-[6]. Furthermore, first order reset elements (FORE) oftate information and then prove stability properties gsin
reset systems have been shown to overcome some intrindfditional Lyapunov arguments. We propose two schemes,
limitations of linear control systems, see [7]-[9] and®n€ Of them using similar sets to those of [13], [14]
references therein. Finally, suitably resetting (not seadly "€defined on the observer state, the other one exploiting
in zero, as in the above reset systems works) a controll@p additional term driven by the output observation error
state upon certain conditions can, in general, lead to mof@" the definition of both flow and jump sets and the reset
desirable closed-loop behavior, see for example the optim®@ap: All of our results here establish practical asymptotic
reset law proposed in [10] for switching systems. Hybrigtability of the closed loop because we forbid jumps in an
controllers have been also addressed in the context of tREPitrarily small ball around the origin to avoid defective
so-called impulsive systems literature [11], [12], whehe t Zeno S(_)Iutlons that pr_ev_ent the observation error from
discrete jumps of the state are described by way of impuls€8NVerging to zero (a similar approach has also been used
suitably acting on the system. in [

Recently in [13], [14], we proposed a technique to design ] )
hybrid control loops whose jumps are triggered by suitable The rest of the paper is organized as follows. Some
Lyapunov-like conditions (such as the non-increase of sonfotation and basic definitions on hybrid systems are given
Lyapunov-like functions of the closed-loop state). Thd1€xt. In Section I, the main results are presented, a
potential of that technique was illustrated, for example pSubsection for each control schemes is introduced with a
an effective method for reducing the overshoot of a suitabférther subsection with some comparative remarks. Some
output. However, the approach in [13], [14] heavily reliesimulations and comparisons are presented in Section Ill.

on the knowledge of the plant state which is not only used ) S )
Notation and preliminaries. Given a vectorz, z”
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the null matrix) in R™*". 0, with n # m andn, m « evaluates if the controller state is in the flow or jump
positive integers, denotes the null matrix R**™. The sets;

subscripts may be omitted when there is no ambiguity. Given « resets the state. if the controller state is in the jump

a compact se#, the notationz| , = min{|z — y| : y € A} set.

indicates the distance of the vecterfrom the setA. The
boundary of A is denoteddA. If A is the origin then

] 4 = [].

Here we propose two hybrid controllers differing only in
the supervisor block (namely in the jump map, in the
flow and jump sets and in the information received by the
supervisor). For the first technique, described in Section |
E the supervisor receives only the signals represented by
solid arrows (see Fig. 1), whereas in the second technique,
described in Section 1I-C, the supervisor receives also the
output estimate from the observgy, and the plant output,
yp (dashed arrows).

The continuous dynamics of both of our controllers and
the plant inputu, satisfy the same equations given next

[2]. A hybrid system is represented as
{ z = flx)ifzeC
2+

g(x)if x € D
wherex € R™ is the state space of the hybrid systethC
R™ is theflow setf D C R" is thejump set while f : C' —

1)

R™ andg : D — R™ are single-valued mappings, called
the flow mapand thejump map respectively. A solutione i =~ 1r & —
consists in a functiorr : dom(z) — R"™, wheredom(z) is [ip} = hl)e B{%CCH?’}F[BG% + L] Yp

the hybrid time domaindefined as a suitable set&f.o x N.

According to [2], we introduce next only the definition 1= AuT + Buyp (3a)
that will be considered in the rest of the paper. For further
details see also [3], [16]-[18]. A solution of (1) is said te b =[0 C }[ } + Deyp
completeif dom(x) is unbounded andenoif it is complete ‘= Oy + Dy, (3b)

but the projection oflom(z) onto R> is bounded.

Definition 1: Given the hybrid system (1), a compact set
A C R” is said to be
e stable for (1): if for eache > 0 there existsd > 0 such
that each solution: to (1) with [(0,0)| , < ¢ satisfies

where A, = A, — LC,, B. = B, — LD,, and all the other
matrices are design parameters that will be defined later.

Assumption 2:The interconnection (2),(3) is well-posed,

lz(t,7)| 4 < e for all (¢, ) € dom(z);

e attractive for (1): if every solution to (1) is complete and
satisfieslimy 1 j_,oc |[2(t, j)| 4 = 0;

e globally asymptotically stable (GAS) for (1): if it is both
stable and attractive for (1).

II. MAIN RESULTS Zp Ay, By Bo| [
) t. | = | B A. B =A 4a
A. Controller architecture e . ol e * (42)
é 0 A, e
In this paper we consider a LTI plaf, represented by Yp = [C,, C Cp] z = Cu, (4b)
Tp = /_ipxp + Epu 2
P{ Yp = Cparp+ Dpu @
with z, € R"», u € RP andy, € R? and satisfying the .
following assumption. Yp e = Axc+ By, S
u = Cux.+ D, Yp
Assumption 1:The pair(C,, A,) is detectable. o
Te reset
Now, let us introduce the vectorls, € R"» andz. € R"°,
which combined together will give us our controllers state Supervisor
T = [z xT} . As Figure 1 shows, the hybrid controller_ a- || (jump map, F, J)
chitecture, we propose, can be represented as: a continuous -
time controller with stater., experiencing jumps and gov- & LUy
erning the closed-loop dynamics during flows; a continuous- ‘
time Luenberger observer with staig, used for the jump T, = AeZy + Beu+ Ly,
dynamics only; and a supervisor, which accomplishes three 9y = Cpty + Dyu
tasks: H
« receives the signals., 2, (andy,, g, for the solution
in Section 1I-C); Fig. 1. Hybrid controllers architecture.

Defining the closed-loop state =
rewrite (2),(3) as

that is, the matrixI — D, D..) is non-singular. o

(2] I e™]", we can




where and0 < & < « and the scalap > 0 is related to the

A, | B, | B, A, | B,C. | LC, practical stability result established next and can be ehos
B.| A, |B. | =] 0 A, 0 arbitrarily small.
Cp | Ce | Cp 0 0 0 ) ) .
- Using (4), the interconnection (2),(6) becomes
_Ipe -
+| B. | X[ Cp|DpCe|Cp ], i = Az if 2 € (FxR"™)
7 it I 0 0z,
_ + | — i np
with X = (I — D,D.)~" well defined from Assumption 2 zfr o Ig” 8 ? e itz € (T xR™)  (8)
and A, defined after (3). € ¢
yp = Czx

Remark 1:The gainL € R"»*7 is selected such a way which corresponds to our hybrid closed-loop system.
that the matrixA. is Hurwitz (see Assumption 1). Defining

e = Tp— i, and from (4a), we haveé = i, — i, = Theorem 1:Consider a plant-controller pair (2), (6) with
Ace. This proves that the controller sub-statg converges the sets¥ and J in (7), K, = —P~1PT, satisfying

. . 1 c pc?
exponentially to the plant state,, during flow. °  Assumptions 1, 2 and 3 and with, Hurwitz.

. Then the hybrid controller (6) guarantees that the set
Remark 2:The plant input. depends only or:. andy, y ©g

(see (3b)), this means that the information coming from the A:={z:V(z) < p} x {0} 9)

observer is used only by the supervisor (see Fig. 1). This ) )

peculiar architecture was also used in [10]. o WhereV(z) = zT Pz, is globally asymptotically stable for
the closed-loop system (8), namely the origin is practycall

In the sequel, we provide two designs of the supervisor blodgAS (p can be arbitrarily small). O

of Fig. 1, both of them generalizing the result of [13, Sattio

3] (see also [14]) to the output feedback case. Remark 3:Note that whenevee = 0, so thatz, = i,
the closed-loop (8) coincides with the hybrid closed loop in

B. Reset rule replacing;, with i, [13, Proposition 1]. Therefore one should expect the same
Once the observer in the lowest block of Fig. 1 is inresponses after the observer transient has expired. Mevert
place, the most natural approach to generalize [13, Sectitess, a deterioration of the response should be expected, in
3] is to replace the plant state, by its estimatez, in  general, due to the convergence transient of the obsemer. S
all the relations present in the supervisor block. We pursugection IlI for an example showing this behavior. o
this approach here and establish its effectiveness. Thedyb
controller design relies on the following assumption which C. Enhanced reset rule exploiting — g,
a simplified version of [13, Assumption 1] for the linear case The solution presented in the previous section succeeds at
Note that the corresponding inequality can be manipulategtending the schemes of [13], [14] to the output feedback
and transformed into a convex one by following the approacéase, but it does not directly exploit the instantaneousvkno
in [13, Section 5], see also Section IlI. edge of the output erray, — g, for the selection of the flow
) ) ] . and jump sets and the reset rule. We explore this additional
Assumption 3:Given the plan®, there exist a symmetric ,tential here and propose an enhanced scheme which is
matrix P = {pi If} > 0 and a scalarv > 0 such that expected to behave better during the observer transieet. Th
scheme relies once again on the matrices introduced in
He((P, — PPcPc_lppTc)(AP - BpPC—leTC)) (5) Assumption 3, plus ang extra gain matrix, € R"*9,
< —a(P, — PpcPC_IPpTC)- which is an additional free tuning parameter. Then, defining
o ni=1yp—Gp = Cplzp — Ip) = Cpe and¢ = (z,n), the
hybrid controller of Fig. 1 is selected as
We select the hybrid controller of Fig. 1 as

. . ¥ =Ayz+ B Y if (e F
~+ ~ = |
[%}:V»ﬂﬁﬂ‘MEJ (6) v | Ky 0w [T[K,|T v
Te Bp 0]] u = CyZ + Dyyp

u = CyT+ Dyy
g and, interconnected to (2), it leads to the following hybrid

with the following selections for the flow and jump sets closed-loop system

fm . AT NA « AT pa ar =T Do
F={z:2' Nz < —az" Pz orz' PT < p} (7a) i~ Ax it ¢ e F,
J={z:3"'Nz > —az’ Pz andz" Pz > p}, (7b) Cng I 0o o 4
where af | =| Ky 0 K,Cpll e if ¢ €J, (11)
B 0 O 1 e

_ Ap p et
N = He <p{ b B D (70) J_ by



where A and C are defined in (4). Moreover, the flow and Because of Remark 6, the two schemes have many com-
jump sets are given by mon features. For this reason, in the sequel, we will present
. . some common properties starting frdm) because the cor-
Fy={¢:¢"M¢ < —a¢" P¢ or ¢TP¢ < p} (12a)  responding property fov’ may be obtained by selectingia
Ty =1{¢:¢TM¢ > —a¢TP¢ and¢TP¢ > p}, (12b) with K, = 0 and by replacing € 7, (respectively¢ € 7,)
by z € F (respectivelyz € 7).

where As we are considering linear differential and difference
A B BK equations, we can resort to a quadratic Lyapunov-like func-
- P p — Pphy : V. _ TP - = =\ _ =T p-
M=tHe|P| B A 0 7 (120) tion ¢ — V(¢) = ¢* P¢ (respectivelyt — V(z) = &' PT).

This function has a crucial role for the supervisor block in
- the controller architecture of Fig. 1, to obtain that:

P = [ 0 0 } p[ I 0 0 ] (12d) i. the function¢ +— V(¢) (respectivelyz — V(z)) does

0 I —-K, 0 I =K, |’ not increase across the resets; i

P is given in Assumption 30 < & < « and the scalar i some (Eomponients of th(_a functian - V(¢) (resp?c—

p > 0 is related to the practical stability and can be chosen. tively, z 7 V(z)) do not increase across the f_IOW’ _
arbitrarily small. ili. the hybrid systgm flows after each reset and, in particu-

lar, Zeno solutions never occur.

Theorem 2:Consider a plant-controller pair (2),(10) with We can comment in more detail the three items above.

: - i oT L
,t:\]sesjr?lts%nsaq(,j ‘27 iar:g :(%1;21, dlgvim: I-Tu]rj\(/:vitfw satisfying First, note that the controller state is reset to the value
Then for anyK, € R™*¢, the hybrid controller (10) guar- iy T i

antees that the set (9) is globally asymptotically stable fo argmin | z. Pl z. | =— P! ppTc iy + Kyn

the closed-loop system (11), namely the origin is pradiical e n n (13)
GAS (p can be arbitrarily small). O

=: Kp2p, + Kyn.

Remark 4:Note that the sets in (12) are defined based o this way we achieve the non-increaselof(respectively,
the only quantities available for feedback, namely (z,7). V) across resets stated in item (i). Indeed, the reset map
Similarly, the jump rule in (11) only requires knowledgeminimizes V (respectively,V) with respect to#, and 7
of n (and not the whole errog) because of the matrik’,  (respectively, with respect t0, only).

appearing in the2, 3) entry of the jump matrix. ° ltem (i) is obtained by definition of the flow set. In
particular, the first inequality requires that the compdser
D. Comments and remarks the time-derivative o (respectively}’), not depending on

Remark 5:For the linear case addressed here, the stafeP€ Strictly decreasing. This explains why only whes: 0
feedback techniques of [13], [14], induce exponentialistab W& May be sure that all the componentsio{respectively,
ity of the origin of the state space, whereas for the corersll V) @re decreasing across the flow. o
(6) and (10) proposed here Theorems 1 and 2 only guaranteé:'na"y’ item (iii) on the avoidance of Zeno _solutlo_ns is
global practical asymptotic stability of the origin (sed)(9 necessar.y_to ensure thattonverge to zero and is achieved
namely GAS of the set. The set shrinks to the origin as PY combining two facts:
the free parametep > 0 becomes arbitrarily small. The @ homogeneity of the system (due to the linearity of the

need for the setd arises from the fact that} = #,, equations), N o
therefore the Luenberger observer is not affected by tHe the guarantee of a good flow condition, that isg i 7,
resets. To guarantee the convergence to zere, ofe then (respectivelyz € J) then(t € F, \ J, (respectively,

need to avoid Zeno solutions. To this aim, the arbitrarily Z+ € F\ J).

small neighborhoodA of the origin is removed from the From homogeneity of the system, we deduce that after each

jump set and practical asymptotic stability is established jump the solution flows for at least an interval timg,;,

before it reaches the boundary of the flow set. Sueh, g

Remark 6:Note that Theorem 1 is a corollary of Theo-is a finite strictly positive scalar because this minimum is

rem 2, in fact, if we seleck, = 0 in (11), (12), then for all carried out over a compact set.

(z, e) the functionV' (¢) = ¢" P¢ is equal toV (z) = &7 Pz Item b. is guaranteed by the following claim.

and moreoverF, = (F x R™) and J, = (J x R"),

that is, the two control techniques match. The same happensClaim 1: Under the conditions of Theorem 1 (respec-

when the error estimatioa is zero. This means that (6) andtively, Theorem 2), ifz € J (respectively,( € J,), then

(10) should have different behavior only during the observe;, -+ K i, (respectivelyz. # K, i, + K,n). o

transient. However, it is useful to keep the two solutions

distinct because the implementation suggested in Sedtion | The flow and jump sets in (7) are exactly like the ones

B is simpler than the one of Section II-C. o in [13], except for the arbitrarily small neighborhood ogth



TABLE |

origin, V(z) < p. However, we notice that the flow and jump HYBRID CONTROLLER SETTING PROPOSED

sets here have a different meaning because they are exgpresse

in the coordinates. The flow and jump sets in (12) and the 7, ®T p
Lyapunov-like function{ — V(¢) exploit more information 0.0097785  —0.0096375 0,0593992 i
related to the output estimation error of the observer. Only ~0.0096375  0.99990 ||| —4.83065 ||7784-10

whene = 0 (that is, whenz, = z,) the Lyapunov-like

functionz — V() (respectively¢ — V(¢)) coincides with o

the function in [13], [14] More generally, whea # 0, Notice that the paifC,, A,) is observable. For a reasonable
we know thate converges exponentially to zero and thecomparison, to design the continuous-time part (3a) of the
properties of the designs in [13], [14] are asymptoticallgontrollers, we select the matricek., B., C. and D. to

recovered for the output feedback case. define the same closed loop used in [9] and [14] (which is
In Section I, we present data simulations and emphasize negative feedback with a FORE), obtaining
how to generate a functiog — V({) (therefore also a A, | B. ~1] -1
functionz — V/(z)) satisfying the properties above. { CC | ) ] = [ T 0 ] ,
I1l. SIMULATIONS and the observer via an LQG synthesis that retubns-
Following the technique porposed in [13, 84], let ugd0.26 1.37]7. Finally, controller (11) is manually tuned with

consider the following Lyapunov-like function Ky = —2.
For the hybrid part of our controller, we exploit the optimal

V() = Vo(@p) + (we— Kpitpy— Kyn) " Pe(xe — Kpip— Kyn)  configuration presented for the static state feedback i [14
~ ~ (14)  for the overshoot reduction, see Table I. As the basic idea
with V,(2,) = &, P#, and P symmetric and positive of this optimization is to approximate the Lyapunov-like
definite. Then, it is clear that for all, any gaink), and K,  function, used to define the flow and jump sets, to the
the reset mapr. = K7, + K, satisfies (13). Moreover, norm of the plant outputig. V(¢) ~ yly, (respectively,
equation (14) written in matrix form becomes V(z) ~ ygyp)), we selectP. = 10-1° (ideally the smallest
- 1715 . P. that satisfies all the conditions in Assumption 3) in such
Zp| (P +KPTP6KP 7KPTP"’ KPTPJ{y Tp a way that the influence of the sub—statgF::)e red)uced.

V(O =z * Pe }PcKy e Moreover we setv = 10~® to enlarge as much as possible
n * * Ky Py JLn the flow set ang = 1073.
- [ P ‘ By -I Fig. 2 depicts the input and output behavior of the
=('pP¢=(" FPey ¢, hybrid systems (8) (dashed line) and (11) (dot-dashed line)
L~ = P | compared to the linear case, to the technique in [9] and to

(15)  the technique in [14].
All the controllers have zero initial conditions whereas

where P was defined in Assumption 3.
the plant state starts from,(0,0) = —[1 1]7.

~ Note that considerings, = —P;'P,., we haveP, =
P, + K'P.K, = P, + P,.P.'P]. and then (5) can be

equivalently rewritten as

He(P,(A, + B,K,)) < —aP,. (16) ° | &

At this point, if one selectds,, as a stabilizer for the pair
(Ap, Bp), it is always possible to find &, = BT > 0 and
a > 0 to satisfy (16) (or equivalently (5)). Onck,, P, osry 1
and o are obtained, choosing ank, and P. symmetric !
large enough to mak® positive definite, we can construct ) 2 P s 10
P from (15) (or equivalently from (12d)) and the flow and Time

jump sets,F, and7,. Note also that selecting’, = 0 we 5 ‘ ‘ - Bever il 2004
obtain P, F and 7. S — — — First Control

----- Second Control

Plant Output
~

Linear

To show the effectiveness of our result an historica
simulation example is presented.

Consider now the planP(s) = =5 introduced in
[9] and discussed in [14] and [19]. According with (2), a
possible realization is

Ap Bp —0.6 06) -1 Fig. 2.  Simulation results using the hybrid controllers @)d (10),
c 1D = —-04 04 1 . compared to the linear case, to the FORE in [9] and to the dydomtroller
p p 0 1 | 0 with optimal static state feedback given in [14].

Plant Input
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law.
Future research directions include deeper investigations
about performance of the method here proposed and seeking
for design techniques aimed at inducting performance prop-
erties that would not be achievable with continuous-timlg on
controllers.
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