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ABSTRACT

Due to the great interest of stereo images in several applications,
it becomes mandatory to improve the efficiency of existing coding
techniques. For this purpose, many research works have been devel-
oped. The basic idea behind most of the reported methods consists
of applying an inter-view prediction via the estimated disparity map
followed by a separable wavelet transform. In this paper, we pro-
pose to use a two-dimensional non separable decomposition based
on the concept of vector lifting scheme. Furthermore, we focus on
the optimization of all the lifting operators employed with the left and
right images. Experimental results carried out on different stereo im-
ages show the benefits which can be drawn from the proposed coding
method.

Index Terms— Stereo image coding, disparity estimation, vec-
tor lifting schemes, non separable transforms, adaptive transforms.

1. INTRODUCTION

Recent advances in acquisition and display technologies have con-
tributed to a widespread usage of stereo images. These data corre-
spond to 2 views, called left and right images, obtained by record-
ing the same scene from two slightly different positions. One of
the main advantages of these images consists of providing a three-
dimensional perception to the users. Such a 3-D representation en-
ables various functionalities like 3DTV, telepresence in videocon-
ferences [1], computer vision and remote sensing. The increasing
demand in stereo images have motivated many researchers to design
efficient compression techniques for both storage and transmission
purposes. A straightforward approach consists of separately cod-
ing each image by using existing still image coders. However, this
method is not so efficient since the images are often highly corre-
lated. Therefore, more efficient coding schemes have been designed
to take into account the inter-image redundancies [2]. The state-
of-the-art coding approach is a combination of inter-view prediction
and transform coding. More precisely, the generic stereo image cod-
ing scheme involves three steps. In the first step, one image (say
the left one) is selected as a reference image, and the other image
(the right one) is selected as a target image. After that, the dis-
parity map between the right and the left images is estimated [3].
In the second step, the target image is predicted from the reference
one along the disparity field, and the difference between the original
target image and the predicted one, called residual image, is gener-
ated. Finally, the reference image, the residual one and the disparity
map are encoded. Generally, the disparity map is losslessly encoded
using DPCM with an entropy coder whereas the residual and the
reference images are encoded in different transform domains. Pi-

oneering techniques have been developed for the Discrete Cosine
Transform [4, 5]. However, a great attention was paid to the wavelet
transform domain to achieve the quality scalability and guarantee a
lossy-to-lossless reconstruction [6, 7]. To this end, lifting schemes
have been already used to encode the reference and the residual im-
ages [7]. In a recent work [8], an adaptive lifting scheme is also
presented. The direction of prediction is selected according to the
local horizontal and vertical gradient information of the reference
image. While this approach can achieve good results in terms of bi-
trate, it is not efficient in a lossy coding context (especially at low bit
rate) since it is very sensitive to the quality of the reference image.
In [9], the disparity map and the residual image are generated by ap-
plying a bandlet transform [10] to the left and the right images. In
[11], a hybrid coding scheme is designed where DCT is employed
for the best matching blocks and the Haar wavelet transform for the
occluded ones. Recently, we have proposed a novel approach based
on the Vector Lifting Schemes (VLS) [12]. It consists of coding the
reference image in intra mode whereas the other image is coded ac-
cording to a hybrid mode driven by the estimated disparity map. Its
main feature is that it does not explicitly generate a residual image,
but two compact multiresolution representations of the left and right
images. We should note that the proposed joint multiscale decompo-
sition is handled in a separable way by cascading one dimensional
(1D) VLS along the horizontal direction, then along the vertical one.
However, it is well known that such a separable processing may not
be well-suited for images with edges which are neither horizontal
nor vertical. To overcome this drawback, some works on still image
compression have been devoted to the development of 2D non sepa-
rable lifting schemes in order to offer more flexibility in the design
of the transform [13, 14, 15].
Due to the advantages of using non separable structures as shown
in [15], we propose to perform the joint coding of the stereo image
by adopting an extension of the previous VLS structure to 2D Non
Separable schemes. The resulting decomposition will be denoted in
what follows by NS-VLS. Another objective of this work is to de-
sign adaptive decomposition, well adapted to the characteristics of
the images, through an optimization of all the filters used with the
reference and the target images. While the proposed design strategy
is inspired from our recent nonsmooth optimization technique used
for still image coding [16], it is worth pointing out that this paper
aims at extending this technique to the context of stereo image cod-
ing.
The remainder of this paper is organized as follows. In Sec. 2, we
present the principle of the considered NS-VLS decomposition. The
proposed optimization strategy is described in Sec. 3. Finally, in
Sec. 4, experimental results are given and some conclusions are



drawn in Sec. 5.

2. 2D NS-VLS STRUCTURE
Let I(l) and I(r) denote the left and right images to be coded.
At each resolution level j and each pixel location (m,n), the ap-
proximation coefficient of the left image I

(l)
j (resp. right image

I
(r)
j ) has four polyphase components I

(l)
0,j(m,n) = I

(l)
j (2m, 2n),

I
(l)
1,j(m,n) = I

(l)
j (2m, 2n + 1), I

(l)
2,j(m,n) = I

(l)
j (2m + 1, 2n),

and I
(l)
3,j(m,n) = I

(l)
j (2m + 1, 2n + 1) (resp. I

(r)
0,j (m,n) =

I
(r)
j (2m, 2n), I

(r)
1,j (m,n) = I

(r)
j (2m, 2n + 1), I

(r)
2,j (m,n) =

I
(r)
j (2m + 1, 2n), and I

(r)
3,j (m,n) = I

(r)
j (2m + 1, 2n + 1)). The

proposed analysis NS-VLS structure is shown in Fig. 1. As men-
tioned before, the reference image I(l) is generally encoded in intra
mode. Thus, it can be seen that a non separable structure, com-
prising three prediction steps and an update step, is employed to
generate the diagonal detail coefficients I

(HH,l)
j+1 , the vertical detail

coefficients I
(LH,l)
j+1 , the horizontal detail coefficients I

(HL,l)
j+1 , and

the approximation coefficients I(l)j+1 of the left image:

I
(HH,l)
j+1 (m,n) = I

(l)
3,j(m,n)− ⌊(P(HH,l)

0,j )⊤I
(HH,l)
0,j

+ (P
(HH,l)
1,j )⊤I

(HH,l)
1,j + (P

(HH,l)
2,j )⊤I

(HH,l)
2,j ⌋, (1)

I
(LH,l)
j+1 (m,n) = I

(l)
2,j(m,n)− ⌊(P(LH,l)

0,j )⊤I
(LH,l)
0,j

+ (P
(LH,l)
1,j )⊤I

(HH,l)
j+1 ⌋, (2)

I
(HL,l)
j+1 (m,n) = I

(l)
1,j(m,n)− ⌊(P(HL,l)

0,j )⊤I
(HL,l)
0,j

+ (P
(HL,l)
1,j )⊤I

(HH,l)
j+1 ⌋, (3)

I
(l)
j+1(m,n) = I

(l)
0,j(m,n) + ⌊(U(HL,l)

0,j )⊤I
(HL,l)
j+1

+ (U
(LH,l)
1,j )⊤I

(LH,l)
j+1 + (U

(HH,l)
2,j )⊤I

(HH,l)
j+1 ⌋, (4)

where for every i ∈ {0, 1, 2} and o ∈ {HL,LH,HH},
• P

(o,l)
i,j = (p

(o,l)
i,j (s, t))

(s,t)∈P(o,l)
i,j

is the prediction weighting vec-

tor whose support is denoted by P(o,l)
i,j

• I
(o,l)
i,j = (I

(l)
i,j (m+ s, n+ t))

(s,t)∈P(o,l)
i,j

is a reference vector used

to compute I
(o,l)
j+1 (m,n)

• I
(HH,l)
j+1 = (I

(HH,l)
j+1 (m + s, n + t))

(s,t)∈P(LH,l)
1,j

and I
(HH,l)
j+1 =

(I
(HH,l)
j+1 (m+ s, n+ t))

(s,t)∈P(HL,l)
1,j

are used in the second and the

third prediction steps
• U

(o,l)
i,j = (u

(o,l)
i,j (s, t))

(s,t)∈U(o,l)
i,j

is the update weighting vector

whose support is designated by U (o,l)
i,j

• I
(o,l)
j+1 = (I

(o,l)
j+1 (m + s, n + t))

(s,t)∈U(o,l)
i,j

is the reference vector

containing the samples used in the update step.
It is important to note that the main difference between a vector
lifting scheme and a basic one is that for the target image I

(r)
j , the

prediction step involves samples from the same image and also some
matching samples taken from the disparity-compensated reference
image. To this end, we firstly apply Eqs (1)-(4) to generate three
intermediate detail subbands and an approximation one denoted
respectively by Ĩ

(HH,r)
j+1 , Ĩ

(LH,r)
j+1 , Ĩ

(HL,r)
j+1 and I

(r)
j+1. After that,

we add a second prediction stage composed of three steps, which
involves a hybrid prediction exploiting at the same time the intra and

inter-image redundancies in the stereo pair. This is achieved by us-
ing the estimated disparity field denoted by vj = (vx,j , vy,j). In the
following, the disparity compensated left image on a given matching
sample (m,n), given by I

(l)
j (m+vx,j(m,n), n+vy,j(m,n)), will

be simply replaced by I
(c)
j (m,n) for notation concision. Similarly

to the left image, let us denote by I
(c)
0,j (m,n), I(c)1,j (m,n), I(c)2,j (m,n)

and I
(c)
3,j (m,n) the four polyphase components of I

(c)
j (m,n).

Therefore, the final detail subbands of the right multiresolution
analysis can be expressed as:

I
(HH,r)
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(HH,r)
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3,j ⌋, (5)
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2,j

+ (P
(LH,r,l)
3,j )⊤I

(LH,c)
3,j ⌋, (6)

I
(HL,r)
j+1 (m,n) = Ĩ

(HL,r)
j+1 (m,n)− ⌊(Q(HL,r)

0,j )⊤Ĩ
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+ (Q
(HL,r)
1,j )⊤I

(HH,r)
j+1 + (P
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3,j )⊤I

(HL,c)
3,j ⌋, (7)

where for every i ∈ {0, 1, 2, 3} and o ∈ {HL,LH,HH},
•Q(o,r)

i,j = (q
(o,r)
i,j (s, t))

(s,t)∈Q(o,r)
i,j

is an intra prediction weighting

vector whose support is denoted by Q(o,r)
i,j

• P
(o,r,l)
i,j = (p

(o,r,l)
i,j (s, t))

(s,t)∈P(o,r,l)
i,j

is an inter prediction

weighting vector whose support is denoted by P(o,r,l)
i,j

• Ĩ
(o,r)
0,j+1 = (I

(r)
j+1(m + s, n + t))

(s,t)∈Q(o,r)
0,j

is a reference vector

used to compute I
(o,r)
j+1 (m,n)

• Ĩ
(HH,r)
1,j+1 = (I

(HL,r)
j+1 (m+ s, n+ t))

(s,t)∈Q(HH,r)
1,j

and Ĩ
(HH,r)
2,j+1 =

(I
(LH,r)
j+1 (m + s, n + t))

(s,t)∈Q(HH,r)
2,j

are two reference vectors

used to compute I
(HH,r)
j+1 (m,n)

• I
(HH,r)
j+1 = (I

(HH,r)
j+1 (m+ s, n+ t))

(s,t)∈Q(LH,r)
1,j

and I
(HH,r)
j+1 =

(I
(HH,r)
j+1 (m+ s, n+ t))

(s,t)∈Q(HL,r)
1,j

are two intra prediction vec-

tors used to compute I
(LH,r)
j+1 (m,n) and I

(HL,r)
j+1 (m,n)

• I
(o,c)
i,j = (I

(c)
i,j (m + s, n + t))

(s,t)∈P(o,r,l)
i,j

is a reference vector

containing the matching samples used to compute I
(o,r)
j+1 (m,n).

Finally, at the last resolution level j = J , instead of directly coding
the approximation subband I

(r)
J , we predict it from the approxima-

tion of the left image using disparity compensation. As a result, the
following residual subband e

(r)
J is generated:

e
(r)
J (m,n) = I

(r)
J (m,n)− I

(c)
J (m,n). (8)

Once the considered NS-VLS has been defined, we address in the
next section the issue of the optimal design of its lifting operators.
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Fig. 1. NS-VLS decomposition structure.

3. DESIGN OF A FULLY-ADAPTIVE STRUCTURE

3.1. Design of the filters used for the reference image I(l)

With the ultimate goal of producing sparse wavelet coefficients, we
propose to optimize the prediction filters P(o,l)

j of the left image by
minimizing the ℓ1-norm of the detail coefficients:

∀ o ∈ {HL,LH,HH}, ∀ i ∈ {1, 2, 3},

Jℓ1(P
(o,l)
j ) =

Mj∑
m=1

Nj∑
n=1

∣∣∣I(l)i,j (m,n)− (P
(o,l)
j )⊤X

(o,l)
j (m,n)

∣∣∣ (9)

where I
(l)
i,j (m,n) is the sample to be predicted, X(o,l)

j (m,n) is the
reference vector containing the samples used in the prediction step,
P

(o,l)
j is the prediction operator vector to be optimized, Mj and Nj

corresponds to the dimensions of the input subband I
(l)
j+1. To min-

imize such a criterion, the Douglas-Rachford algorithm can be em-
ployed, which is an efficient optimization tool in this context [17].
However, it can be noticed from Fig. 1 that the diagonal detail sig-
nal I(HH,l)

j+1 is used as a reference signal in the second and the third

prediction steps to generate the detail signals I(LH,l)
j+1 and I

(HL,l)
j+1 re-

spectively. Therefore, it is interesting to optimize the prediction filter
P

(HH,l)
j by minimizing the following weighted sum of the ℓ1-norm

of the three detail subbands I(o,l)j+1 :

Jwℓ1(P
(HH,l)
j ) =

∑
o∈{HL,LH,HH}

Mj∑
m=1

Nj∑
n=1

1

α
(o,l)
j+1

∣∣∣I(o,l)j+1 (m,n)
∣∣∣ (10)

where α
(o,l)
j+1 can be estimated by using a classical maximum likeli-

hood estimate. We should note that (10) is related to the approxima-
tion of the entropy of an i.i.d. Laplacian source. To solve this mini-
mization problem, we can also use the Douglas-Rachford algorithm,
reformulated in a three-fold product space [18]. For more details
about the minimization algorithm, the reader is referred to [16]. By
minimizing the weighted criterion (10), it can be noticed that the
optimization of the filter P

(HH,l)
j depends on the optimization of

the filters (P(LH,l)
j ,P(HL,l)

j ) and vice-versa. As a result, it appears
interesting to use a joint optimization method which iteratively op-
timizes the prediction filters P

(HH,l)
j , P(LH,l)

j and P
(HL,l)
j . For

this purpose, we start by optimizing separately each prediction filter
P

(o,l)
j based on the ℓ1 criterion (9). Then, the update filter U(l)

j is
optimized by minimizing the error between the approximation signal
I
(l)
j+1 and the decimated version of the output of an ideal low-pass

filter, and the resulting weighting terms 1

α
(o,l)
j+1

are evaluated. After

that, we iteratively repeat the following three steps: re-optimize
the filters P

(HH,l)
j , P

(LH,l)
j and P

(HL,l)
j by minimizing respec-



tively Jwℓ1(P
(HH,l)
j ), J (LH,l)

ℓ1
(P

(LH,l)
j ) and J (HL,l)

ℓ1
(P

(HL,l)
j ),

re-optimize the update filter U
(l)
j and re-compute the weighting

terms. Note that the convergence of the proposed joint optimization
algorithm is achieved during the early iterations (after about 5 iter-
ations) where each one takes about 4 seconds for an image of size
512× 512 using a Matlab implementation [16].

3.2. Design of the filters used for the target image I(r)

Let us denote by P̃
(o,r,l)
j the sum of the two filters Q

(o,r)
j and

P
(o,r,l)
j used at the second prediction stage of the NS-VLS struc-

ture. Intuitively, one can again optimize all the prediction filters
P

(HH,r)
j , P(LH,r)

j , P(HL,r)
j , P̃(HH,r,l)

j , P̃(LH,r,l)
j and P̃

(HL,r,l)
j

by minimizing the weighted sum of the ℓ1-norm of the three details
subbands I

(o,r)
j+1 . However, since the left and right images contain

nearly similar contents, we propose to set the filters used at the first
lifting stage, applied to the right image, to those corresponding to
the reference image:

P
(HH,r)
j = P

(HH,l)
j ,P

(LH,r)
j = P

(LH,l)
j ,

P
(HL,r)
j = P

(HL,l)
j ,U

(r)
j = U

(l)
j . (11)

The advantages of this strategy is two fold. First, it simplifies the
optimization process. Furthermore, it reduces the transmission cost
of the filter coefficients. Once the optimal operators of the first stage
are determined, the other prediction filters P̃(HH,r,l)

j , P̃(LH,r,l)
j and

P̃
(HL,r,l)
j will be designed by an alternating optimization approach

similar to that addressed in the previous section.

4. EXPERIMENTAL RESULTS

Simulation results are performed on five real stereo pairs down-
loaded from1 . In order to show the benefits of the proposed scheme,
we provide the results for the following decompositions carried out
over three resolution levels. The first one consists of coding inde-
pendently the left and right images using the 9/7 transform which
was selected for the lossy mode of the JPEG2000 standard. This
scheme will be designated by “Independent”. The second method,
which will be denoted by “Scheme-B”, is the state-of the-art method
where the reference and the residual images are encoded using also
the 9/7 transform [7]. The third one corresponds to our previous
joint stereo coding scheme based on a separable optimized VLS
decomposition. Finally, we consider the proposed extension of this
method to a non separable structure where a joint optimization
approach is performed. The two latter methods will be designated
respectively by “SEP-VLS-OPT” and “NS-VLS-OPT”. Fig. 2 dis-
plays the scalability in quality of the reconstruction procedure by
providing the variations of the average PSNR versus the average
bitrate of the “houseof” stereo images. These plots show that the
proposed method achieves an average gain of about 0.1-0.15 dB
compared to our recent work “SEP-VLS-OPT”. The gain becomes
more important (up to 0.65 dB) compared with the state-of-the art
methods. Fig. 3 displays the reconstructed target image of the
“aerial” stereo pairs for “Scheme-B” and “NS-VLS-OPT”. We no-
tice that the coding of the residual image leads to blocking artefacts
whereas our approach reduces significantly this problem. It is im-
portant to emphasize here that the blocking artefacts appearing with
the state-of-the-art method are not related to the wavelet codec and

1http://vasc.ri.cmu.edu/idb/html/stereo/index.html,
http://vasc.ri.cmu.edu/idb/html/jisct/index.html

result mainly from the limitations of the generic scheme where a
residual image is generated using a block-based approach. Finally,
in order to measure the relative gain of the proposed method, we
used the Bjontegaard metric [19]. The results are illustrated in Ta-
ble 1 for low, middle and high bitrates corresponding respectively to
the four bitrate points {0.15, 0.2, 0.25, 0.3}, {0.5, 0.55, 0.6, 0.65}
and {1.25, 1.3, 1.35, 1.4} bpp. Table 1 gives the gain of the method
“NS-VLS-OPT” compared with “Scheme-B”. Note that a bitrate
saving with respect to the reference method corresponds to negative
values. It can be observed that the proposed approach outperforms
the classical one by about -20% and 0.2-1.4 dB in terms of bitrate
saving and quality of reconstruction.

5. CONCLUSION

In this paper, we have exploited the flexibility offered by non separa-
ble vector lifting schemes to perform a fully-optimized structure for
joint coding of stereo images. Experiments have shown the benefits
of the proposed method. In a future work, a new criterion defined
simultaneously on the reference and the target images could be en-
visaged.
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Fig. 2. PSNR (in dB) versus the bitrate (in bpp) after JPEG2000
progressive encoding of the stereo pair ’houseof’.

Table 1. The average PSNR differences and the bitrate saving at
low, medium and high bitrates. The gain of “NS-VLS-OPT” w.r.t
Scheme-B.

bitrate saving (in %) PSNR gain (in dB)
Images low middle high low middle high
houseof -1.07 -10.25 -11.31 0.04 0.46 0.87
pentagon -6.91 -21.68 -27.51 0.22 0.92 1.89
ball 1.91 -10.99 -18.29 -0.03 0.30 0.78
birch -15.17 -39.79 -23.70 0.81 1.13 2.12
aerial -0.45 -17.12 -19.44 0.02 0.75 1.43
average -4.34 -19.96 -20.05 0.21 0.71 1.41



(a) Original target image (b) PSNR=27.10 dB, SSIM=0.728 (c) PSNR=27.81 dB, SSIM=0.744

Fig. 3. Reconstructed target image of the “aerial” stereo pair at 0.3 bpp using (b) Scheme-B (c) NS-VLS-OPT.
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[13] O. N. Gerek and A. E. Çetin, “Adaptive polyphase subband de-
composition structures for image compression,” IEEE Trans-
actions on Image Processing, vol. 9, no. 10, pp. 1649–1660,
October 2000.

[14] V. Chappelier and C. Guillemot, “Oriented wavelet transform
for image compression and denoising,” IEEE Transactions on
Image Processing, vol. 15, no. 10, pp. 2892–2903, October
2006.

[15] M. Kaaniche, A. Benazza-Benyahia, B. Pesquet-Popescu, and
J.-C. Pesquet, “Non separable lifting scheme with adaptive
update step for still and stereo image coding,” Elsevier Signal
Processing: Special issue on Advances in Multirate Filter Bank
Structures and Multiscale Representations, vol. 91, no. 12, pp.
2767–2782, January 2011.

[16] M. Kaaniche, B. Pesquet-Popescu, A. Benazza-Benyahia, and
J.-C. Pesquet, “Adaptive lifting scheme with sparse criteria
for image coding,” EURASIP Journal on Advances in Signal
Processing: Special Issue on New Image and Video Represen-
tations Based on Sparsity, vol. 2012, 22 pages, January 2012.

[17] J. Eckstein and D. P. Bertsekas, “On the Douglas-Rachford
splitting methods and the proximal point algorithm for max-
imal monotone operators,” Mathematical Programming, vol.
55, pp. 293–318, 1992.

[18] P. L. Combettes and J.-C. Pesquet, “Proximal splitting meth-
ods in signal processing,” in Fixed-Point Algorithms for Inverse
Problems in Science and Engineering, H. H. Bauschke, R. Bu-
rachik, P. L. Combettes, V. Elser, D. R. Luke, and H. Wolkow-
icz, Eds. Springer-Verlag, New York, 2010.

[19] G. Bjontegaard, “Calculation of average PSNR differences be-
tween RD curves,” Tech. Rep., ITU SG16 VCEG-M33, Austin,
TX, USA, April 2001.


