N
N

N

HAL

open science

Improved CRT Algorithm for Class Polynomials in
Genus 2

Kristin Lauter, Damien Robert

» To cite this version:

Kristin Lauter, Damien Robert. Improved CRT Algorithm for Class Polynomials in Genus 2. ANTS
X - Algorithmic Number Theory 2012, Jul 2012, San Diego, United States. Online publication. hal-

00734450v1

HAL Id: hal-00734450
https://hal.science/hal-00734450v1

Submitted on 21 Sep 2012 (v1), last revised 17 Apr 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00734450v1
https://hal.archives-ouvertes.fr

IMPROVED CRT ALGORITHM FOR CLASS POLYNOMIALS IN
GENUS 2

DAMIEN ROBERT AND KRISTIN E. LAUTER

ABSTRACT. We present a generalization to genus 2 of the probabilistic algorithm
in Sutherland [28] for computing Hilbert class polynomials. The improvement
over the algorithm presented in [5] for the genus 2 case, is that we do not
need to find a curve in the isogeny class with endomorphism ring which is the
maximal order: rather we present a probabilistic algorithm for “going up” to a
mazimal curve (a curve with maximal endomorphism ring), once we find any
curve in the right isogeny class. Then we use the structure of the Shimura class
group and the computation of (¢, £)-isogenies to compute all isogenous maximal
curves from an initial one.
This article is an extended version of the version published at ANTS X.

1. INTRODUCTION

Cryptographic solutions to provide privacy and security for sensitive transactions
depend on using a mathematical group where the discrete logarithm problem is
hard. For example, digital signature schemes or a Diffie-Hellman key exchange may
be based on the difficulty of solving the discrete logarithm problem in the group
of points on the Jacobian of a genus 2 curve. For this problem to be hard we must
ensure that we can choose genus 2 curves over finite fields with an almost prime
number of points on the Jacobian of the curve.

One approach to this problem is to construct curves with Jacobian of a given
order using the (CM) method of Complex Multiplication. The CM method works
by computing invariants of the curve and then reconstructing the curve using the
Mestre-Cardona-Quer [23] algorithm. Invariants are computed by constructing their
minimal polynomials, called Igusa class polynomials. Computing the invariants is
computationally intensive, and there are three known methods for constructing
Tgusa class polynomials:

(1) the complex analytic method [26, 29, 30, 27];

(2) the Chinese Remainder Theorem method (CRT) [12, 14, 5]; and

(3) the p-adic lifting method [15, 7, 8.
Although the CRT method in genus 2 is currently still by far the slowest of these three
methods as measured on small examples which have been computed to date, there is
some hope that it may be asymptotically competitive with the other methods based
on the history of the evolution of these three methods in genus 1. Asymptotically, and
also for space constraint reasons, the (Explicit) CRT method now holds the record
in genus 1 for the size of the largest examples computed via that method [28, 13]. In
this paper, we propose numerous improvements to the CRT method for computing

2000 Mathematics Subject Classification. Primary 11G20; Secondary .
Key words and phrases. hyperelliptic curves, Igusa class polynomials, complex multiplication,
CRT method, abelian varieties, isogenies.
1

2 DAMIEN ROBERT AND KRISTIN E. LAUTER

genus 2 curves, paralleling improvements made by Sutherland [28] to the CRT
method in genus 1.

The CRT method works by computing class polynomials modulo many small
primes, and then reconstructing the polynomial with rational coefficients (or modulo
a much larger prime number) via the Chinese Remainder Theorem (resp. the Explicit
CRT). The CRT method for computing class polynomials in genus 2 was proposed
by [12], with sufficient conditions on the CRT primes to ensure correctness and
including an algorithm for computing endomorphism rings for ordinary Jacobians
of genus 2 curves which generalized Kohel’s algorithm for genus 1 curves. For each
small CRT prime p, the algorithm loops through all p? possible triples of Igusa
invariants of curves, reconstructing the curve and testing for each curve whether
it is in the desired isogeny class and whether its endomorphism ring is maximal.
The algorithm for computing endomorphism rings from [12] was replaced by a much
more efficient probabilistic algorithm in [14], where a number of examples were given
for running times of the computations modulo small CRT primes. [5] introduced
the idea of using computable (3, 3)-isogenies to find other curves in the isogeny
class once an initial curve was found, but still searched until finding a curve with
maximal endomorphism ring. Another improvement described in [5] was a method
to construct other maximal curves using (3, 3) isogenies once a first maximal curve
is found.

In this paper we present a generalization to genus 2 of the probabilistic Algorithm
1 in Sutherland [28]. The improvement over the algorithm presented in [5] for the
genus 2 case, is that, here we do not need to find a curve in the isogeny class with
endomorphism ring which is the maximal order: rather we present a probabilistic
algorithm for “going up” to a mazimal curve (a curve with maximal endomorphism
ring), once we find any curve in the right isogeny class. Then we use the structure
of the Shimura class group and the computation of (¢, £)-isogenies to compute all
isogenous maximal curves from an initial one. Although we cannot prove that the
“going up” algorithm succeeds with any fixed probability, it works well in practice,
and heuristically it improves the running time of the genus 2 CRT method from p?
per prime p to p% per prime p.

Let K denote a primitive quartic CM field, and ® a CM type. Let K denote
the reflex CM field, and K the totally real subfield of K. For a field K, let O
be the ring of integers of K. Let T'Ng be the typenorm associated to the CM-type
®. Informally, the algorithm is as follows, and individual steps will be explained in
subsequent sections:

Algorithm 1.

Input: A primitive quartic cyclic CM field K with a CM type ®, a collection of CRT
primes Py for K.

Output: Igusa Class Polynomials H;(x), i = 1,2,3 in Q[z] or modulo a prime q.

e Loop through CRT primes p € Pg:
(1) Enumerate hyperelliptic curves C' of genus 2 over F,, until a curve in
the right F,-isogeny class (up to a quadratic twist) is found.
(2) Try to go up to a mazimal curve from C, if it fails go back to Step 1.
(3) From a mazximal curve C, compute all other maximal curves.
(4) Reconstruct the class polynomials H;(x) modulo p from the Igusa in-
variants of the set of maximal curves.

IMPROVED CRT ALGORITHM FOR CLASS POLYNOMIALS IN GENUS 2 3

e Recover Hi(x), i = 1,2,3 in Q[x] or modulo q using the (Explicit) CRT
method once we have H;(x) modulo p for enough primes p.

For the dihedral case, one new aspect of our algorithm is that we extend to
the CRT setting the idea of computing the class polynomials associated to only
one fixed CM type ® for K [27, Section II1.3]. When K is cyclic, this makes no
difference, since all isomorphism classes of abelian surfaces with CM by K arise
from one CM type; but when K is dihedral, two CM types are needed to find all
isomorphism classes of CM abelian surfaces. All three previous versions of the CRT
algorithm [12, 14, 5] compute the class polynomials classifying all abelian varieties
with CM by Ok (with either of the two possible CM types in the dihedral case).
The advantage of our approach is that it computes only a factor of half the degree
of the whole class polynomial. The drawback of this approach is that in the dihedral
case, each factor of the class polynomials is defined over OK; rather than over Z.
So once we compute the class polynomials modulo p as polynomials in O KE /p, the
CRT step must be performed in O K-

A CRT prime p C O K+ is a prime such that all abelian varieties over C with
CM by (Og, ®) have good reduction modulo p. By [25, Section I11.13], p is a CRT
prime for the CM type @ if and only if there exists an unramified prime q in Ok,
of degree 1 above p of principal type norm (7) (in particular this implies that q is
totally split in the class field corresponding to the abelian varieties with CM by
(Ok, ®)). Moreover, by a theorem of Tate, the isogeny class of these abelian varieties
reduced modulo p (by [16, Section 3] they have good reduction) is determined by
the characteristic polynomial of £ (here we assume that O} = £1). For efficiency
reasons, we will work with CRT primes p that are unramified of degree one over
p = pNZ. By [16], the reduction to F, of the abelian varieties with CM by (Og, ®)
will then be ordinary. We then make the slight abuse of notation of calling p a CRT
prime when there is a CRT prime p above it. Note another advantage of restricting to
one CM type: to use p for both CM types, p needs to split completely into p = p,p,
such that both p, and p, are CRT primes, and there are fewer p which satisfy this
stronger requirement.

In addition to the two main contributions of the paper, the “going up” algorithm
to find maximal curves, and an improvement to the algorithm to compute maximal
curves from maximal curves, we also give improvements to every step of the CRT
algorithm. Here we give a brief outline of the paper and a summary of those
improvements.

We discuss CRT primes in Section 2, and we explain how to compute the associated
isogeny class over F,, in Section 3.

Step 2 (the “going-up part) of the algorithm is explained in Section 5. We first
explain in Section 4 how to compute if a curve is maximal, since this is used in the
going-up algorithm. We present some significant improvements over the algorithm
from [14]. Step 3 (finding all other maximal curves from one maximal curve) is
explained in Section 6. The running times of Steps 1 — 3 of the algorithm depend
greatly on the CRT prime chosen (for instance the size of the isogeny class can
vary). Since we have latitude in the choice of CRT primes, we explain our algorithm
for sieving them in Section 7.

As for Step 4, once all maximal abelian varieties with CM by K are found for a
given prime p, it is easy to compute the associated class polynomials modulo p. The

4 DAMIEN ROBERT AND KRISTIN E. LAUTER

class polynomials depend on the choice of Igusa invariants, and we use the invariants
recommended in [27, Appendix 3] which give smaller coefficients than those used
in [29, 30, 16]. For the dihedral case the class polynomials must be reconstructed
over O K& and we give more details about this step in Section 8.

Section 9 gives a complexity analysis, and explains how each improvement affects
the final complexity. The final complexity bound, while still not quasilinear, is a sig-
nificant improvement compared to [5]. Finally, examples demonstrating significantly
improved running times are given in Section 10.

This paper is the long version of the paper which appeared at ANTS X, and it
differs from the short version in the following ways. This paper contains extra sections
detailing the definition of a CRT prime (Section 2), new methods for efficiently
finding a curve in the right isogeny class (Section 3), and strategies for sieving CRT
primes (Section 7), along with providing additional examples in Section 10.

2. CoNDITIONS ON CRT PRIMES

The CRT algorithm computes the Igusa class polynomials modulo primes p, for
primes satisfying certain conditions: namely that the interpolation polynomials
computed from the Igusa invariants of the abelian varieties over I, with CM by
Ok are the reductions modulo p of the Igusa class polynomials. As proved in [12],
this is satisfied for primes p such that all abelian varieties with CM by O have
ordinary reduction and are defined over IF,,. We call such a prime p a CRT prime
(for the field K).

Originally, in [12], the condition given was that CRT primes p should split
completely into principal ideals in K¢, the reflex field of K. This strong condition
implied three consequences: since the prime splits completely in H,, the Hilbert
class field of Kg, all abelian surfaces with CM by K are defined over F, (not just
the ones with CM by ®); since the prime splits completely in K, the reduction of
the abelian surfaces with CM by K is ordinary and the relative norm equation has
a solution.

However, this condition is not always necessary, because the CM points in the
moduli space may be defined over K¢ (j1(A)), the subfield of Hg, generated by the
Tgusa invariants of A, an abelian surface with CM by K.

Moreover, as noted the introduction, in practice we only want to compute the
Igusa class polynomials relative to a CM type ® (which gives a factor of the full
Igusa class polynomials in the dihedral case). For efficiency reasons, we also want the
reductions to be ordinary. In this case the class polynomials are defined over K,
and we are then looking for CRT primes p € O Ki We call such a prime p a CRT
prime if all abelian varieties with CM by (O, ®) have good ordinary reduction to
(’)K(; /p(’)K; The results from [16] imply that p = Z Ny is totally split in OK;. In
particular, the interpolation polynomials computed over O K /pO ki are actually
defined over IF,, and by abuse of notation we call p a CRT prime.

We have the following characterization of CRT primes:

Theorem 2. Let ® be a CM type and p € Z be a prime number. If there exists an
unramified prime p in Ok, of degree 1 above p of principal typenorm (7) such that
T = p, then p is a CRT prime for the CM type .

If moreover p splits completely in Ok, into primes with principal typenorm, then
p is a CRT prime for K.

IMPROVED CRT ALGORITHM FOR CLASS POLYNOMIALS IN GENUS 2 5

Proof. Let A/C be an abelian variety of CM type (K, ®). There exists a model of
A defined over the subfield Hy of Hk, generated by the Igusa invariants of A. By
[25], the condition on p implies that it splits completely in this subfield. If we fix
one of the primes po above p, then by [16], we have that A,, has ordinary reduction
defined over F,,. All such abelian varieties with CM by ® have ordinary reduction
over IFp, so p is a CRT prime.

For the second assertion, we have by the hypothesis that p splits completely
as p = pipg in OK; (which does not depend of the CM type). By the preceding
paragraph, since all primes in Ok, above p; satisfy the condition of the first part,
p is a CRT prime for the CM type ®. This concludes the cyclic case. Now for the
dihedral case, let ® be the other CM type. We will see in Section 2.2, that the
reductions of the abelian varieties with CM by ® modulo primes in O, above ps
correspond exactly to the reductions of the abelian varieties with CM by ® modulo
primes in O, above p;. So p is also a CRT prime for &’ (]

2.1. The cyclic case. In the cyclic case, there is just one CM type @, so the Igusa
class polynomials for this CM type are the same as the full Igusa class polynomials
for CM by Ok-.

A prime p is then a CRT prime if it splits completely in Ok as p = p1popsps and
p1 has a principal typenorm. (Since the other primes are all conjugate to this one,
they all also have principal typenorms, and give the same isogeny class.)

2.2. The dihedral case. For the dihedral case, a prime number p is a CRT prime
if p splits completely as g1g2 in K, such that ¢; splits completely in Kg into primes
with principal type norm (7) and 77 = p. A word of warning: when we compute
the resulting interpolating Igusa polynomials over F,, they are the reduction of the
Igusa class polynomials modulo ¢; and the CRT step will then be computed over
O K not over Z as in the cyclic case. We note that if ¢ also splits completely into
prime ideals with principal type norm, we could use g2 in the CRT rather than ¢ .
We use the sieving algorithms of Section 7 to select the one most practical for the
computation.

Now we explain how to adapt the algorithm to compute directly the Igusa class
polynomial with CM by O (not just one fixed CM type). In the dihedral case
there are two distinct CM types ®; and Py (conjugate by an element of the Galois
group). Let Ay (resp. As) be an abelian variety with complex multiplication by &4
(resp. ®3) and p a prime that splits as ¢1¢2 in K; (this field does not depend on
the choice of the CM type). Note that since the two CM types are conjugate, this
gives that (Az),, ' is isogenous to (Aj),,. Thus both CM types can be handled at
once by fixing once and for all the reflex field (corresponding to one fixed CM type
®) and looking at both primes ¢; and g¢s.

Thus in this case, there are up to two isogeny classes (up to twists) corresponding
to maximal curves over F,,, one for each CM type. So to compute the class polynomial
corresponding to all curves with CM by Ok, we have to look for CRT primes p that
split completely in K ; (p = q1g2) and such that both ¢; and g5 split completely,
and the primes above them have principal type norm. (The corresponding typenorm
of the primes above ¢; and go will then give the action of Frobenius on both isogeny
classes). So that gives fewer CRT primes to work with. Moreover, in Section 7 we

Where by abuse of notation we denote by (A2)q, the reduction of Az modulo a prime above
q1 in the moduli field where As is defined.

6 DAMIEN ROBERT AND KRISTIN E. LAUTER

explain how to sieve the CRT primes according to the size of the isogeny class
and the ease of endomorphism ring computation and going up. Since we have two
isogeny classes here, it is also twice as hard to find good CRT primes p. Thus, there
are many drawbacks to working over Z in the dihedral case: we can’t distinguish
between the two CM types (this would involve distinguishing reductions modulo
q1 and go, which requires working over O K& where the ¢; are defined), so we have
to compute the full class polynomials with CM by Og. This class polynomial has
bigger coefficients, there are fewer CRT primes, and it is harder to find good CRT
primes among them.

2.3. Finding the isogeny class. For a given CRT prime p, the algorithm must
find all abelian varieties over F), with CM by (O, ®), i.e. genus 2 curves H such that
End(Jac(H)) ~ Ok. These curves lie in several possible isogeny classes, see [12] for
the possible number of group orders in the ordinary case. So the algorithm first tries to
find a curve in the corresponding isogeny class, (i.e. such that End(Jac(H))®Q ~ K).
For that we need a characterization of this isogeny class. By a theorem of Tate, the
isogeny class is characterized by the zeta function of a curve in it, or equivalently
by the characteristic polynomial of the action of the Frobenius 7 € K. So we need
to recover m € K and compute its characteristic polynomial.

If A,/F), is the reduction of an abelian variety with complex multiplication by @,
then [25] shows that the typenorm of p N Kg gives the action of the Frobenius. This
gives the following algorithm:

Algorithm 3. Characterizing the isogeny class.
Input: An unramified prime p (above the prime p € Z) in Ok, of degree 1 of
principal typenorm.
Output: The characteristic polynomial of the Frobenius corresponding to the
reduction A, of an abelian variety A with CM by (O,).
(1) Compute TN(p) = (o).
(2) Compute the fundamental unit & of K.
(3) Choose an embedding K — C and let | -| be the corresponding absolute value.
(4) Compute n = Log(p/|a|?)/ Log(|¢?) € Z.
(5) Compute m = a&™.
(6)

6) Return the characteristic polynomial of .

Remark 4. The ideal generated by o has relative norm p (by definition of the type
norm), but we need to find a generator m with complex absolute value equal to \/p.
We adjust o by multiplying by some power of the fundamental unit, € in K+. In our
algorithm we improve Algorithm 2.1, Step 4, from [14] by computing the complex
logarithms of a and &, and then directly adjusting a by the correct power of &.

Note that —7 is also of norm ./p, so there are actually two isogeny classes
corresponding to Jacobians J with End(J) ® Q ~ K, but the one corresponding to
—7 1s given by a quadratic twist of the first class.

3. SEARCHING FOR A CURVE IN THE ISOGENY CLASS

In this section we introduce several ways to speed up the computation when
searching for a curve in the right isogeny class modulo a given CRT prime. The
standard approach in previous implementations has been to loop through all p?
triples of Igusa invariants, generating a genus 2 curve for each triple using Mestre’s

IMPROVED CRT ALGORITHM FOR CLASS POLYNOMIALS IN GENUS 2 7

algorithm, and then checking whether it is in the right isogeny class by either
counting points on the curve to determine the zeta function or by generating random
points on the Jacobian and checking that the points are killed by the group order
(corresponding to 7w or —).

But in our new algorithm, we don’t need to loop over all the curves, but only to
find a curve in the right isogeny class. For each CRT prime, the probability for a
random curve to be in a fixed isogeny class is given by the size of the isogeny class
divided by the number of isomorphism classes of curves. We can efficiently sample
random curves by taking random monic sextic polynomials with coefficients in IFp.
Since there are roughly p? isomorphism classes of curves and there are p® sextics,
the probability that two randomly chosen sextics define isomorphic curves is 1/p3.
The advantage to this approach is that randomly generating sextics is a much more
efficient way to generate curves than generating the curve equation from triples
of Igusa invariants by applying Mestre’s algorithm for each triple. This gives the
following algorithm:

Algorithm 5. Finding a curve in the isogeny class corresponding to £.

If the characteristic polynomial of m is X* + to X3 + t1 X% + t2 X + p? then a
curve H is in the isogeny class if and only if #HF,) = My :=p+1+1ty and
#Jac(H) = Ny := 1 +tg+t; +ta + p?. Likewise we define My to be the cardinality
of a curve in the isogeny class corresponding to the twist —m and Na the cardinality
of its Jacobian.

(1) Take a random hyperelliptic curve H : y? = agx® + asz® + aq2* + aza® +
a2x2 +a1x + ag.

(2) Test whether N;P =0 (i =1,2) for several random elements P € Jac(H).
(We adapt dynamically the number of random elements P we take for this
step depending on the size of p.)

(3) If Step 2 succeeds for all P, then test if #H = M; and #J = N; (fori=1
or for i =2) and return H in case of success. Go back to step 1 otherwise.

Remark 6. Note though, that because the height of the first Iqusa class polynomials is
smaller than the height of the second and third class polynomials (with the invariants
we are using), it can be computed with fewer CRT primes. Once the first polynomial
is known, for subsequent CRT primes it may be better to revert to the method of
searching for curves using the Igusa invariants: since the deg Hy possible values of
the first invariant are known, we only need to loop through p* x deg Hy Igqusa triples.
This is to be compared with the number of curves we expect to loop through before
finding a curve in the right isogeny class.

Depending on the CRT field K, there may be more efficient ways to sample
random curves than by taking random monic sextic polynomials.

3.1. Rosenhain representation. If the 2-torsion of the Jacobian of any maximal
curve in the isogeny class is rational, we can search for curves in Rosenhain form:
Lemma 7. The following assertions are equivalent:

(1) Ewery maximal curve can be put in Rosenhain normal form

y? = a(z —)@ - N - p)z—v)
where A\, u,v € Fp,.
(2) The 2-torsion of a Jacobian of a mazimal curve is rational over Fp,.

8 DAMIEN ROBERT AND KRISTIN E. LAUTER

(3) =t € Ok.

Proof. 1t is well known that a hyperelliptic curve of genus 2 can be put into Rosenhain
form if and only if the 2-torsion of its Jacobian is rational. So the first assertion
implies the second. Now we also have that the 2-torsion on a Jacobian is rational if
and only if the Frobenius 7 acts trivially on it, if and only if Ker(7m — 1) contains
the 2-torsion, if and only if “T_l is an endomorphism. So if one maximal Jacobian

A as a rational 2-torsion, then ™51 € End(A4) = Of, so the second assertion

2
implies the third. Finally, if ”T_l € Ok, then every maximal Jacobian has ”T_l as

an endomorphism, so can be put into Rosenhain normal form. O

It is much easier and faster to loop through curves written in Rosenhain form
directly. This approach is also better in the sense that it only loops through curves
with rational 2-torsion, thus avoiding generating and computing on curves which
could not be maximal curves in our isogeny class. Also, a factor of 6 is saved because
the ordering of the roots A, u, v does not matter, and there are 6 ways to permute
those 3 roots.

Remark 8. One trade-off we consider in applying the Rosenhain method is the
following: while we take random curves over a space one sizth as large as the space
of all hyperelliptic curves of genus 2, we can only find curves in the isogeny class
in Rosenhain form. We could estimate the size of this intersection by checking
whether the element ”7_1 is in the suborder R C Ok for the various R D Z[r, 7] and
computing the number of curves with endomorphism ring R, but this is expensive. In
practice, we only apply this method when the condition holds for R = Z[n, 7| (and
hence for all curves in the isogeny class), which is the case for instance when 2 does
not divide the index [Ok : Z[r, 7).

3.2. Real multiplication. For a given quartic CM field K, write the real quadratic
subfield K = Q(v/d). For a given CRT prime p, any curve over F, with CM by K
must also have real multiplication by K. Such curves correspond to CM points
associated to K on the Hilbert moduli space associated to K*. Such curves are
determined by pairs of Gundlach invariants on the Hilbert moduli space instead
of triples of Igusa invariants. Thus the algorithm to search for these curves can be
improved by looping through Gundlach invariants instead of Igusa invariants. This
approach is more efficient because there are only p? pairs to search through instead
of p3 triples. Formulas for Gundlach invariants and a method for generating genus
2 curves from Gundlach invariants were given in [20]. Those formulas can be used
directly in the search step for each CRT prime.

Here the same trade off has to be considered as the Rosenhain method: if
RN K" 2 O+ for various orders R such that Z[r, 7] C R C Ok, we miss all the
curves whose Jacobian have endomorphism ring R.

4. CHECKING IF THE ENDOMORPHISM RING IS MAXIMAL

We recall the algorithm described in [12], and describe some improvements. The
ideas for computing the endomorphism ring will be used in the going up phase.

4.1. The algorithm of Eisentriger, Freeman and Lauter. Let A/F, be an
ordinary abelian variety of dimension 2 with CM by K. Let O = End(A). We know
that Z[r] C Z[r,7] C O C Og. We want to check if O = Og. First, the Chinese
Remainder Theorem gives us the following proposition:

IMPROVED CRT ALGORITHM FOR CLASS POLYNOMIALS IN GENUS 2 9

Proposition 9. Let O be an order in O . Let {l,aliaz,ag} be a basis of Ok as
a Z-module. Write [Ok : Z[x, 7] = [1 6. If [Ozﬁw% €0 forj=1,2,3, and
all ¢; dividing the index, then O = Ok. '

We are then reduced to the following problem: for v € O such that £y € Z[m, 7],
check if v € O. To simplify the notation,we will often drop the subscript on e, when
it is obvious to which ¢ we are referring to. We have ([14]):

Proposition 10. Let O = End(A) and v € Ok . There exists an integer polynomial
P, such that (°py = Py(m). Then vy is in O if and only if P,(m) =0 on A[¢°].

Proof. First note that [Z[r, 7] : Z[r]] = p, (see [14]), so that £°py € Z[r], which
means we can write: £°py = P,(m). Second, since we are dealing with ordinary
abelian varieties over I, we have p J [Ok : Z[r,7]] [14, Proposition 3.7], so that
v € O < py € O. Lastly, by the universal property of isogenies, we have that
P, (m) =0 on A[¢¢] if and only if py € O (see [12]). Summing up, we only need to
check that P, (7) = 0 on A[¢°] to check that v € O. O

Remark 11. Since most of the curves in the isogeny class are not maximal, it is
more efficient to check P, on A[l], A[¢?], ..., rather than directly on A[¢°].

4.2. Computing the ¢°-torsion. The main cost of the preceding algorithm is to
compute a basis of the ¢¢-torsion groups. The cost of such a computation depends
on the degree of the extension where the ¢°-torsion points are defined. We have:

Lemma 12. Let d be the degree such that the £-torsion points of A are defined
over F,a. Then d < ¢4 — 1. Furthermore, the £°-torsion is all defined over F, with

e—1
g=p" .
Proof. Let x, be the characteristic polynomial of Frobenius, w. Then d is the

(multiplicative) order of X in the ring F/[X]/x(X), so d < ¢* — 1. The second
assertion follows from [14, Section 6]. O

Remark 13. [14, Proposition 6.2] gives a better bound for mazimal abelian surfaces:
in that case we have d < (3, and if { is completely split in Ok, we have d | £ — 1.

We will use the following algorithm to compute points uniformly in an /-primary
group containing A[¢¢]:

Algorithm 14. Precomputation:

a) Let d be the (multiplicative) order of X in the ring Fo[X]/x-(X) and set
d. = dee=t.

b) Compute Xna. as the resultant in X of x»(Y) and Y% — X, and write
#A(Fde) = xrae (1) = €5y with prime to L.
Compute uniform random points in the L-primary component A(IF,a.)[>]:

(1) Take a random point P (uniformly) in A(Fa.);

(2) return vP.

Algorithm 4.3 of [14] takes random (uniform) points P in A(F,a.)[(>°] to get
random points in A(F,a.)[¢] by looking at the smallest k such that ¢¥.P is an
£°-torsion point, then generates enough such random points so that the probability
that they generate the full £°-torsion is sufficiently high and then tests P, on these
points of £¢-torsion. The algorithm computes how many points are needed so that

10 DAMIEN ROBERT AND KRISTIN E. LAUTER

the probability of generating the full £°-torsion is greater than 1 — € for some € > 0,
so the result is not guaranteed (i.e. it is a “Monte-Carlo” algorithm), which is very
inconvenient in our setting since we need to test a lot of curves across different CRT
primes p.

To ensure correctness we can check that the subgroup generated by the points
obtained is of cardinality £29¢, but this is costly. A more efficient way is as follows:
{Py,..., Py} is a basis of the ¢°~torsion if and only if {¢¢71Py,... 07 Py} is a
basis of the ¢-torsion. But that can be easily checked by computing the g(2g — 1)
Weil pairings e,(¢¢~ ' P;, ¢~ P;) for i < j and testing if we get an invertible matrix.
Since Weil pairings can be computed in O(log(¢)), this is much faster. This is our
first improvement, yielding a “Las-Vegas” algorithm.

The second drawback of the approach of [14] is that, although the random points
in A(FF,a.)[¢>°] are uniform, this is not always the case for the random points in
A(Fpa.)[£°]. To have a high probability of generating the full /-torsion then requires
taking many random points in A(F,q.)[(>]: if A(Fpa.)[¢(>°] = £°, the algorithm
requires £°~%¢(—log(¢))'/? random points to succeed with probability greater than
1 — €. Since generating these points is the most costly part of the algorithm it is
best to minimize the number of random points required. Our second improvement
is to use an algorithm, implemented in AVIsogenies, due to Couveignes [10] to get
uniform random points in A(FF,4.)[£¢]. Since the full algorithm is described in more
detail in [3], we only give an example to illustrate it here.

Suppose that G is an ¢-primary group generated by a point P of order £2 and a
point @ of order £. Assume that the first random point chosen is P = R;, which
gives an ¢-torsion point 77 = ¢P. The second random point Ry chosen will be of
the form aP + Q. In most cases, a # 0, so the corresponding new ¢-torsion point
is Ty = afP, a multiple of T7. However we can correct Ry by the corresponding
multiple: compute R, = Ry — aR; = Q. Thus R, gives the rest of the ¢-torsion
except if 5 = 0. In our setting we can use the Weil pairing to express a new ¢-torsion
point in terms of the generating set already constructed (except when we have an
isotropic group, in this case we have to compute the ¢? multiples), and we only need
O(1) random points to find a basis. The cost of finding a basis of the ¢°-torsion is
then O(d.logp + (?) operations if Fa. .

4.3. Reducing the degree. The complexity of finding the basis is closely related
to the degree of the extension d.. Let dy be the minimal integer such that (7% —1) €
¢Ok. Then dy | d, and as remarked in [14], since we only need to check if O = Ok,
we can first check that # lies in O. In other words, we can check that the
(-torsion points of A are defined over IF,q, rather than over Fpq.. If this is the case,
the ¢°-torsion points are then defined over an extension of degree dof~* of F,,, which
allows working with smaller extensions.

Another improvement we implemented to reduce the degree is to use twists.
Let d, be the minimal integer such that ((77‘()(% — 1) € LOk. Then we have three
possibilities dfy = do, df = 2dg, do = 2dj. In the latter case, it is better to replace
A by its twist, since the Frobenius of the twist is represented by —x, and we can
compute the points of £°-torsion by working over extensions of half the degree.

Example 15. Let H : y?> = 802° + 5125 + 492* + 323 + 3422 + 40z + 12 be a
hyperelliptic curve of genus 2 defined over Fi39 and J the Jacobian of H. We have
End(J) ® Q =2 Q(iV13 + 2v/29) and we want to check if End(J) is mazimal. In

IMPROVED CRT ALGORITHM FOR CLASS POLYNOMIALS IN GENUS 2 11

this exzample, we compute O : Z[m, 7] = 3%, so we need to compute J[3%], which
lives over an extension of degree 81. If we had checked the endomorphism ring of
the Jacobian of the twist of H, we would have needed to work over an extension of
degree 162.

4.4. Reducing the number of endomorphisms to test. One last improvement
to the algorithm of [14] is to use the fact that End(A) is an order. So if we know
that v € O, then we know that the ring Z[m, 7, 7] C O. As an example, if in terms of
our basis we have oz = asa; mod O, then we only have to check that a and a;
are in O (and since our algorithm works locally at ¢, we only need that this relation
is true locally for that ¢). We use this idea as follows: suppose that we have checked
that {v;,i = {1,...,k}} are endomorphisms lying in O, and we want to check if
v € O. Let Ny be the order of v in Ok /Z[r,7,v; : i = 1,..., k], and Ny be the order
of v in Ok /Z[r, 7. If we write Ny = [] £;", we only have to check that Na /¢~y € O
for ¢ | Ny. In fact, if the valuation of Ny at £ is €, then we would only need to check
that Ny /6627 € O, which means testing if N3y = 0 on the (¢t-torsion, where Ny~ is

a polynomial in 7, 7, and the v; (i = 1,...,k). We write this polynomial as pjy\}z

times a polynomial in 7, so that we still need to compute the £°*-torsion.

Example 16. Let H : y?> = 1025 4+ 5725 + 182* + 1123 + 3822 4+ 122 + 31 be a
genus 2 curve defined over Fsg and J the Jacobian of H. We have End(J) @ Q =
Q(iv/29 + 2v/29) and we want to check if End(J) = O. Ok is generated as a
Z-module by 1,«, 8,7, where a is of index 2 in Ok /Z[w, 7|, B of index 4 and ~y
of index 40. The algorithm from [14] would check J[23] and J[5]. But (Ok)s =
Zs[m, T, so we only need to check J[2] and J[5].

4.5. The algorithm. Incorporating all these improvements yields the following
algorithm:

Algorithm 17. Checking that End A is mazimal.

Input: An ordinary abelian surface A/F, with CM by K.
Output: The boolean statement: End A = Ok.
(1) Choose a basis {1,a1,as,a3} of Ok and a basis {1, 81, B2, B3} of Z[x] such
that f1 = c1aq, B2 = caqa, B3 = czaz and ¢q,co,c3 € Z with ¢1 | ca | c3.
(2) (Checking where the L-torsion lives.) For each ¢ | [Ok : Z[m, 7] do
(a) Let dy be the smallest integer such that % — 1 € (O, and d), be the
smallest integer such that (—77)‘12 —1€l0k. If dy < dy, switch to the
quadratic twist.
(b) Compute a basis of A[](F,e,) using the algorithm from [3].
(¢) If this basis if of cardinality (strictly) less than four, return false.
(d) (Checking the generators of Ok.) Fori=1,2,3 do
(i) Let Ny be the order of oy in Ok /Z[m, T, = j < 1] and Ny the
order of a; in O /7|7, 7).
(ii) If £ | N1, let e; be the L-valuation of Ny and write pNacy; as a
polynomial P;(r).
(iii) Compute a basis of A(]deziei—l)[eet].
(iv) If Py(m) # 0 on this basis, return false.
(3) Return true.

Remark 18. Comments on the algorithm:

12 DAMIEN ROBERT AND KRISTIN E. LAUTER

o With the way we choose the basis of Ok, we have e; < eg < ez (for each £
dividing the index), so that when we abort early, we may not have the full
AlLe3]-torsion to compute. Likewise, rather than going through increasing ¢,
we could go through increasing degrees.

o Since we will apply this algorithm to a lot of different abelian varieties, we
can precompute everything that is only related to Ok and Z[r, 7). Then for
each abelian variety A/F), we want to test, we only have to compute for all £ |
Ok : Z[m, 7| the subgroups A[(|(F,qe,) and then subgroups A(deleei—l)[eei]
fori=1,2,3, testing polynomials of the Frobenius on them. Moreover, if
¢ is such that (? | [Ok : Z[r, 7] then (Ok)e/Z[m, 7] is cyclic, so that if
7 — 1 ¢ (Z[n,7|, we only need to check that the (-torsion is defined over
Fpa, (see [14]).

4.6. Complexity. The complexity is measured in terms of operations in the base
field, F,, neglecting logarithmic factors log(p). Since the index [Og : Z[m, 7] is
bounded by a polynomial in p by [14, Proposition 6.2], evaluating the polynomials
P;(m) (of degrees at most 3) is done in logarithmic time. The most expensive part
of the algorithm is then the computation of A[£¢], for the various ¢ dividing the
index [O : Z[r,7]] where e is at most the ¢-valuation of the index. According to
Lemma 12 and Remark 13, the ¢°-torsion points live in an extension of degree at
most d = £¢+3. Since #A(F 1) = p?1+9), computing a random point in A(F 4)[¢¢]
takes O(dQ) operations in F,. Correcting this random point requires some pairing
computations, and costs at most O(¢?) (in case the first points give an isotropic
group). Since we need O(1) such random points, the global cost is given by the
following proposition (we will only need a very rough bound for the complexity
analysis in Section 9):

Proposition 19. Let [Ok : Z[m, 7| = [[{;" be the decomposition of the index into
prime factors. Then checking if an abelian surface in the isogeny class is mazimal
can be done in time 3 O(£2¢16),

Remark 20. One can compare to [14, Proposition 4.6] to see the speedup we gain
in the endomorphism ring computation. We note that our method is exponential in
the discriminant, while in [4] one can find a subexponential algorithm to compute
the endomorphism ring of an ordinary abelian surface. In ongoing work with Gaetan
Bisson, we have developed a method that combines the going up algorithm of the next
section with his endomorphism ring algorithm. Since we still need to take (-isogenies
for][Ok : Z[m,7|] in the going up step, this approach is mainly interesting when
the index is divisible by a power of a prime.

5. GOING UP

“Going up” is the process of finding genus 2 curves with maximal endomorphism
ring by moving from any curve in the isogeny class via isogenies to a maximal one.
This is not always possible and we will explain some obstructions. One difficulty was
already illustrated in [5, Example 8.3], where it was shown that there can be cycles
in the isogeny graph involving some non-maximal curves. Clearly, when trying to
“go up”, the algorithm should avoid making cycles in the graph, and we propose
one method to avoid that. Further difficulties arise from the fact that the graph of
rational (¢, ¢) isogenies can be disconnected and there can be some nodes with no
rational (¢, ¢)-isogenies. This is an important caveat, as this means that our method

IMPROVED CRT ALGORITHM FOR CLASS POLYNOMIALS IN GENUS 2 13

for “going-up” will not always succeed, so we only have a probabilistic algorithm,
and we cannot currently estimate the probability of failure.

As noted in [14], for the type of fields we can deal with via the CRT method,
the cost of going through p> Jacobians is dominant compared to checking if the
endomorphism ring is maximal (this imbalance is magnified in our case due to
our faster algorithm to compute the £¢-torsion). In our algorithm, we try to find a
random curve in the isogeny class, and we try to select p so that the probability of
finding a curve in the right isogeny class is of magnitude p/2. In practice, finding
one such curve is still the dominant aspect, which explains why we can afford to
spend a lot of effort on “going up” from this curve.

The algorithm we propose for “going up” is made possible by the techniques
developed in [22, 9, 24] for computing rational (¢, ¢)-isogenies between abelian
varieties over finite fields. If A is an ordinary abelian variety with CM by K, then
for each ¢ dividing the index [Ok : Z[m, 7], we try to find an (¢, £)-isogeny path
starting from A and going to A’ such that (O)¢ = End(A’),. If this is possible, we
let A = A’ in the next step (going to the next ¢). A rather inefficient method for
finding A" would be to use the algorithm for computing endomorphism rings which
was detailed in the preceding section (modified to handle the case of non maximal
orders), compute the endomorphism ring of End(A) and the (¢, £)-isogenous varieties
A’, and keep A’ if its endomorphism ring is bigger than the one of A. In this section
we will describe a more efficient algorithm, that combines the endomorphism ring
checks of the preceding section with a going up phase. Since we are working locally
in ¢, we may as well suppose that we are working over Z,.

5.1. Going up for one endomorphism. In this section, we suppose that we have
an element o/ € O such that v£°a’ € Z[r] with v prime to ¢. Starting from an
abelian variety A in the isogeny class, we want to find an abelian variety A’ such
that 7t € End(A’) (or equivalently that o’ € End(A’) locally at £).

We saw in Section 4 that 7 is in the endomorphism ring of A iff a(A[(°]) = 0, and
we know how to compute this subgroup. More generally, we let N = #«a(A[¢€]). We
think of N as a way to measure the “obstruction” to “7 € End(A)”. Our algorithm
is as follows: for each (¢, ¢)-isogenous A’, if N' = #a(A’[¢¢]), then we replace A by
A’ if N’ < N. We iterate this process until N = 1, in which case we have succeeded,
or until we are stuck, in which case we try to find a new random abelian variety in
the right isogeny class.

Rather than computing directly the obstruction N = #a(A[¢¢]), we can compute
the partial obstructions N¢ = #a(A[(]) for ¢ < e. Starting from € = 1, we
take isogenies until we find an abelian variety A with N¢ = 1, which means that
7¢ € End(A). We will now try to take isogenies to reduce the obstruction of higher
degree N1, Let k = a(A[¢t1]) C A[f]. The following lemma helps us select the
isogeny we are looking for:

Lemma 21. Let A’ be an abelian variety isogenous to A, such that #a(A'[¢<1]) <
#a(A[HL)). Then the kernel of the isogeny A — A’ intersects non trivially with
k= a(A[et).

Proof. Let f : A — A’ be a rational isogeny between A and A’. Then since «
is a polynomial in the Frobenius, we have a o f = f o . In particular, f maps
a(A[eeH]) to a(A[eTY). If #a(A'[eTY]) < #a(A[¢T]) then there exists z €
Ker f N a(A[cT). O

14 DAMIEN ROBERT AND KRISTIN E. LAUTER

This gives the following algorithm:

Algorithm 22. Going up for one endomorphism z.

Input: An ordinary abelian variety A/F, with CM by K.
Output: An abelian variety A'/F, such that 5= € End A or fail.

(1) Sete=1.

(2) Compute N¢ = #a(A[l]).

(3) If N =1, then if e = e return A. Otherwise (e < e) set e := e+ 1, and go
back to Step 2.

(4) Else (N > 1) let L be the list of all rational mazimal isotropic subgroups of
A[l] which intersect non trivially with «(A[¢€]). For k € L do
(a) Compute A" = A/k. Let N' = #a(A'[¢¢]). If N' < N, set A= A" and

go back to Step 2.
(5) (We are stuck) Return fail.

Remark 23. As in Section J we let dy be the minimal integer such that (7% —1) €
(O and d the minimal integer such that (1% —1) € (Z[r]. Then the {¢-torsion points
of A are defined over an extension of degree d¢*~'. If moreover ”doe_l € End(A)
they are actually defined over an extension of degree dgl¢ 1.

Therefore when we try to go up globally for all endomorphisms «, the first step is

to try to go up for the endomorphism ”dofl. During the algorithm, the obstruction

N is given by the size of the kernel of m% — 1, whose rank is 2g minus the rank of the
{-torsion points defined over Fpa,. So we compute the size of a basis of A[f](Fa,)
and take isogenies, where this size increases until we find the full rank.

5.2. Going up globally. Let {1, %} (i = 1,2,3) be generators for the maximal
order (Ok), over the subring Z,[w, 7|, where a; € Z¢[m,7|. Starting from an abelian
variety A in the isogeny class, we want to find an abelian variety which is maximal
at £.

We could apply Algorithm 22 for each 7, but it does not guarantee that the
endomorphisms already defined on A stay defined during the process, so we would
observe loops on non maximal abelian varieties with this method. Moreover we want
to reuse the computations of A[¢¢] which are the expensive part of the process.

If N; = #a;(A[¢4%]) for i = 1,2,3 is the obstruction corresponding to «;, we
define N to be the global obstruction N = > N;. We can then adapt the same
method: for each (£,¢)-isogenous A’, if N/ = #a;(A’[(%]), then we replace A by A’
if >~ N/ < > N;. We iterate this process until all the N; = 1, in which case we go to
the next ¢, or until we are stuck, in which case we try to find a new random abelian
variety in the right isogeny class.

As before, if e = max(eq, e, e3) we first compute A[¢€] and the partial obstructions
Nf = #A[pmin(eed] (5 = 1,2,3). We do the same for the (£, £)-isogenous abelian
varieties, and switch to the new one if Y Nf decreases (strictly). This allows working
with smaller torsion in the beginning steps.

The level, €, of the individual obstruction we are working on depends on the
endomorphism considered, so if we get stuck on level ¢, we may have to look at level
€+ 1 even if not all endomorphisms 7 are defined yet. For instance (in this example
we suppose we only deal with two generators) there are cases where Nf =1, N§ # 1
and N'{ =1, N'5 = N5 for all (¢, {)-isogenous abelian varieties A’, so we are stuck

on level e. However we can still find an isogenous A" such that N’ iH < Nfth

IMPROVED CRT ALGORITHM FOR CLASS POLYNOMIALS IN GENUS 2 15

Finally, as in Remark 23, we first try to go up in a way that increases the size of
A(F,40)[£]. If we are unlucky and get stuck, we switch to the computation of the
full ¢-torsion over E;. This method allows working over the smallest extension to
compute A[¢¢] as soon as possible.

A summary of the algorithm with the notation from above is given below:

Algorithm 24. Going up.

Input: An ordinary abelian surface A/F, with CM by K.
Output: An abelian variety A'/F, with End A = Ok (locally at £) or fail.

(1) (Special case for the endomorphism %} Compute a basis B of A(F,a,)[(].
If #B < 2g, compute a basis B' of A'(Fa,)[l] for each ({,£)-isogenous
abelian variety A'. If #B’ > #B, restart the algorithm with A = A. If
#B =4 or we get stuck, go to the next step.

(2) Sete=1.

(3) Compute® Nf = #a;(A[e™in(ee]) fori=1,2,3.

4) If {N;:i=1,2,3} = {1} then if e = max(e; : i = 1,2,3) return A. Else set

€:= e+ 1 and go back to Step 3.

(5) Else let L be the list of all rational maximal isotropic kernels of A[¢] which
intersect non trivially with one of the o (A[f™™(&¢)]). For k € £ do
(a) Compute A" = A/k. Let N! = #a;(A'[f™n(ee)]). If STN! < ST N,

restart the algorithm with A = A" (but do not reinitialise € in Step 2).

(6) If we get stuck and e < max(e; : i =1,2,3), set e := e+ 1 and go back to

Step 3. Otherwise return fail.

5.3. Cost of the “going-up” step. We will see in the examples that the “going-
up” step is a very important part in speeding up the CRT algorithm in practical
computations. However, since it is doomed to fail in some cases (see Remark 26), we
need to check that it will not dominate the complexity of the rest of the algorithm,
(so that in theory there is no drawback in using it), and thus we need to estimate
the cost of the “going-up” step.

The going up phase is a mix of endomorphism testing and isogeny computations.
We already analysed the cost of the endomorphism testing in the preceeding section.
For the isogeny computation, the points in the kernel of rational (¢, £)-isogenies live
in an extension of degree at most ¢2 — 1. Transposing the analysis of Section 4.6 to
this case shows that the computation of all points in these kernels takes at most
O(£*). There are at most O(¢3) such kernels, and each isogeny computation takes at
most O(¢*) operations in the extension. The final cost is at most O(¢?) for computing
all isogenies. For each of the O(£3) isogenous abelian varieties we do (part of) the
endomorphism ring computation, which is £2¢*% according to Section 4.6. Since the
global obstruction computed is of size O(£¢), we do at most O(e) steps. The global
complexity is then:

Proposition 25. Let [Ok : Zr,7|| = [4" be the decomposition of the index into
prime factors. Then the going up phase either fails or is done in at most O(3 £2¢7)

operations in the base field.

Remark 26. It is important to note that the going up phase does not always succeed.
We will give some examples of that in Section 10. First, as noted in the introduction

2The degree of the extension where the full £¢-torsion is defined depends on whether Step 1
succeeded.

16 DAMIEN ROBERT AND KRISTIN E. LAUTER

of the section, the ({,£)-isogeny graph is not always connected, so if we start with a
curve not in the same component of a maximal curve, there is no way to find the
maximal curves using only (¢,€)-isogenies. Second, even if the curve is in the same
component, finding a mazximal curve may involve going through isogenous curves
that increment the global obstruction, so the going up algorithm would not find it.

In practical computations we observed the following behavior: in the very large
majority of the cases where we were not able to go up, there actually did not exist any
rational (£, £)-isogenies for any curve in the isogeny class. If x. is the characteristic
polynomial, this can be detected by the fact that x. does not factor modulo ¢ as
Xz = PP (mod ¢) (where P is the conjugate of P under the action m — p/, which
sends the Frobenius to the Verschiebung). In this situation, there is no way to go up
even locally at £. This gives a criterion to estimate whether one can go up for this .

6. COMPUTING MAXIMAL CURVES FROM MAXIMAL CURVES

Once a maximal curve in the isogeny class has been found via the random search
and “going up” steps, we use isogenies to find the other maximal curves. The set
of maximal curves in the isogeny class corresponding to a fixed CM type ® is a
principal homogeneous space under the action of the Shimura class group

¢ ={(I,p) | I a fractional Ok-ideal with IT = p, p € K™ totally positive}/K*,

associated to the primitive quartic CM field K, which acts by isogenies (see for
instance [5, Section 3]).

However, using AVIsogenies we can only compute isogenies with a maximal
isotropic kernel. In terms of the Shimura class group, the lemma below shows that
this means that we can only compute the action corresponding to (equivalences
classes) of elements of the form (I, ¢) where [is an ideal in K and ¢ a prime number.

Lemma 27. Let (I,p) be an element of the Shimura class group € and ¢ a prime.
Then the action of (I, p) on a maximal abelian variety A corresponds to an isogeny
with mazimal isotropic kernel in A[f] if and only if p = £ (so if and only if I has
relative norm ().

Proof. This follows from the construction of the action of € on the set of maximal
abelian varieties. The action is given by the isogeny f : C2/A — C?/IA and moreover
the action of I corresponds to the dual isogeny f (here we identify the abelian
variety A with its dual A via the principal polarization induced from the CM data).
Since ¢ is prime, the isogeny corresponding to I is an (¢, ¢) isogeny if and only if
II=p==". O

Therefore to ensure that we can find all other maximal curves using this type of
isogeny we make the following heuristic assumption. Here A is the discriminant of
K:

Assumption. The Shimura class group € is generated by elements of the form
(I,¢) where £ is a polynomial in log A.

Justification: We have tested this assumption on numerous examples. The
assumption on the size of the isogenies will be used in the complexity analysis. At
worst, we know (under GRH) that the class group of the reflex field is generated by
prime ideals of degree one and of norm polynomial in log A [1, Theorem 1]. (Note
that the discriminant of the reflex field is O(A?%)). But if I is such an ideal of O,

IMPROVED CRT ALGORITHM FOR CLASS POLYNOMIALS IN GENUS 2 17

of norm prime to p, then the element (T'N(I), N(I)) will give a horizontal isogeny.
So we will at least be able to compute all the maximal curves that are deduced
from the first one by an action coming from the type norm. As we will see in the
complexity analysis in Section 9, this is sufficient for most discriminants D.

Lemma 28. Let A be an ordinary abelian surface with End(A) @ Q = K, and let
f A — B be an isogeny of degree prime to [Ok : Z[r,7]]. Then End(A) = End(B).

Proof. Let d be the smallest integer that factorizes through f, so d = ff. By
assumption d is prime to the index. If & € End(A), then foao f = da is an
endomorphism of B. Since [Ok : End(B)] is prime to d, we have that o € End(B).
The same argument shows that End(B) C End(A), so End(A) = End(B). O

Note that we can precompute generators of the Shimura class group since this
data does not depend on the current prime p. We want to find generators of relative
norm a prime ¢ € Z with ¢ as small as possible since this will directly influence the
time spent to find the other maximal curves.

Now for a CRT prime p, there may exist among the generators we have chosen
some that divide the index [Of : Z[m, 7]]. We can either find other generators (whose
norm will be bigger), or still try to use the precomputed generators. In this case,
if such a generator has norm ¢, then not all new (¢, £)-isogenous abelian varieties
will be maximal, so we have to use the algorithm of Section 4 to test which of them
is maximal. In that case, after the isogeny is applied, the £°-torsion must again be
computed (with the notation of Section 5), along with the action of the generators
of (Ok)¢ over Z[m,7]e. The trade-off depends then on the degree of the extension
field required to compute the ¢°-torsion for small ¢ dividing the index versus the
degree of the field of definition for the points in the kernel of the ¢-isogeny for £ not
dividing the index.

Finally, we can also use the group structure of the Shimura class group as follows:
suppose that we have computed maximal curves corresponding to the action of
at,...,ap € € and we want to find new maximal curves by computing (¢, £)-isogeny
graphs starting from these curves. Then if €(¢) is the set of elements of the form
(I,¢) in €, then the number of maximal curves that we can find in this way is the
cardinality of the subgroup generated by the «; and €(¢). In particular, as soon as
we reach this number, we can stop the computation since it will not yield any new
maximal curves. This is particularly useful when ¢ divides the index since it avoids
some endomorphism tests. In the isogeny graph computation done by AVIsogenies,
each node is computed twice since there are two edges between adjacent nodes
(corresponding to the isogeny and the dual). Here since we know the number of
nodes, we can abort the computation early.

We thus obtain the following algorithm:

Algorithm 29. Finding all mazimal curves from one maximal curve.

Input: An ordinary abelian variety A/F, with CM by (O,).
Output: All abelian varieties over F), with CM by (Ok, ®).

Precompute a set of generators of the Shimura class group with relative norm ¢ as
small as possible (the set is not chosen to be minimal, on the contrary we want some
redundancy). For each of the generators, compute the extension degree of the field
of definition of the geometric points of the kernel corresponding to this generator.

18 DAMIEN ROBERT AND KRISTIN E. LAUTER

(1) For each generator of (relative) norm £ dividing the index, replace the
previous degree by the degree of the extension where the €°-torsion lives
(usually e is the C-valuation of the index, but the tricks from Section 4 can
sometimes reduce it).

(2) Sort the generators according to the corresponding degrees to get a list
(gla s agn)

(3) For each generator g; on the list, let £; be its norm and do
(a) Compute the varieties (¢;,¢;)-isogenous to the one already found. If ¢;

divides the index, then do an endomorphism ring computation from
Section 4 and keep only the maximal curves
(b) Repeat until the number of (mazximal) abelian varieties is #{C(¢1), ..., C(¢;)).

7. STRATEGIES FOR SIEVING CRT PRIMES P

Since we have some latitude in the CRT primes p, we can sieve the prime to use.
For instance, we will reject a prime p if the size of the isogeny class is too small, or
if computing the endomorphism ring or going up is too costly for this prime. We use
a dynamic approach: we reevaluate each discarded CRT prime against the new ones
found. In this section, we explain how we estimate the difficulty of the computation
associated to one CRT prime.

7.1. Cost of testing if a curve is maximal. Before using a prime for the CRT
computation, we first need to check if testing if a curve is maximal is too expensive.
For this, we compute which subgroup A[¢¢] we would have to compute to test if A
is maximal as in Section 4, and on which extension the points of these subgroups
live. As already remarked, for ¢ dividing the index [Ok : Z[m, 7], e is usually the
valuation of £ in the index, but some of the tricks from Section 4 can reduce it.

If the extension on which we need to do the computation is too large, we exclude the
prime p. We will explain later how we estimate whether computing the endomorphism
ring is too large compared to the current parameters.

7.2. Size of the isogeny class. For each CRT prime p, the first phase of our
algorithm relies on first finding a genus 2 curve over I, in the right isogeny class.
The larger the isogeny class, the larger the probability of finding a curve in the right
isogeny class quickly. There are p* isomorphism classes of genus 2 curves over F,,
and since the area of Figure 10.1 in [21] is 32/3, there are approximately (32/3)p3/2
isogeny classes. We could then expect that on average, each isogeny class has roughly
3%32/2 curves.

However it happens that, for a fixed primitive CM field K, for some primes p the
isogeny class corresponding to the Frobenius element 7 can be unfortunately small.
In those cases, our algorithm has a lower chance of finding a curve in the isogeny
class quickly, so it is most likely more efficient for the algorithm to skip that CRT
prime and proceed to another prime where the chance of finding a curve in the right
isogeny class is bigger.

To determine whether a potential CRT prime should be skipped or not, we need
to estimate the size of the isogeny class. If the estimated size is not at least a certain
fraction of p?/2 then we skip the prime. The size of the isogeny class is given as
>0 #€(0), the sum of the size of the Shimura class group associated to each order
between Z[r, 7] (stable by the complex conjugation). Of course we don’t want to
compute the Shimura class group (even computing only the class group can be too

IMPROVED CRT ALGORITHM FOR CLASS POLYNOMIALS IN GENUS 2 19

expensive for suborders of large discriminant), but we only need to compute their
size.

Lemma 6.3 in [21] can be used to calculate the size of the isogeny class exactly.
However it requires computing the lattice of suborders of the maximal order O
which contain Z[m, 7] which is already too expensive. In practice, it is enough to
estimate the size of the isogeny class using only the factorization of the index
[Ok : Z]m,7]] and a calculation involving only the order Z[rw, 7.

We compute using the proof of Lemma 6.3 in [21]

_ c# Cl(Z[n, 7)) Reg(Z[m, 7))
&(Z =
#UL™T) = S Gz + 7)) Reg(Zim + 7))
where c is the size of the co-kernel of the norm application from the class group of

Z[r,7] to the narrow class group of Z[r + 7. In the following we will use ¢ =1 in
order to have a lower bound for #&(Z[r, 7]). Moreover Equation (6.1) of [21] give us

Cl(Z[r, 7)) Reg(Z[r,7]) = # Cl(Ok) Reg(OK)(a% : Z[ﬁ,f]*).

If T is the index [Ok : Z[w,7T]], we can compute (6}(: Z[ﬂ,ﬂ*) as ((Og/I)* :
(Z|m, 7| /I)*). Tt is easy to compute #(Z[m,T|/I)*; since it is a torsion group and I
is prime to p = (Z[r, 7| : Z[x]) it is equal to [[, #(Z[r]/I);. Now if £¢ is a prime
power of I, and x, = [[P{* the factorization of x, mod ¢ then

#(Z[r)/1); = [[(erorPreer — pos Pileecmh)y,

%

Likewise, we can compute #(Og /I); by looking at the decomposition of £ in Ok.

Now we use the following estimate: for each divisor d of the index I, the con-
tributions of orders O such that [O : Z[r,7]] = d to curves in the isogeny class is
#C(Z[m,7])/d. So we estimate the number of curves as

S e)/

d\[OK:Z[W,?]]

(for d not divisible by a ¢ where we can’t go up). We will see in Section 10 how this
estimation compares to some real examples.

7.3. Estimating the probability of going up. In practice, we are not interested

in the size of the isogeny class, but in the size of the curves in the isogeny class from

where we can go up. From numerous experiment, we have observed that most of

the cases where we can’t go up for a particular £ is because there exist no rational

(¢, £)-isogenies at all. But we can easily detect this case by using Proposition 30.
We can thus estimate the number C of curves from where we can go up as

S #e@mA)/d

d|[O k2w 7]

but where we restrict the divisors d to be such that [Ok : Z[m,7]]/d is not divisible
by a prime £ where we can’t go up.

Now if Cy is the estimated number of curves in the isogeny class, we estimate
that we need Cy/C going up tries before finding a going up phase, and such of
endomorphism ring computation. Now we keep the prime p if Cy is not too small,
and if the cost of doing all these endomorphism ring computation is at most the
time needed to find a curve in the isogeny class where we can go up. (As we will see

20 DAMIEN ROBERT AND KRISTIN E. LAUTER

in the complexity analysis, the endomorphism ring computation is not the dominant
phase, so in practice this condition is almost always satisfied).

7.4. A dynamic selection of primes. When we select a prime p, we hope that
the size Cy of the isogeny class (or more precisely the size C of curves where we can
go up) is approximatively the average size @(p3/ 2) of an isogeny class. However, for
small primes p, even if the isogeny class is small, it could be worth it to go through
all p* curves corresponding to p rather than through ¢*/2 curves of a larger prime q.

So we use a dynamic approach: for each new CRT prime p, we compute C/p?,
the expected probability of finding a curve where we can go up. We also look at the
corresponding probabilities for the previous discarded CRT prime, and we use the
prime giving the maximum probability provided it is more than 1/ 16p~—3/2,

8. CRT LIFTING OF THE COEFFICIENTS

8.1. Denominators via Bruinier-Yang formula. We note that contrary to the
elliptic curve case, the coefficients of the class polynomials are rationals, not integers.

The CRT algorithm terminates when the lifted class polynomials (with denomi-
nators cleared) are constant from one CRT prime to the next. The probability that
the class polynomials are correct when this happens was estimated in [14, Remark
7.2].

We estimate the denominators using the Bruinier-Yang conjectural formula [6]
(proved only for special cases [31, 32]), with minor adjustments from [17], and
adapting it to the fact that we use invariants from [27, Appendix 3], which alters the
denominator formulas by small powers of 2. A formula for the factorization of the
denominators which holds for general primitive quartic CM fields was recently given
in [19] which produces a multiple of the denominators when allowing for cancellation
with the numerators and the case where KT does not have class number 1. As
in [12, Theorem 3], we can multiply by the denominators and then use the CRT to
reconstruct the polynomials.

We note that since we are using Streng’s invariant, the power of the I in the
denominators is 1,2,2 rather than 6,4,4 but we have to multiply them by the
constant factors 27,2% 214,

8.2. The CRT. In the cyclic case, we compute the class polynomials modulo small
integer primes, and we use the CRT to get the result modulo the product P (the
“precision”) of these small primes. Once the precision is enough, we can recover the
polynomials modulo Z, by lifting each coefficient to Z in the interval [-P/2, P/2].

In the dihedral case, the primes are in O+, and so is the precision ideal P. Here
we explain how to lift a coefficient mod P to O K& Take the Minkowski embedding
of a lift of x, and find the closest vector ¢, in the lattice associated to P in the
Minkowski embedding. Then ¢, corresponds to an element of the ideal P, and our
final lift is — c,. We note that the lattice is of rank 2, so we can directly compute
the closest vector rather than doing an LLL approximation.

8.3. Lifting without denominators. We note that in the dihedral case, the
denominator from the formulas in [6, 17, 19] is too large, as it takes into account
both CM types. This increases the size of the coefficients we compute, so that
using those denominator formulas does not actually give better results than doing a
rational reconstruction directly.

IMPROVED CRT ALGORITHM FOR CLASS POLYNOMIALS IN GENUS 2 21

With the notation from above, from z mod P we want to do a rational lift of x.
This time we embed the lattice associated to P into the lattice of rank 3 obtained
by adjoining the vector [Cx1, Czo, C] where 21 and x5 are the two real embeddings
of (a lift of) 2 and C' is a constant accounting for how skewed we expect the size
of the denominator to be compared to the numerators. A minimal vector in this
lattice will correspond to an element N = ¢+ Dx where ¢ € p and D is an integer.
We then take N/D as our lift for .

This solution requires the precision to be the sum of the bit sizes of the numerators
and denominator, so it can be even better than using the denominator formulas for
small denominators where there may be cancellation with the numerators.

8.4. Finding irreducible factors. Computing irreducible factors of the class
polynomials directly allows to recover them faster since they have smaller coefficients,
so that we need less precision.

We know that the orbits under the action of the type norm give the irreducible
factors of the class polynomials (or more precisely the irreducible components of
the CM locus) [27, Chapter 3]. It is easy to compute these orbits modulo each CRT
prime p using the tools from Section 6. However we need to be able to glue the
correct orbits together when doing the CRT. For this we can use the “trace trick”
from [13].

9. COMPLEXITY

In this section, we analyze the effect of the going up algorithm of Section 5 (which
we will also call the vertical step since it deals with abelian varieties which have
endomorphism rings which are different orders in K) and the effect of finding all
other maximal curves from one maximal curve from Section 6 (the horizontal step)
to the asymptotic complexity. Most of the discussion is heuristic.

We begin with a quick reminder of the rough complexity analysis of the CRT
method in the elliptic curve case, where K is a quadratic imaginary field. There is
only one class polynomial H, whose degree is the class number of O, and classical
bounds give that deg H = O(v/A) where A is the discriminant of O . Likewise, the
coefficients of H have size O(v/A). So the whole class polynomial is of size O(A).

Each CRT prime p gives log(p) bits of information, so neglecting logarithmic
factors, we need v/A primes. CRT primes split completely in the Hilbert class field
of K, whose Galois group is Cl(Ok), so by the Cebotarev theorem the density of
CRT primes is roughly 1/# Cl(Ok) ~ 1/A. Neglecting logarithmic factors again,
the biggest prime p is of size O(A).

Now there are O(p) isomorphism classes of elliptic curves, and O(v/A) maximal
curves, so one is found in time O(p/v/A) = O(,/p). Once one maximal curve is
found, all others can be obtained using isogenies of degree logarithmic in A, so one
can recover all maximal elliptic curves over F,, in time O(\/ﬁ) =O0(VA).

We need VA CRT primes, so the total cost is O(A). The CRT reconstruction
can be done in quasi-linear time too, so in the end the algorithm is quasi-linear,
even without using a vertical step. Not using the horizontal step gives a complexity
of O(A3/?).

In genus 2, let Ag = Ag+/g and Ay = Ng+/o(Ax/k+), so that A = Ag /g =
A1AZ2. Then the degree of the class polynomials is O(A(l)/zA%m) while the height of
their coefficients is bounded by O(AS/QA?M) ([27, Section I1.9], [16]). In practice,

22 DAMIEN ROBERT AND KRISTIN E. LAUTER

we observe [27, Appendix 3| that they are bounded by O(Aé/ QA}/ 2) and we will use
this bound in the following. According to [5, Section 6.4], the smallest prime is of
size O(ApA;). We need O(A(l)/QAi/Q) CRT primes, and an analysis using [18] as in
2, Lemma 5.3] shows that the largest prime is also O(AgA;). We remark that the
sieving phase does not affect the size of the largest prime (apart from the constant
in the big O) as long as we sieve a positive density of CRT primes.

For the horizontal step, the isogeny computation involves primes of size logarithmic
in A, so the cost of this step is quasi-linear in the number O(Aé/ QA}/ %) of maximal
curves. This is under the assumption from Section 6. Without this assumption,
what we know is that for each ideal I in O, of norm prime to p, the element
(TN(I),N(I)) is an element of the Shimura class group whose action is given by
a maximally isotropic kernel. In the horizontal step, we can then compute the
action of TN (Cl(Ok,)) by isogenies of size logarithmic in A. By Lemma 6.5 of [5],
the cofactor is bounded by 26“(P)*1 where w(D) is the number of prime divisors
of D. This gives a bound on the number of horizontal isogeny steps we need to
take. As remarked in [5], outside a zero-density subset of very smooth integers,
w(n) < 2loglogn so the corresponding factor can be absorbed into the O-notation.

On the contrary, the complexity of the endomorphism ring computation and the
going up phase involves the largest prime power dividing the index [Ok : Z[r,7].

According to Proposition 6.1 of [14] we have that [Ok : Z[m,7]] < %. For the

size of the CRT prime we are considering, we see that [O : Z[r,7]] = O(AOA?Q).
We fix € = 1/2. Assuming that the index is uniformly distributed, [11] showed that
there is a positive density of CRT primes where the largest prime power dividing
the index is O(Ag/looAi/mO). By the complexity analysis of Sections 4.6 and 5.3,
we see then that there is a positive density of primes where these algorithms take
time at most O(A§AS).

We then let p = O(AgA1) be a CRT prime. There are O(,/p) maximal curves, so
we expect the isogeny class to be of size ©(p3/?) (see Heuristic 6.6 in [5]), and there
are p® isomorphism classes of curves. The original CRT algorithm of [12, 14] looped
through all p? curves and tested if the endomorphism ring is maximal. This takes
O(A3AS + O(AY T A3/24) per CRT prime, for a total cost (since O(AFZAL?)
CRT primes are needed) of O(AS/QAIM) with our choice of e.

The approach of [5] is to find only one of them and use horizontal isogenies to
find the others. With the improvements proposed in this paper (using all horizontal
isogenies and not only those coming from the type norm, and the improved endo-
morphism ring computation): we find a cost of O(A)/2AY?) 4+ O(AY/#Te A3/
per CRT prime. The total cost is then O(AZA3).

With our method, we need to find a curve in the isogeny class where the going
up step yields a maximal curve. Finding a curve in the isogeny class takes time
O(p®/?). If X is the number of going up steps we need to try on average, the cost
per CRT prime is then O(X(AS/QA?/2 + A§AS)). At best, X = O(1), and we have
a total cost of O(A2A?) from CRT primes. So at best we have a quasi-quadratic
complexity, while the CRT itself is quasi-linear, so is negligible. We see that we are
still far from quasi-linearity achieved by the analytic method. At worst, X = O(p)
(number of random tries in the isogeny class until we find a maximal one directly),
and we recover the quasi-cubic complexity of the previous method.

IMPROVED CRT ALGORITHM FOR CLASS POLYNOMIALS IN GENUS 2 23

To improve the complexity, there are two possibilities: the first is to increase the
probability of success of the going up method. This requires an algorithm to compute
isogenies with cyclic kernels. But even with that, we achieve at most quasi-quadratic
complexity because the size of the isogeny class is too small compared to the size
of the search space. This is the case because the algorithm computes the class
polynomials (a scheme of dimension 0) directly from the moduli space of dimension 3
of all abelian surfaces. In contrast, in the elliptic curve case, the algorithm searches a
space of dimension 1 for elements of a space of dimension 0. It would be interesting
to find convenient subspaces of the moduli space of smaller dimension, and to work
over them. One example would be to use Humbert surfaces, which are of dimension 2,
and Gundlach invariants, as proposed in [20].

10. EXAMPLES

10.1. Improvements from the going up phase. We first look at improvements
due solely to the going up phase. For that we look at Galois examples with class
number one; so there is only one maximal curve and the algorithm from Section 6 is
not used. We compare the timings to the three examples in [14, Section 9], so to use
(almost) the same CRT primes we deactivate the dynamic approach in the prime
selection.

The timings are given in Tables 1, 2 and 3. The first column indicates the CRT
prime used. The second one the ¢%-torsion subgroups required to compute if a curve
is maximal, the £ is in bold if there is no (¢, £)-isogeny, so we can’t go up for this
¢ (and it is in italic if there exist (¢, ¢)-isogenies, but they are too expensive to
compute). The third column give the corresponding degree where the points of
these subgroups live. The fourth column indicates the total number of curves in
the isogeny class (this is found by the algorithm from [14] since they need to go
through all the curves), while the fifth give the estimate we compute of the number
of curves from where we can go up (and the number in parenthesis give our estimate
of the total number of curves in the isogeny class). The last two column give the
timings of the old and new algorithm, split in “Time exploring curves” + “Time
spent computing endomorphism rings/Time spent going up”.

We note that we spend much less time exploring curves with the new algorithm
which is the whole purpose of the going up part. But we also note that even through
our going up phase is more complicated, it is still less costly than the computation
of the endomorphism rings of the old algorithm. This is due to the improvements
described in Section 4.

Note that much less time is spent exploring curves with the new algorithm due
to the going up algorithm. Also note that, even though the going up phase is more
complicated, it is still less costly than the computation of the endomorphism rings
in the old algorithm, due to the improvements described in Section 4 and the fact
that the new version calls it less often.

The trade-offs in the going up step depend on the discriminant of the CM field
K. The more CRT primes we need, the bigger the isogenies and the bigger the
degrees in the endomorphism ring computations we allow. Note that computing
(£, £)-isogenies requires O(£?) operations in the field where the points of the kernel
are defined when £ is congruent to 1 (mod 4), but O(¢*) when ¢ is congruent to 3
(mod 4). So in the above example, we computed the (109, 109)-isogenies faster than
the (23, 23)-isogenies.

24

DAMIEN ROBERT AND KRISTIN E. LAUTER

P 14 ayq # Curves Estimate Time (old) Time (new)
7 22 4 7 8 0.540.3 0+0.2
17 2 1 39 32 440.2 0+0.1
93 227 4,3 49 51 9+2.3 0+0.2
71 22 4 7 8 2554 0.7 5.34+0.2
97 2 1 39 32 680 4+ 0.3 2+0.1
103 22,17 4,16 119 127 820 +17.6 0541
113 25,7 16,6 1281 877 1334+288 0.2+1.3
151 227,17 4,3,16 ; - 0 0
3162s 13s
TaBLE 1. Computing the class polynomial for K = Q(iv/2 + v/2),
¢(Ok) = {0}.
H; = X — 1836660096, H; = X — 28343520, Hz = X — 9762768

P 14 ag # Curves Estimate Time (old) Time (new)

29 3,23 2,264 - - - -

53 3,43 2,924 ; - ; -

61 3 2 9 6 167 + 0.2 0.2+0.5

79 33 18 81 54 376 + 8.1 0.3+0.9

107 32,43 6,308 ; ;] -

113 3,53 1,52 159 155 1118 +137.2 0.8 425

131 32,53 6,52 477 477 1872 + 1274 2.2+ 444

139 35 81 ? 486 - 1+ 36.7

157 34 27 243 164 3147 4 16.5 -

69695 114s

Hy; = X — 268435456, H, = X + 5242880, Hs; = X + 2015232.

Q(iv/13 + 2v/29),

TABLE 2. The class polynomial for K =
¢(Ok) = {0}.

10.2. Dihedral examples. Here we illustrate our new CRT algorithm for dihedral
fields, for K = Q(X)/(X* + 13X?2 4 41) with ¢(K) ~ {0}.

We first compute the class polynomials over Z using Spallek’s invariants, and
obtain the following polynomials in 5956 seconds: H; = 64X? + 14761305216 X —
11157710083200000, Hy = 16X?2 + 72590904X — 8609344200000, H3 = 16X? +
28820286X — 303718531500.

Next we compute them over the real subfield and use the invariants from [27,
Appendix 3]. We get H; = 256X — 2030994 + 56133, Hy = 128X + 12637944 —
2224908«, H3 = 65536X — 11920680322632 + 1305660546324 where « is a root of
X? —3534X + 177505, so that Ok = Z|«]. This computation took 1401 seconds,

IMPROVED CRT ALGORITHM FOR CLASS POLYNOMIALS IN GENUS 2

P 14 aq # Curves Estimate Time (old) Time (new)
7 - - 1 1 0.3 0+4+0.1
23 13 84 15 2 (16) 94 70.7 0.4 4+ 24.6
53 7 3 7 7 105+ 0.5 7.740.5
59 2,5 1,12 322 48 (286) 164 + 6.4 1.440.6
83 3,5 4,24 77 108 431 + 9.8 24+1.1
103 67 1122 - - - -

107 7,13 3,21 105 8 (107) 963 + 69.3 -

139 52,7 60, 2 259 9 (260) 2189 + 62.1 -

181 3 1 161 135 5040 + 3.6 4.5+0.2
197 5,109 24,5940 - - - -

199 52 60 37 2 (39) 10440 4 35.1 -

223 2,23 1,11 1058 39 (914) 10440 + 35.1 -

227 109 1485 - - - -

233 5,7,13 8, 3,28 735 55 (770) 11580 + 141.6 88.3 +29.4
239 7,109 6, 297 - - - -

257 3,7,13 4,6,84 1155 109 (1521) 17160 + 382.8 .

313 3,13 1,14 ? 146 (2035) - 165 + 14.7
373 5,7 6,24 ? 312 - 183.4 + 3.8
541 2,7,13 1,3,14 ? 204 (4106) - 91+5.5
571 ,5,7 2,6,6 ? 1111 (6663) - 96.6 + 3.1

56585s 776s

Hp = 244140625X — 2614061544410821165056,

H> = 390625X + 14651024316825600,
H3z = 390625X + 5076177577574400.

TABLE 3. The class polynomial for K = Q(iv/29 + 2v/29),
¢(Ok) = {0}. (The new algorithm also skipped the primes 277,
281, 349, 397, 401, 431, 487, 509, 523.)

so in this case, the speedup due to using better invariants and computing over the
real subfield is more than 4-fold.

10.3. CRT for non principal fields. Here is a bigger example. To our knowledge,
this is the first example of class number greater than one computed by the CRT
method (we see that we are still far away from the analytic method where the latest
version can compute class polynomials with degrees in the thousands):

o K = Q(X)/(X* + 238X2 + 833) cyclic. €(K) ~ Z/2Z is generated by
(7,7)-isogenies.

e Primes used: 19 , 59 , 67, 83, 149, 191, 223, 229, 239, 257, 349, 463, 557, 613,
661, 733, 859, 1039, 1373, 1613, 1657, 1667, 1733, 1753, 1801, 1871, 1879,
2399, 3449, 3469, 3761, 3931, 4259, 4691, 5347, 5381, 6427, 6571, 6781.

e For p =~ 6000, we keep p if we expect more than p;# ~ 15 x 10 curves. At
this size, it takes around 6 seconds to test 10000 curves, so around 2.5 hours
are needed for p.

e Total time: 44062 second (not using the dynamic approach).

e We only give the first class polynomial:

H;(X) = 16845 1200633545364243594910146286907316572281862280871005795423612829696 X 2
+158582528695513934970693031198523489269724119094630145672062735632518026507497890643968 X
—2014843977961649893357675219372115899170378669590465187558574259942250352955092541374464.

26 DAMIEN ROBERT AND KRISTIN E. LAUTER

11. APPENDIX: COMPLEXITY OF COMPUTING A (¢, {)-ISOGENY
We recall the following proposition from [9]

Proposition 30. The complezity of computing a (£, £)-isogeny between two abelian
surfaces is O(L") operations in the field k where the points of the kernel of the isogeny
live. We have r = 2 when £ =1 mod 4 and r = 4 when £ =3 mod 4.

If A is an abelian variety over a finite field I, the following proposition we give
a way to compute the maximum extension over which the points of a maximal
isotropic kernel live.

Proposition 31. Let x. be the quartic polynomial satisfied by the Frobenius element
for a smooth irreducible genus 2 curve C' over F, with simple, ordinary Jacobian
J(C). For a prime £ with { # p, if there exists an F,-rational (¢, {)-isogeny, then
Xx factors as xr = PP (mod £) (where P is the conjugate of P under the action
T — p/m).

The order of X in Z[X]/(¢, P) give the degree in which the points of the corre-
sponding Kernel live. In particular, if no such decomposition ezist, then there is no
(¢, 0)-isogeny.

Proof. Let K C A[f] be a maximally isotropic rational kernel. Then since 7 stabilize
K, if P is the characteristic polynomial of 7 restricted to K, then P divides x . The
cofactor is given by the characteristic polynomial of the action of the Verschiebung
p/m on K, so the corresponding factor is P. O

REFERENCES

[1] E. Bach Explicit Bounds for Primality Testing and Related Problems, Mathematics of Com-
putations, 55, No. 191, (1990) 335-380.

[2] J. Belding, R. Broker, A. Enge, K. Lauter, Computing Hilbert class polynomials, ANTS VIII,
Springer LNCS 5011 (2008), 282-295.

[3] G. Bisson, R. Cosset, D. Robert, AVIsogenies (Abelian Varieties and Isogenies), Magma pack-

age for explicit isogenies between abelian varieties, http://avisogenies.gforge.inria.fr.

[4] G. Bisson, Endomorphism Rings in Cryptography, PhD Thesis (2011).

[5] R. Broker, D. Gruenewald, K. Lauter, Ezplicit CM-theory for level 2-structures on abelian sur-

faces, Algebra and Number Theory, Vol. 5 (2011), No. 4, 495-528. DOI: 10.2140/ant.2011.5.495.

[6] J. Bruinier, T. Yang, CM-values of Hilbert modular functions, Invent. Math., 163, no. 2,

(2006) 229-288.

Robert Carls, David Kohel, David Lubicz, Higher dimensional 3-adic CM construction, J. of

Algebra, 319-4 (2008), 971-2006.

Robert Carls, David Lubicz, A p-adic quasi-quadratic point counting algorithm, Int. Math.

Res. Not., 2008.

[9] R. Cosset, D. Robert, An algorithm for computing (¢, £)-isogenies in polynomial time on Jaco-
bians of hyperelliptic curves of genus 2, Preprint 2011, http://eprint.iacr.org/2011/143.

[10] J.M. Couveignes, Linearizing torsion classes in the Picard group of algebraic curves over
finite fields, Journal of Algebra, 321, no. 8, (2009) 2085-2118.

[11] K. Dickman, On the frequency of numbers containing prime factors of a certain relative
magnitude, Ark. Mat. Astr. Fys. 22A (1930), 1-14.

[12] K. Eisentrager, K. Lauter, A CRT algorithm for constructing genus 2 curves over finite fields,
In: Arithmetic, Geometry and Coding Theory AGCT-10 (2005), Séminaires et Congres 21,
Société Mathématique de France (2009) 161-176. http://arxiv.org/abs/math.NT/0405305

[13] A. Enge, A.V. Sutherland, Class invariants by the CRT method, ANTS IX: Proceedings of
the Algorithmic Number Theory 9th International Symposium, Nancy (2010), 142-156.

[14] D. Freeman, K. Lauter, Computing endomorphism rings of Jacobians of genus 2 curves over
finite fields, in Algebraic Geometry and its Applications, World Scientific (2008), 29-66.

[7

8

[15]

[16]

(17)

(18]

(19]
20]
21]
22]
23]

24]

IMPROVED CRT ALGORITHM FOR CLASS POLYNOMIALS IN GENUS 2 27

P. Gaudry, T. Houtmann, D. Kohel, C. Ritzenthaler, and A. Weng, The 2-adic CM method
for genus 2 curves with application to cryptography, Asiacrypt 2006 (Shanghai) Lect. Notes
in Comp. Sci., 4284, 114-129, Springer-Verlag, 2006.

E. Goren, K. Lauter, Genus 2 curves with complex multiplication, International Mathematics
Research Notices (2011), 75 pp. doi: 10.1093/imrn/rnr052.

H. Grundman, J. Johnson-Leung, K. Lauter, A. Salerno, B. Viray, E. Wittenborn, Igusa class
polynomials, embeddings of quartic CM fields, and arithmetic intersection theory, WIN-Women
in Numbers: Research Directions in Number Theory, Fields Institute Communications Series,
Volume 60 (2011) 35-61.

J. C. Lagarias, A. M. Odlyzko, Effective versions of the Chebotarev density theorem, Algebraic
number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Duram,
1975), Academic Press, 1977, pp. 409-464.

K. Lauter, B. Viray, An arithmetic intersection formula for denominators of Igusa class
polynomsials, Preprint, 2011.

K. Lauter, T. Yang, Computing genus 2 curves from invariants on the Hilbert moduli space,
Journal of Number Theory, Elliptic Curve Cryptography Volume 131, Issue 5 (2011), 936-958.
H. W. Lenstra, Jr., J. Pila, C. Pomerance, A hyperelliptic smoothness test I1I, Proc. London
Math. Soc., (3) 84 (2002), 105-146.

D. Lubicz, D. Robert, Computing isogenies between abelian varieties, to appear in Compositio
Mathematica, http://arxiv.org/pdf/1001.2016.

J.-F. Mestre, Construction de courbes de genre 2 da partir de leurs modules, in Effective
methods in algebraic geometry, Birkhduser Progr. Math. 94 (1991), 313-334.

D. Robert, Theta functions and applications in cryptography, PhD Thesis, Université Henri-
Poincarré, (2010).

[25] G. Shimura, Abelian varieties with complex multiplication and modular functions, Princeton

Mathematical Series 46, Princeton University Press New Jersey, 1998.

[26] A.-M. Spallek, Kurven vom Geschlecht 2 und ihre Anwendung in Public-Key-Kryptosystemen,

PhD thesis, Universitat Gesamthochschule Essen, 1994.

[27] M. Streng, Complez multiplication of abelian surfaces, PhD-thesis, Universiteit Leiden, 2010.
[28] A. Sutherland, Computing Hilbert class polynomials with the Chinese Remainder Theorem,

Mathematics of Computation 80 (2011), pp. 501-538.

[29] P. van Wamelen. Ezamples of genus two CM curves defined over the rationals, Math. Comp.,

68 (1999), 307-320.

[30] A. Weng, Constructing hyperelliptic curves of genus 2 suitable for cryptography, Math. Comp.

72 (2003), 435-458.

[31] T. Yang, An arithmetic intersection formula on Hilbert modular surfaces, Amer. J. Math.,

132 (2010), 1275-1309.

[32] T. Yang, Arithmetic intersection on a Hilbert modular surface and the Faltings height, Preprint,

2007.

INRIA BORDEAUX-SUD-OUEST, 200 AVENUE DE LA VIEILLE TOUR, 33405 TALENCE CEDEX,

FRrRANCE

E-mail address: damien.robert@inria.fr

MICROSOFT RESEARCH, ONE MICROSOFT WAY, REDMOND, WA 98052, USA.
E-mail address: klauter@microsoft.com

