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CONTROL AND STABILIZATION OF THE BENJAMIN-ONO EQUATION

ON A PERIODIC DOMAIN

FELIPE LINARES AND LIONEL ROSIER

Abstract. It was proved by Linares and Ortega in [24] that the linearized Benjamin-Ono
equation posed on a periodic domain T with a distributed control supported on an arbitrary
subdomain is exactly controllable and exponentially stabilizable. The aim of this paper is
to extend those results to the full Benjamin-Ono equation. A feedback law in the form of a
localized damping is incorporated in the equation. A smoothing effect established with the aid
of a propagation of regularity property is used to prove the semi-global stabilization in L2(T) of
weak solutions obtained by the method of vanishing viscosity. The local well-posedness and the
local exponential stability in Hs(T) are also established for s > 1/2 by using the contraction
mapping theorem. Finally, the local exact controllability is derived in Hs(T) for s > 1/2 by
combining the above feedback law with some open loop control.

1. Introduction

The Benjamin-Ono (BO) equation can we written as

ut +Huxx + uux = 0,

where u = u(x, t) denotes a real-valued function of the variables x ∈ R and t ∈ R, and H denotes
the Hilbert transform defined as

Ĥu(ξ) = −i sgn(ξ) û(ξ).

This integro-differential equation models the propagation of internal waves in stratified fluids of
great depth (see [4, 33]) and turns out to be important in other physical situations as well (see
[9, 18, 26]). Among noticeable properties of this equation we can mention that: (i) it defines a
Hamiltonian system; (ii) it admits infinitely many conserved quantities (see [6]); (iii) it can be
solved by an analogue of the inverse scattering method (see [2]); (iv) it admits (multi)soliton
solutions (see [6]).

In this paper, we consider the BO equation posed on the periodic domain T = R/(2πZ):

ut +Huxx + uux = 0, x ∈ T, t ∈ R, (1.1)

where the Hilbert transform H is defined now by

(Ĥu)k = −i sgn(k)ûk.
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The two first conserved quantities are

I1(t) =

∫

T

u(x, t)dx

and

I2(t) =

∫

T

u2(x, t)dx.

From the historical origins [4, 33] of the BO equation, involving the behavior of stratified fluids,
it is natural to think I1 and I2 as expressing conservation of volume (or mass) and energy,
respectively.

The Cauchy problem for the equation (1.1) in the real line has been intensively studied for
many years ([45, 17, 1, 32, 31, 20, 19, 46, 5, 16, 29, 13, 14]). In the periodic case, there have
been several recent developments. (See for instance [28, 30, 29] and the references therein.) The
best known result so far [28, 29] is that the Cauchy problem is well-posed in the space

Hs
0(T) = {u ∈ Hs(T); û0 :=

1

2π

∫

T

u(x) dx = 0}

for s ≥ 0. Moreover, the corresponding solution map (u0 → u) is real analytic from the space
H0

0 (T) to the space C([0, T ],H0
0 (T)).

In this paper we will study the equation (1.1) from a control point of view with a forcing term
f = f(x, t) added to the equation as a control input:

ut +Huxx + uux = f(x, t), x ∈ T, t ∈ R, (1.2)

where f is assumed to be supported in a given open set ω ⊂ T. The following exact control
problem and stabilization problem are fundamental in control theory.

Exact Control Problem: Given an initial state u0 and a terminal state u1 in a certain
space, can one find an appropriate control input f so that the equation (1.2) admits a solution
u which satisfies u(·, 0) = u0 and u(·, T ) = u1?

Stabilization Problem: Can one find a feedback law f = Ku so that the resulting closed-
loop system

ut +Huxx + uux = Ku, x ∈ T, t ∈ R
+

is asymptotically stable as t → +∞?
Those questions were first investigated by Russell and Zhang in [44] for the Korteweg-de Vries

equation, which serves as a model for propagation of surface waves along a channel:

ut + uxxx + uux = f, x ∈ T, t ∈ R. (1.3)

In their work, in order to keep the mass I1(t) conserved, the control input is chosen to be of the
form

f(x, t) = (Gh)(x, t) := a(x)

(
h(x, t)−

∫

T

a(y)h(y, t) dy

)

where h is considered as a new control input, and a(x) is a given nonnegative smooth function
such that {x ∈ T; a(x) > 0} = ω and

2π[a] =

∫

T

a(x) dx = 1.
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For the chosen a, it is easy to see that

d

dt

∫

T

u(x, t) dx =

∫

T

f(x, t)dx = 0 ∀t ∈ R

for any solution u = u(x, t) of the system

ut + uxxx + uux = Gh, x ∈ T, t ∈ R. (1.4)

Thus the mass of the system is indeed conserved.
The control of dispersive nonlinear waves equations on a periodic domain has been extensively

studied in the last decade: see e.g. [44, 40, 23] for the Korteweg-de Vries equation, [27] for
the Boussinesq system, [42] for the BBM equation, and [11, 38, 21, 41, 22] for the nonlinear
Schrödinger equation. By contrast, the control theory of the BO equation is at its early stage.
The following results are due to Linares and Ortega [24].

Theorem A. [24] Let s ≥ 0 and T > 0 be given. Then for any u0, u1 ∈ Hs(T) with [u0] = [u1]
one can find a control input h ∈ L2(0, T,Hs(T)) such that the solution of the system

ut +Huxx = Gh, u(x, 0) = u0(x) (1.5)

satisfies u(x, T ) = u1(x).
In order to stabilize (1.5), Linares and Ortega employed a simple control law

h(x, t) = −G∗u(x, t).

The resulting closed-loop system reads

ut +Huxx = −GG∗u.

Theorem B. [24] Let s ≥ 0 be given. Then there exist some constants C > 0 and λ > 0 such
that for any u0 ∈ Hs(T), the solution of

ut +Huxx = −GG∗u, u(x, 0) = u0(x)

satisfies
‖u(·, t) − [u0]‖Hs(T) ≤ Ce−λt‖u0 − [u0]‖Hs(T) ∀t ≥ 0.

The extension of those results to the full BO equation (1.4) turns out to be a very hard task.
Indeed, it is by now well known that the contraction principle cannot be used to establish the
local well-posedness of BO in Hs

0(T) for s ≥ 0. The method of proof in [28, 29] used strongly
Tao’s gauge transform, and it is not clear whether this approach can be followed when an
additional control term is present in the equation.

For the sake of simplicity, we shall assume from now on that [u0] = 0, so that u(t) has a zero
mean value for all times.

To stabilize the BO equation, we consider the following feedback law

f = −G(D(Gu))

where D̂uk = |k|ûk. Scaling in (1.3) by u gives (at least formally)

1

2
‖u(T )‖2L2(T) +

∫ T

0
‖D 1

2 (Gu)‖2L2(T)dt =
1

2
‖u0‖2L2(T). (1.6)
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This suggests that the energy is dissipated over time. On the other hand, (1.6) reveals a
smoothing effect, at least in the region {a > 0}. Using a propagation of regularity property in
the same vein as in [11, 21, 22, 23], we shall prove that the smoothing effect holds everywhere,
i.e.

‖u‖
L2(0,T ;H

1
2 (T))

≤ C(T, ‖u0‖). (1.7)

Using this smoothing effect and the classical compactness/uniqueness argument, we shall first
prove that the corresponding closed-loop equation is semi-globally exponentially stable.

Theorem 1.1. Let R > 0 be given. Then there exist some constants C = C(R) and λ = λ(R)
such that for any u0 ∈ H0

0 (T) with ‖u0‖ ≤ R, the weak solutions in the sense of vanishing
viscosity of

ut +Huxx + uux = −GDGu, u(x, 0) = u0(x) (1.8)

satisfy

‖u(t)‖ ≤ Ce−λt‖u0‖ ∀t ≥ 0.

A weak solution of (1.8) in the sense of vanishing viscosity is a distributional solution of (1.8)

u ∈ Cw(R
+,H0

0 (T)) ∩ L2
loc(R

+,H
1

2

0 (T)) that may be obtained as a weak limit in a certain space
of solutions of the BO equation with viscosity

ut + (H − ε)uxx + uux = −GDGu, u(x, 0) = u0(x) (1.9)

as ε → 0+ (see below Definition 2.11 for a precise definition). The issue of the uniqueness of the
weak solutions in the sense of vanishing viscosity seems challenging.

Using again the smoothing effect (1.7), one can extend (at least locally) the exponential
stability from H0

0 (T) to Hs
0(T) for s > 1/2.

Theorem 1.2. Let s ∈ (12 , 2]. Then there exists ρ > 0 such that for any u0 ∈ Hs
0(T)

with ‖u0‖Hs(T) < ρ, there exists for all T > 0 a unique solution u(t) of (1.8) in the class

C([0, T ],Hs
0(T))∩L2(0, T,H

s+ 1

2

0 (T)). Furthermore, there exist some constants C > 0 and λ > 0
such that

‖u(t)‖s ≤ Ce−λt‖u0‖s ∀t ≥ 0.

Finally, incorporating the same feedback law f = −G(D(Gu)) in the control input to obtain
a smoothing effect, one can derive an exact controllability result for the full equation as well.

Theorem 1.3. Let s ∈ (12 , 2] and T > 0 be given. Then there exists δ > 0 such that for any
u0, u1 ∈ Hs

0(T) satisfying

‖u0‖Hs(T) ≤ δ, ‖u1‖Hs(T) ≤ δ

one can find a control input h ∈ L2(0, T,Hs− 1

2 (T)) such that the system (1.4) admits a solution

u ∈ C([0, T ],Hs
0 (T)) ∩ L2(0, T,H

s+ 1

2

0 (T)) satisfying

u(x, 0) = u0(x), u(x, T ) = u1(x).
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Note that it would be desirable to have a control input h in the class L2(0, T,Hs(T)), but
this will require to adapt the analysis in [28, 29]. Note also that a global controllability result
in H0

0 (T) would follow from Theorems 1.1 and 1.3 if Theorem 1.3 were also true for s = 0.
The paper is organized as follows. Section 2 is concerned with the local well-posedness and the

stability properties of (1.8). We first prove the global well-posedness of (1.9) in the energy space
H0

0 (T), by using classical energy estimates (Theorem 2.1). Next, we establish several technical
properties, namely a commutator estimate (Lemma 2.5), a propagation of regularity property
(Propositions 2.7 and 2.16), and a unique continuation property (Proposition 2.8) that are used
to derive the exponential stability of (1.9) with a decay rate independent of ε (Theorem 2.10).
This leads to the proofs of Theorems 1.1 and 1.2. Finally, the control properties of (1.4) are
investigated in Section 3.

2. Stabilization of BO with a localized damping

2.1. Semi-global exponential stabilization in L2(T).
Pick any function

a ∈ C∞(T,R+) with

∫

T

a(x)dx = 1 (2.10)

decomposed as a(x) =
∑

k∈Z âke
ikx.

We are interested in the stability properties of the BO equation with localized damping

ut +Huxx + (
u2

2
)x = −G(D(Gu)), u(0) = u0, (2.11)

where

Ĥuk = −i sgn(k)ûk, D̂suk = |k|sûk, (Gu)(x) = a(x)(u(x) −
∫

T

a(y)u(y)dy). (2.12)

We shall assume that u0 ∈ H0
0 (T), where for any s ∈ R,

Hs
0(T) = {u =

∑

k∈Z

ûke
ikx ∈ Hs(T); û0 = 0}.

Let (u, v) =
∫
T
u(x)v(x)dx denote the usual scalar product in L2(T) with ‖u‖ = ‖u‖L2(T) as

associated norm, and for any s ∈ R, let (u, v)s = ((1 − ∂2
x)

s
2u, (1 − ∂2

x)
s
2 v) denote the scalar

product in Hs(T) with corresponding norm ‖u‖s = (u, u)
1

2
s . Let 〈x〉 := (1+ |x|2) 1

2 for any x ∈ R.
Note that for s < 0 and u ∈ Hs(T), Gu has to be understood as

Gu = a
(
u− 〈u, a〉Hs(T),H−s(T)

)
.

Assuming that u0 ∈ H0
0 (T), we obtain (formally) by scaling in (2.11) by u that

1

2
‖u(T )‖2 +

∫ T

0
‖D 1

2 (Gu)‖2dt = 1

2
‖u0‖2. (2.13)

This suggests that the energy is dissipated over time. On the other hand, (2.13) reveals a
smoothing effect, at least in the region {a > 0}. Using a propagation of regularity property in
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the same vein as in [11, 21, 22, 23], we shall prove that the smoothing effect holds everywhere,
i.e.

u ∈ L2(0, T ;H
1

2 (T)). (2.14)

Of course, a rigorous derivation of (2.13) requires enough regularity for u, e.g.

u ∈ L2(0, T,H1(T)) ∩ C([0, T ],H0
0 (T)). (2.15)

As there is a gap between (2.14) and (2.15), we are let to put some artificial viscosity in (2.11)
(parabolic regularization method) to derive in a rigorous way the energy identity for the ε−BO
equation

ut +Huxx + uux = εuxx −G(D(Gu)), u(0) = u0. (2.16)

We shall prove the global well-posedness (GWP) of (2.16) in H0
0 , together with the semi-global

exponential stability in H0
0 with a decay rate uniform in ε > 0. Letting ε → 0, this will give the

semi-global exponential stability in H0
0 of the weak solutions u ∈ Cw([0,+∞),H0

0 (T)) of (2.11)
obtained as limits of the (strong) solutions of (2.16). The (difficult) issue of the uniqueness of
a weak solution to (2.11) will not be addressed here.

We first establish the GWP of (2.16).

Theorem 2.1. Let ε > 0 and u0 ∈ H0
0 (T). Then for any T > 0 there exists a unique solution

u ∈ C([0, T ],H0
0 (T)) ∩ L2(0, T ;H1(T)) of (2.16). Moreover

u ∈ C((0, T ],H2(T)) ∩ C1((0, T ],H1(T)), (2.17)

and for any t ≥ 0

1

2
‖u(t)‖2 + ε

∫ t

0
‖ux(τ)‖2dτ +

∫ t

0
‖D 1

2 (Gu)(τ)‖2dτ =
1

2
‖u0‖2. (2.18)

Proof: The proof of Theorem 2.1 is divided into five parts. Note that the weak smoothing
effect (2.14) will be established later, as it is not needed here.

Step 1. Linear Theory
We consider the linear system

ut + (H − ε)uxx +G(D(Gu)) = 0, u(0) = u0.

Let Au = (H − ε)uxx with domain D(A) = H2
0 (T) ⊂ H0

0 (T), and Bu = G(D(Gu)). Clearly
G ∈ L(Hr(T),Hr

0 (T)) for all r ∈ R, hence B ∈ L(H1
0 (T),H

0
0 (T)). Let θ0 ∈ (arctan ε−1, π/2).

Then, for θ0 < |arg λ| ≤ π, we have

‖(A− λ)−1‖ ≤ sup
k 6=0

|(ε+ i sgn k)k2 − λ|−1 ≤ C

|λ| ·

It follows that A is a sectorial operator (see [15, Definition 1.3.1]) in H0
0 (T). Note that σ(A) =

{(ε + i sgn k)k2; k ∈ Z
∗}. Therefore, Re σ(A) ≥ ε and A−α is meaningful for all α > 0. Since

for all s > 0

‖A− s
2u‖2Hs(T) ≤ C

∑

k 6=0

|ε+ i sgn k|−s|ûk|2 ≤ C‖u‖2L2(T)
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we infer that BA− 1

2 ∈ L(H0
0 (T)). It follows from [15, Corollary 1.4.5] that the operator A :=

A + B is also sectorial, so that −A generates an analytic semigroup
(
S(t)

)
t≥0

= (e−tA)t≥0 on

H0
0 (T) according to [15, Theorem 1.3.4]. Note that, by [15, Theorem 1.4.8], D((A+B+ λ)α) =

D(Aα) = H2α
0 (T) for all α ≥ 0 and λ > 0 large enough, hence

S(t)Hs
0(T) ⊂ Hs

0(T), ∀t > 0, ∀s ≥ 0.

Let us derive estimates for the solutions of the Cauchy problem

ut +Au = f, u(0) = u0. (2.19)

For any T > 0 and any s ∈ N, let

Ys,T = C([0, T ];Hs
0(T)) ∩ L2(0, T ;Hs+1

0 (T)) (2.20)

be endowed with the norm

‖u‖Ys,T
= ‖u‖L∞(0,T ;Hs(T)) + ‖u‖L2(0,T ;Hs+1(T)). (2.21)

Lemma 2.2. We have for some constant C0 = C0(ε, s, T )

‖u‖Ys,T
≤ C0

(
‖u0‖s + ‖f‖L1(0,T,Hs(T))

)
,

u denoting the mild solution of (2.19) associated with (u0, f) ∈ Hs
0(T)× L1(0, T,Hs

0(T)).

Proof of Lemma 2.2. It is well known from classical semigroup theory that

‖u‖L∞(0,T,Hs(T)) ≤ C
(
‖u0‖s + ‖f‖L1(0,T,Hs(T))

)
·

Next we estimate ‖u‖L2(0,T,Hs+1(T)). We first assume u0 ∈ Hs+2
0 (T) and f ∈ C([0, T ];Hs+2

0 (T)),

so that u ∈ C([0, T ];Hs+2
0 (T)) ∩ C1([0, T ];Hs

0(T)). Taking the scalar product of each term of
(2.19) by u in Hs(T) results in

1

2
‖u(t)‖2s + ε

∫ t

0
‖ux‖2s dτ +

∫ t

0
(G(D(Gu)), u)s dτ =

1

2
‖u0‖2s +

∫ t

0
(f, u)s dτ. (2.22)

The identity (2.22) is also true for u0 ∈ Hs
0(T) and f ∈ L1(0, T,Hs

0(T)), by density. The
following claim is needed.
Claim 1. For any s ∈ R, there exists a constant C = C(s) > 0 such that

−
(
G(D(Gu)), u

)
s
≤ C‖u‖2s − ‖D 1

2 (Gu)‖2s ∀u ∈ Hs+1
0 (T).

Proof of Claim 1. We have
(
G(D(Gu)), u

)
s

=
(
(1− ∂2

x)
s
2G(D(Gu)), (1 − ∂2

x)
s
2u
)

=
(
[(1− ∂2

x)
s
2 , G]D(Gu), (1 − ∂2

x)
s
2u)

+(G(1 − ∂2
x)

s
2D(Gu), (1 − ∂2

x)
s
2u)

=: I1 + I2.

Since a ∈ C∞(T), we easily obtain that

‖[(1 − ∂2
x)

s
2 , G]u‖ ≤ C‖u‖s−1.

It follows that
|I1| ≤ C‖u‖2s.
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On the other hand

I2 =
(
(1− ∂2

x)
s
2D(Gu), G(1 − ∂2

x)
s
2u
)

= ‖(1− ∂2
x)

s
2D

1

2 (Gu)‖2 + ((1 − ∂2
x)

s
2 (Gu),D[G, (1 − ∂2

x)
s
2 ]u),

hence
−I2 ≤ C‖u‖2s − ‖D 1

2 (Gu)‖2s ·
The claim is proved.
Combining Claim 1 with (2.22), we obtain that for t = T

1

2
‖u(T )‖2s + ε

∫ T

0
‖ux(τ)‖2sdτ +

∫ T

0
‖D 1

2 (Gu)‖2sdτ

≤ 1

2
‖u0‖2s + C‖u‖2L2(0,T,Hs(T)) +

1

2
‖u‖2L∞(0,T,Hs(T)) +

1

2
‖f‖2L1(0,T,Hs(T))

≤ C
(
‖u0‖2s + ‖f‖2L1(0,T,Hs(T))

)
·

The proof of Lemma 2.2 is achieved. �

Remark 2.3. We observe that when u0 ≡ 0 in (2.19) then

‖
∫ t

0
S(t− τ)f(τ) dτ‖Ys,T

≤ C(ǫ, s, T ) ‖f‖L1(0,T,Hs(T)), (2.23)

and when f ≡ 0 in (2.19)
‖S(t)u0‖Ys,T

≤ C(ǫ, s, T )‖u0‖Hs(T). (2.24)

Step 2. Local Well-posedness in Hs
0(T), s ≥ 0

We prove the following

Proposition 2.4. Let s ≥ 0. For any u0 ∈ Hs
0(T), there exists some T > 0 such that the

problem (2.16) admits a unique solution u ∈ Ys,T .

Proof. Write (2.16) in its integral form

u(t) = S(t)u0 −
∫ t

0
S(t− τ)(uux)(τ)dτ

where the spatial variable is suppressed throughout. For given u0 ∈ Hs
0(T), let r > 0 and T > 0

be constants to be determined. Define a map Γ on the closed ball

B =
{
v ∈ Ys,T ; ‖v‖Ys,T

≤ r
}

of Ys,T by

Γ(v)(t) = S(t)u0 −
∫ t

0
S(t− τ)(vvx)(τ) dτ.

We aim to prove that Γ contracts in B for T small enough and r conveniently chosen. To that
end, we shall prove the following estimates

‖Γ(v)‖Ys,T
≤ C0‖u0‖s +C1T

1

4‖v‖2Ys,T
, ∀v ∈ B, (2.25)

‖Γ(v1)− Γ(v2)‖Ys,T
≤ C1T

1

4 (‖v1‖Ys,T
+ ‖v2‖Ys,T

)‖v1 − v2‖Ys,T
∀v1, v2 ∈ B. (2.26)
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From Lemma 2.2 and Remark 2.3, it is adduced that

‖Γ(v1)− Γ(v2)‖Ys,T
≤ C‖v1v1x − v2v2x‖L1(0,T,Hs(T))

≤ C

∫ T

0

(
‖v1 − v2‖L∞‖v1 + v2‖s+1 + ‖v1 + v2‖L∞‖v1 − v2‖s+1

)
dτ

≤ CT
1

4‖v1 − v2‖Ys,T

(
‖v1‖Ys,T

+ ‖v2‖Ys,T

)

where we used the fact that
∫ T

0
‖v‖2L∞dt ≤ C

∫ T

0
‖v‖1‖v‖dt ≤ C

√
T‖v‖L∞(0,T,L2(T))‖v‖L2(0,T,H1(T)).

This yields (2.26). (2.25) follows from Lemma 2.2, Remark 2.3 and (2.26). Choosing r > 0 and
T > 0 so that {

r = 2C0‖u0‖s,
2rC1T

1

4 ≤ 1
2 ,

(2.27)

we obtain that

‖Γ(v1)‖Ys,T
≤ r, ‖Γ(v1)− Γ(v2)‖Ys,T

≤ 1

2
‖v1 − v2‖Ys,T

for any v1, v2 ∈ B. Thus, with this choice of r and T , Γ is a contraction in B. Its fixed-point is
the unique solution of (2.16) in B.

Step 3. Global Well-Posedness in H0
0 (T).

Assume that u0 ∈ H0
0 (T). We first establish (2.18) for 0 ≤ t ≤ T . Since u ∈ Y0,t, we have that

∫ t

0
‖uux‖2−1dτ ≤ C

∫ t

0
‖u2‖2dτ

≤ C

∫ t

0
‖u‖3‖ux‖ dτ

≤ C
√
t‖u‖4Y0,t

.

Thus each term in (2.16) belongs to L2(0, t,H−1(T)). Scaling in (2.16) by u yields
∫ t

0
〈ut + (H − ε)uxx + uux +G(D(Gu)), u〉H−1(T),H1(T)dτ = 0.

We have that for a.e. τ ∈ (0, t)

〈(H − ε)uxx, u〉H−1(T),H1(T) = −((H − ε)ux, ux) = ε‖ux‖2,
〈uux, u〉H−1(T),H1(T) = (uux, u) = 0,

〈G(D(Gu)), u〉H−1(T),H1(T) = (G(D(Gu)), u) = ‖D 1

2 (Gu)‖2.
(2.18) follows at once, and we infer that ‖u(t)‖ ≤ ‖u0‖. Using the standard extension argument,
one sees that u is defined on R

+ with u ∈ Y0,T for all T > 0. Furthermore, with the constants
C0 and C1 given in Step 2 for s = 0 and T = (8C0C1‖u0‖)−4, we obtain

‖u(nT + ·)‖Y0,T
≤ 2C0‖u(nT )‖ ≤ 2C0‖u0‖.
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Step 4. Global Well-Posedness in H2
0 (T).

Pick any u0 ∈ H2
0 (T). By Proposition 2.4 and Step 3, (2.16) admits a unique solution u ∈ Y0,T

for each T > 0, which belongs to Y2,T0
for some T0 > 0. We just need to show that T0 may be

taken as large as desired. Let v = ut. If u ∈ Y2,T , then v ∈ Y0,T and it satisfies

vt + (H − ε)vxx + (uv)x = −G(D(Gv)), v(0) = v0 (2.28)

where
v0 := −{(H − ε)u0,xx + u0u0,x +G(D(Gu0))} ∈ H0

0 (T).

We may write (2.28) in its integral form

v(t) = S(t)v0 −
∫ t

0
S(t− s)(uv)x(s)ds.

Let Γ(w)(t) = S(t)v0 −
∫ t

0 S(t − s)(uw)x(s)ds for w ∈ Y0,T . Computations similar to those in
Step 2 lead to

‖Γw‖Y0,T
≤ C0‖v0‖+ C1T

1

4 ‖u‖Y0,T
‖w‖Y0,T

,

‖Γ(w1)− Γ(w2)‖Y0,T
≤ C1T

1

4 ‖u‖Y0,T
‖w1 − w2‖Y0,T

where the constants C0 and C1 depend only on ε for T < 1. Therefore Γ contracts in B = {w ∈
Y0,θ; ‖w‖Y0,θ

≤ r := 2C0‖v0‖}, provided that

C1θ
1

4 ‖u‖Y0,θ
≤ 1

2
·

Its fixed point gives the unique solution of the integral equation in B. Pick θ fulfilling

θ < min{(8C0C1‖u0‖)−4, 1}.
Then, from Step 2, we have that

‖u(nθ + ·)‖Y0,θ
≤ 2C0‖u0‖

for all n ∈ N and that w may be extended to [nθ, (n+1)θ] inductively by using the contraction
mapping theorem (replacing v0 by w(θ), w(2θ), etc.). Therefore, w is defined on R

+ and it holds

‖w(nθ + ·)‖Y0,θ
≤ 2C0‖w(nθ)‖ ≤ (2C0)

n+1‖v0‖. (2.29)

By uniqueness of the solution of the integral equation, we have that v(t) = w(t) as long as
0 < t < T and v ∈ Y0,T . (2.29) shows that ‖v(t)‖ = ‖w(t)‖ is uniformly bounded on compact
sets of R+, namely

‖v‖Y0,T
≤ C(T, ‖u0‖)‖v0‖.

The same is true for ‖u(t)‖2, by (2.16). Indeed, since

‖uux‖ ≤ ‖u‖L∞(T)‖ux‖ ≤ ‖u‖ 5

4‖uxx‖
3

4 ≤ Cδ‖u‖5 + δ‖uxx‖,
we infer from (2.16) that

‖(H − ε)uxx(t)‖ ≤ C(T, ‖u0‖)‖u0‖2 + C(‖u‖+ ‖u‖5) + δ‖uxx‖
hence

‖u(t)‖2 ≤ C(T, ‖u0‖)‖u0‖2.
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Using the standard extension argument, one sees that u(t) ∈ H2
0 (T) for all t ≥ 0 with u ∈ Y2,T

for all T > 0.

Step 5. Smoothing effect from H0
0 (T) to H2

0 (T).
Pick any u0 ∈ H0

0 (T). Then the solution u to (2.16) belongs to Y0,1. Therefore, for a.e. t0 ∈ (0, 1),
u(t0) ∈ H1

0 (T). The solution of (2.16) in Y1,T issued from u(t0) at t = 0 must coincide with
u(t0 + t) in [0, T ], by uniqueness of the solution of (2.16) in Y0,T . In particular, u(t1) ∈ H2

0 (T)
for a.e. t1 > t0. Again by uniqueness we conclude that u ∈ C([t1,+∞),H2

0 (T)) for a.e. t1 > 0,
so that

u ∈ C((0,+∞),H2
0 (T)) ∩ C1((0,+∞),H0

0 (T)).

The proof of Theorem 2.1 is complete. �

The following commutator lemma, used several times in the proof of the property of propa-
gation of regularity, is a periodic version of a result from [10].

Lemma 2.5. Let N ⊂ Z be a set such that for some constant C > 0

〈n〉+ 〈k〉 ≤ C〈n− k〉, ∀n 6∈ N, ∀k ∈ N. (2.30)

Let P be the projector on the closure of Span{eikx; k ∈ N} in L2(T), namely

P (
∑

k∈Z

ûke
ikx) =

∑

k∈N

ûke
ikx.

Let a ∈ C∞(T) and let p ∈ N, q ∈ N. Then there exists some constant C = C(a, p, q) > 0 such
that for all v ∈ L2(T)

‖∂p
x[a, P ]∂q

xv‖ ≤ C‖v‖. (2.31)

Remark 2.6. Note that condition (2.30) is fulfilled in the following cases: (i) N = N
∗; (ii)

N is a finite set, or the complement of a finite set in Z. It follows that (2.31) is true with
P = H = (−i)(PN∗ −P−N∗). Note, however, that condition (2.30) and (2.31) are not true when
N = 1 + 2Z (pick e.g. a(x) = eix).

Proof of Lemma 2.5. Let N, a, p and q be as in the statement of the lemma, and pick any
v ∈ C∞(T). Decompose a and v in using Fourier series

v(x) =
∑

n∈Z

v̂ne
inx, a =

∑

n∈Z

âne
inx,

and denote by 1N the characteristic function of N, defined by 1N(n) = 1 if n ∈ N, and 0
otherwise. Then

[a, P ]v = a(Pv)− P (av)

= a(
∑

n

1N(n)v̂ne
inx)− P (

∑

n

(
∑

k

ân−kv̂k)e
inx)

=
∑

n

(∑

k

ân−kv̂k(1N(k)− 1N(n))

)
einx.
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Taking derivatives, one obtains

∂p
x[a, P ]∂q

xv =
∑

n

(∑

k

ân−k(ik)
q v̂k(1N(k)− 1N(n))

)
(in)peinx =: Σ1 − Σ2

where Σ1 (resp. Σ2) is the sum over the (n, k) with n 6∈ N and k ∈ N (resp. with n ∈ N and
k 6∈ N). Let us estimate Σ1 only, the estimate for Σ2 being similar. Since a ∈ C∞(T), for any
s ∈ N there exists some constant Cs > 0 such that

|âl| ≤ Cs〈l〉−s ∀l ∈ Z. (2.32)

Then, for s > sup{2p + 1, 2q + 1},

‖Σ1‖2L2(T) = ‖
∑

n 6∈N

(
∑

k∈N

ân−kv̂k(ik)
q(in)p)einx‖2L2(T)

= C
∑

n 6∈N

∣∣∣∣∣
∑

k∈N

ân−kv̂k(ik)
q

∣∣∣∣∣

2

|n|2p

≤ C‖v‖2
∑

n 6∈N

∑

k∈N

〈n− k〉−2s|n|2p|k|2q

≤ C‖v‖2
∑

n 6∈N

∑

k∈N

(〈n〉+ 〈k〉)−2s|n|2p|k|2q

≤ C‖v‖2

where we used the Cauchy-Schwarz inequality, (2.32) and (2.30). Since C∞(T) is dense in L2(T),
the proof is complete. �

The propagation of regularity property we need is as follows.

Proposition 2.7. Let a ∈ C∞(T,R+), ε > 0, α ∈ R, T > 0, and R > 0 be given. Pick any
v0 ∈ H0

0 (T) with ‖v0‖ ≤ R and let v ∈ C([0, T ];H0
0 (T)) ∩ L2(0, T,H1(T)) ∩ C((0, T ],H2(T)) be

such that

vt + (H − ε)vxx + αvvx = −G(D(Gv)), x ∈ T, t ∈ (0, T ) (2.33)

v(0) = v0. (2.34)

Then there exists some constant C = C(T ) > 0 (independent of ε, α and R) such that
∫ T

0
‖D 1

2 v‖2dt ≤ C(R2 + α4R6). (2.35)

Proof of Proposition 2.7. Pick any t0 ∈ (0, T ). Let (f, g)L2
t,x

:=
∫ T

t0

∫
T
f(x, t)g(x, t) dxdt denote

the scalar product in L2(t0, T, L
2(T)). C will denote a constant which may vary from line

to line, and which may depend on T , but not on t0, ε, α and R. Setting Lv := vt + Hvxx,
f := εvxx −G(D(Gv)) and g := −αvvx, we have that

Lv = f + g.
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Pick any ϕ ∈ C∞(T), and set Av = ϕ(x)v. Noticing that L is formally skew-adjoint, we have
that

([L,A]v, v)L2
t,x

= (L(ϕv) − ϕ(Lv), v)L2
t,x

= (ϕv,L∗v)L2
t,x

+ [(ϕv, v)]Tt0 − (Lv, ϕv)L2
t,x

so that

|([L,A]v, v)L2
t,x
| ≤ 2|(f + g, ϕv)L2

t,x
|+ 2‖ϕ‖L∞(T)R

2.

We first notice that

|(f, ϕv)L2
t,x
| ≤ |(vx, ε(ϕv)x)L2

t,x
|+ |(D(Gv), G(ϕv))L2

t,x
|

≤ Cε

∫ T

0

∫

T

(|v|2 + |vx|2)dt+ C

∫ T

0
‖D 1

2 (Gv)‖2dt

+

∫ T

0
{|(D(Gv), [G,ϕ]v)| + |(D 1

2 (Gv), [D
1

2 , ϕ](Gv))|}dτ

≤ CR2

where we used (2.18) and classical commutator estimates. (Note that Theorem 2.1 is still true
when α = 1 is replaced by any value α ∈ R.) On the other hand

|(g, ϕv)L2
t,x
| = |(αvvx, ϕv)L2

t,x
| = |α|

3
|(v3, ϕx)L2

t,x
|.

From Sobolev embedding and the fact that the L2−norm is nonincreasing

‖v‖L3 ≤ ‖v‖ 1

2 ‖v‖
1

2

L6 ≤ CR
1

2‖v‖
1

2
1

2

·

Therefore,

|(g, ϕv)L2
t,x
| ≤ C|α|

∫ T

t0

‖v‖3L3dt

≤ C|α|R 3

2T
1

4

(∫ T

t0

‖v‖21
2

dt

) 3

4

≤ Cδ−3α4R6T + δ

∫ T

t0

‖D 1

2 v‖2dt

where δ > 0 will be chosen later on. On the other hand

[L,A]v = [H∂2
x, ϕ]v

= H
(
(∂2

xϕ)v + 2(∂xϕ)(∂xv) + ϕ∂2
xv
)
− ϕH∂2

xv

= [H, ϕ]∂2
xv +H

(
(∂2

xϕ)v
)
+ 2[H, ∂xϕ]∂xv + 2(∂xϕ)H∂xv. (2.36)
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It follows from Lemma 2.5 and Remark 2.6 that

|([H, ϕ]∂2
xv, v)L2

t,x
|+ |

(
H((∂2

xϕ)v), v
)
L2
t,x
|+ |

(
[H, ∂xϕ]∂xv, v

)
L2
t,x
|

≤ C‖v‖2L2(0,T ;L2(T))

≤ CR2. (2.37)

Therefore

|(∂xϕH∂xv, v)L2
t,x
| ≤ C(R2 + δ−3α4R6) + δ

∫ T

t0

‖D 1

2 v‖2dt.

Let b ∈ C∞
0 (ω), where ω = {x ∈ T; a(x) > 0}. Then b = ab̃ with b̃ ∈ C∞

0 (ω) and
∫ T

t0

‖D 1

2 (bv)‖2dt ≤ 2

∫ T

t0

(
‖[D 1

2 , b̃](av)‖2 + ‖b̃D 1

2 (av)‖2
)
dt

≤ C

∫ T

t0

(‖v‖2 + ‖D 1

2 (av)‖2)dt

≤ C

∫ T

0

(
‖v‖2 + ‖D 1

2 (Gv)‖2 + ‖D 1

2 a‖2|
∫

T

a(y)v(y, t) dy|2
)
dt

≤ CR2. (2.38)

Pick any x0 ∈ T. Then b2(x)− b2(x− x0) = ∂xϕ for some ϕ ∈ C∞(T). Noticing that H∂x = D,
we have that

|(b2(x)H∂xv, v)L2
t,x
| = |(bDv, bv)L2

t,x
|

≤ |([b,D]v, bv)L2
t,x
|+ |(D(bv), bv)L2

t,x
|

≤ C‖v‖2L2(0,T ;L2(T)) +

∫ T

t0

‖D 1

2 (bv)‖2dt

≤ CR2

by (2.38). It follows that

|(b2(x− x0)Dv, v)L2
t,x
| ≤ C(R2 + δ−3α4R6) + δ

∫ T

t0

‖D 1

2 v‖2dt.

Using a partition of unity and choosing δ > 0 small enough, we infer that

|(Dv, v)L2
t,x
| ≤ C(R2 + α4R6) +

1

2

∫ T

t0

‖D 1

2 v‖2dt.

This gives ∫ T

t0

‖D 1

2 v‖2dt ≤ C(R2 + α4R6),

where C = C(T ). Letting t0 → 0 yields the result. �

A unique continuation property is also required.
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Proposition 2.8. Let α ∈ R, ε ≥ 0, c ∈ L2(0, T ), and u ∈ L2(0, T ;H0
0 (T)) be such that

ut + (H − ε)uxx + αuux = 0 in T× (0, T ), (2.39)

u(x, t) = c(t) for a.e. (x, t) ∈ (a, b)× (0, T ) (2.40)

for some numbers T > 0 and 0 ≤ a < b ≤ 2π. Then u(x, t) = 0 for a.e. (x, t) ∈ T× (0, T ).

Proof. From (2.40), we obtain that uxx(x, t) = (uux)(x, t) = 0 for a.e. (x, t) ∈ (a, b) × (0, T ).
Thus, by using (2.39),

Huxx = −ut = −ct in (a, b)× (0, T ).

Therefore, for almost every t ∈ (0, T ), it holds

uxxx(·, t) ∈ H−3(T), (2.41)

uxxx(·, t) = 0 in (a, b), (2.42)

Huxxx(·, t) = 0 in (a, b). (2.43)

Pick a time t as above, and set v = uxxx(·, t). Decompose v as

v(x) =
∑

k∈Z

v̂ke
ikx,

the convergence of the Fourier series being in H−3(T). Then in (a, b)

0 = iv −Hv = 2i
∑

k>0

v̂ke
ikx.

Since v is real-valued, we also have that v̂−k = v̂k for all k. The following lemma for Fourier
series is needed.

Lemma 2.9. Let s ∈ R and let v(x) =
∑

k≥0 v̂ke
ikx be such that v ∈ Hs(T) and v = 0 in (a, b).

Then v ≡ 0.

Proof of Lemma 2.9. It is clearly sufficient to prove the property for s = −p, where p ∈ N. Let
us proceed by induction on p. Assume first that p = 0. Then

∑

k≥0

|v̂k|2 < ∞. (2.44)

Introduce the set U = {z ∈ C; |z| < 1} and the Hardy space (see e.g. [43])

H2(U) = {f : U → C; f is holomorphic in U and lim sup
r→1−

∫ π

−π

|f(reiθ)|2dθ < ∞}

Let f(z) =
∑

k≥0 v̂kz
k. Then, by [43, Thm 17.10] and (2.44), we have that f ∈ H2(U). On the

other hand, by [43, Thm 17.10 and Thm 17.18], it holds that

f∗(eiθ) := lim
r→1−

f(reiθ) exists for a.e. θ ∈ (0, 2π); (2.45)

f∗(eiθ) =
∑

k≥0

v̂ke
ikθ = v(θ) in L2(T); (2.46)

If f 6≡ 0, then f∗(eiθ) 6= 0 for a.e. θ ∈ (0, 2π). (2.47)
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Since

f∗(eiθ) = v(θ) = 0 for a.e. θ ∈ (a, b),

it follows from (2.47) that f ≡ 0. Therefore v̂k = 0 for all k ≥ 0, hence v ≡ 0. This gives the
result for p = 0. Assume now that the result has been proved for s = −p for some p ∈ N, and
pick any v ∈ H−p−1(T), decomposed as v(x) =

∑
k≥0 v̂ke

ikx, and such that v ≡ 0 in (a, b). Let

w(x) =
∑

k>0
v̂k−1

ik
eikx. Then w ∈ H−p(T) and

wx =
∑

k>0

v̂k−1e
ikx = eixv,

so wx = 0 on (a, b) and we have, for some constant C ∈ C,

w(x) = C on (a, b). (2.48)

Introducing the function w̃(x) = w(x) − C, we infer from (2.48) and the induction hypothesis
that w̃ ≡ 0 on T, which yields v ≡ 0 on T. This completes the proof of Lemma 2.9. �

With Lemma 2.9 we infer that for a.e. t ∈ (0, T ), uxxx(., t) = 0 in T, hence with (2.40)
u(x, t) = c(t) a.e. in T× (0, T ). From (2.39) we infer that ct = 0, which, combined with the fact
that u ∈ L2(0, T ;H0

0 (T)), gives that u(x, t) = 0 a.e. in T× (0, T ). The proof of Proposition 2.8
is complete. �

We are now in a position to state a stabilization result for the ε-BO equation. We stress that
the decay rate does not depend on ε.

Theorem 2.10. Let R > 0. There exist some numbers λ > 0 and C > 0 such that for any
ε ∈ (0, 1] and any u0 ∈ H0

0 (T) with ‖u0‖ ≤ R, the solution u of (2.16) satisfies

‖u(t)‖ ≤ Ce−λt‖u0‖ ∀t ≥ 0.

Proof. Note that ‖u(t)‖ is nonincreasing by (2.18), so that the exponential decay is ensured if
‖u((n + 1)T )‖ ≤ κ‖u(nT )‖ for some κ < 1. To prove the theorem, it is thus sufficient (with
(2.18)) to establish the following observability inequality: for any T > 0 and any R > 0 there
exists some constant C(T,R) > 0 such that for any ε ∈ (0, 1] and any u0 ∈ H0

0 (T) with ‖u0‖ ≤ R,
it holds

‖u0‖2 ≤ C

(
ε

∫ T

0
‖ux(t)‖2dt+

∫ T

0
‖D 1

2 (Gu)‖2dt
)
, (2.49)

where u denotes the solution of (2.16). Fix any T > 0 and any R > 0, and assume that (2.49)
fails. Then there exist a sequence (un0 ) in H0

0 (T) and a sequence (εn) in (0, 1] such that for each
n we have ‖un0‖ ≤ R, and

‖un0‖2 > n

(
εn
∫ T

0
‖unx(t)‖2 dt+

∫ T

0
‖D 1

2 (Gun)‖2dt
)
.

Let αn = ‖un0‖ ∈ (0, R]. Extracting a sequence if needed, we may assume that αn → α ∈ [0, R]
and εn → ε ∈ [0, 1]. Let vn = un/αn. Then vn solves

vnt + (H − εn)vnxx + αnvnvnx = −G(D(Gvn)), vn(0) = vn0 (2.50)
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with vn0 ∈ H0
0 (T) and ‖vn0 ‖ = 1. Again, we have that

1

2
‖vn(t)‖2 + εn

∫ t

0
‖vnx‖2dτ +

∫ t

0
‖D 1

2 (Gvn)‖2dτ =
1

2
‖vn0 ‖2 ∀t > 0, (2.51)

1 = ‖vn0 ‖2 > n

(
εn
∫ T

0
‖vnx (t)‖2dt+

∫ T

0
‖D 1

2 (Gvn)‖2 dt
)
. (2.52)

We infer from Proposition 2.7 that
∫ T

0
‖D 1

2 vn‖2dt ≤ C. (2.53)

This yields

‖G(D(Gvn))‖
L2(0,T ;H−

1
2 (T))

+ ‖(H − ε)vnxx‖L2(0,T ;H−
3
2 (T))

≤ C.

On the other hand, for any δ > 0

‖vnvnx‖H−
3
2
−δ(T)

≤ C‖(vn)2‖
H

−
1
2
−δ(T)

≤ C‖(vn)2‖L1(T) ≤ C‖vn‖2 ≤ C

thus

‖αnvnvnx‖L2(0,T ;H−
3
2
−δ(T))

≤ C.

It follows that (vnt ) is bounded in L2(0, T ;H− 3

2
−δ(T)). Combined with (2.53) and Aubin-Lions’

lemma, this gives that for a subsequence still denoted by (vn), we have

vn → v in L2(0, T ;Hα(T)) ∀α <
1

2
,

vn → v in L2(0, T ;H
1

2 (T)) weak,

vn → v in L∞(0, T ;L2(T)) weak∗

for some function v ∈ L2(0, T ;H
1

2

0 (T)) ∩ L∞(0, T ;L2(T)). In particular,

(vn)2 → v2 in L1(T× (0, T )).

Letting n → ∞ in (2.52), we obtain that
∫ T

0
‖D 1

2 (Gv)‖2dt = 0,

hence Gv = 0 a.e. on T× (0, T ). Recall that ω = {x ∈ T; a(x) > 0}. Then

v(x, t) =

∫

T

a(y)v(y, t) dy =: c(t) for a.e. (x, t) ∈ ω × (0, T ).

Note that c ∈ L∞(0, T ). Taking the limit in (2.50) gives
{

vt + (H − ε)vxx + αvvx = 0, in T× (0, T ),
v(x, t) = c(t) for a.e. (x, t) ∈ ω × (0, T ).

It follows from Proposition 2.8 that v ≡ 0. Thus, extracting a subsequence still denoted by (vn),
we have that vn(·, t) → 0 in L2(T) for a.e. t ∈ (0, T ). Using (2.51)-(2.52), we infer that vn0 → 0
in L2(T). This contradicts the fact that ‖vn0 ‖ = 1 for all n. �
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We are now in a position to define the weak solutions of (2.11) obtained by the method of
vanishing viscosity, and to state the corresponding exponential stability property.

Definition 2.11. For u0 ∈ H0
0 (T), we call a weak solution of (2.11) in the sense of vanishing

viscosity any function u ∈ Cw(R
+,H0

0 (T)) with u ∈ L2(0, T,H
1

2 (T)) for all T > 0 which solves
(2.11) (in the distributional sense) and such that for some sequence εn ց 0 we have for all T > 0

un → u in L∞(0, T,H0
0 (T)) weak ∗,

un → u in L2(0, T,H
1

2

0 (T)) weak

where un solves (2.16) for ε = εn.

The main result in this section is the following

Theorem 2.12. For any u0 ∈ H0
0 (T) there exists (at least) one weak solution of (2.11) in the

sense of vanishing viscosity. On the other hand, for all R > 0 there exist some positive constants
λ = λ(R) and C = C(R) such that for any weak solution u(t) of (2.11) in the sense of vanishing
viscosity, it holds

‖u(t)‖ ≤ Ce−λt‖u0‖ ∀t ≥ 0 (2.54)

whenever ‖u0‖ ≤ R.

Proof. Pick R > 0 and u0 ∈ H0
0 (T) with ‖u0‖ ≤ R. Pick any sequence εn ց 0 and let un(t)

denote the solution of

unt + (H − εn)unxx + ununx = −G(DGun), un(0) = u0. (2.55)

It follows from (2.18) and (2.35) that

‖un‖L∞(0,T,H0
0
(T)) ≤ R,

‖un‖
L2(0,T,H

1
2
0
(T))

≤ C(T,R).

Using a diagonal process, we obtain that for a subsequence, still denoted by (un), we have for
all T > 0

un → u in L∞(0, T,H0
0 (T)) weak∗, (2.56)

un → u in L2(0, T,H
1

2

0 (T)) weak (2.57)

for some function u ∈ L∞(R+,H0
0 (T)) ∩ L2

loc(R
+,H

1

2

0 (T)). The same argument as in the proof

of Theorem 2.10 shows that {unt } is bounded in L2(0, T ;H− 3

2
−δ(T)) for all δ > 0. Combined

with (2.56)-(2.57) and Aubin-Lions’ lemma, this shows that

un → u in L2(T× (0, T )) and in C([0, T ],H−δ
0 (T))

for all T > 0 and all δ > 0. On the other hand, u ∈ C([0, T ],H−δ(T)) for all T > 0 and all δ > 0,
which, combined to (2.56), yields u ∈ Cw(R

+,H0
0 (T)) (the space of weakly continuous functions

from R
+ to H0

0 (T)). By letting n → ∞ in (2.55), we see that u solves (2.11). Thus u is a weak
solution of (2.11) in the sense of vanishing viscosity. On the other hand, from Theorem 2.10 we
have that

‖un(t)‖ ≤ Ce−λt‖u0‖, ∀t ≥ 0, ∀n ≥ 0.
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where C = C(R), λ = λ(R). Letting n → ∞ in the above estimate yields (2.54). Note
also that ‖u(t)‖ ≤ ‖u0‖ for all t ≥ 0, since the same estimate holds for the un’s and u ∈
Cw(R

+,H0
0 (T)). �

2.2. Local stabilization in Hs
0(T).

2.2.1. Main results. Let again a and G be as in (2.10) and (2.12), respectively. For s ≥ 0 and
T > 0, let

Zs,T = C([0, T ],Hs
0(T)) ∩ L2(0, T,H

s+ 1

2

0 (T)) (2.58)

be endowed with the norm

‖v‖Zs,T
= ‖v‖L∞(0,T,Hs(T)) + ‖v‖

L2(0,T,Hs+1
2 (T))

·

We are concerned here with the stability properties of the BO equation with localized damping
(2.11) in the space Hs

0(T) for s > 0. Our first aim is to prove the local well-posedness of (2.11)
in Hs

0(T) for s > 1/2.

Theorem 2.13. Let s ∈ (12 , 2]. Then there exists ρ > 0 such that for any u0 ∈ Hs
0(T) with

‖u0‖s < ρ, there exists some time T > 0 such that (2.11) admits a unique solution in the space
Zs,T .

The proof of Theorem 2.13 rests on the smoothing effect due to the damping term, namely
∫ T

0
‖e−t(H∂2

x+GDG)u0‖21
2

dt ≤ C‖u0‖2. (2.59)

In [37], the semi-global exponential stability of the Korteweg-de Vries on a bounded domain
(0, L) with a localized damping was first established in L2(0, L), and next extended to {u ∈
H3(0, L); u(0) = u(L) = ux(L) = 0} by using the Kato smoothing effect in the equation
fulfilled by the time derivative of the solution. As the smoothing effect (2.59) is much weaker,
that argument cannot be used. The semi-global exponential stability of (2.11) in H0

0 (T), if true,
is thus open. However, a local exponential stability in Hs

0(T) for s > 1/2 can be derived.

Theorem 2.14. Let s ∈ (12 , 2]. Then there exist some numbers ρ > 0, λ > 0 and C > 0 such
that for any u0 ∈ Hs

0(T) with ‖u0‖s < ρ, there is a (unique) solution u : R+ → Hs
0(T) of (2.11)

with u ∈ Zs,T for all T > 0 and such that

‖u(t)‖s ≤ Ce−λt‖u0‖s ∀t ≥ 0. (2.60)

The proofs of Theorem 2.13 and Theorem 2.14 are given in the next sections.

2.2.2. Linear Theory. In this section, we focus on the well-posedness and the smoothing property
of the linearized BO equation with localized damping:

ut +Huxx +GDGu = 0, u(0) = u0. (2.61)

Let s ∈ R and let Au = −(Huxx + GDGu) with domain D(A) = Hs+2
0 (T) ⊂ Hs

0(T). Our first
result is the
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Lemma 2.15. A generates a continuous semigroup in Hs
0(T), denoted by (S(t))t≥0.

Proof. Let C = C(s) be the constant in Claim 1. Clearly, A − C is a densely defined closed
operator in Hs

0(T). Furthermore, by Claim 1,

(Au−Cu, u)s ≤ −‖D 1

2 (Gu)‖2s ∀u ∈ Hs+2
0 (T),

which shows that A−C is dissipative. It is easily verified that D(A∗) = D(A) = Hs+2
0 (T). Thus

(A∗u− Cu, u)s = (u,Au− Cu)s ≤ 0 ∀u ∈ Hs+2
0 (T),

so that A∗ − C is dissipative too. Thus, A− C generates a semigroup of contractions in Hs
0(T)

by [35, Cor. 4.4, p. 15]. �

Now we turn our attention to the smoothing effect.

Proposition 2.16. Let s ≥ 0, v0 ∈ Hs
0(T) and g ∈ L2(0, T,H

s− 1

2

0 (T)). Then the solution v of

vt +Hvxx +GDGv = g, v(0) = v0 (2.62)

satisfies v ∈ Zs,T with

‖v‖Zs,T
≤ C(s, T )

(
||v0||s + ||g||

L2(0,T,Hs− 1
2 (T))

)
, (2.63)

C(s, T ) being nondecreasing in T .

Proof. Let us assume first that s = 0. To have enough regularity in the computations, we
assume that v0 ∈ H2

0 (T) and that g ∈ C([0, T ],H2
0 (T)), so that the solution v of (2.62) satisfies

v ∈ C([0, T ],H2
0 (T)) ∩ C1([0, T ],H0

0 (T)). We now proceed as in the proof of Proposition 2.7.
We set Lv = vt + Hvxx, f = −GDGv, so that Lv = f + g. Pick any ϕ ∈ C∞(T), and let
Av = ϕ(x)v. Then

|
∫ T

0
([L,A]v, v) dt| ≤ 2|

∫ T

0
(f + g, ϕv)dt| + ‖ϕ‖L∞

(
‖v0‖2 + ‖v(T )‖2

)
·

Scaling in (2.62) by v yields

1

2
‖v(t)‖2 +

∫ t

0
‖D 1

2Gv‖2dτ =
1

2
‖v0‖2 +

∫ t

0
(g, v)dτ

≤ 1

2
‖v0‖2 +

∫ T

0
‖g‖− 1

2

‖v‖ 1

2

dt.

This yields

‖v‖2L∞(0,T,H0(T)) +

∫ T

0
‖D 1

2 (Gv)‖2dτ ≤ 3

2
‖v0‖2 + 3

∫ T

0
‖g‖− 1

2

‖v‖ 1

2

dt. (2.64)

Computations similar to those in Proposition 2.7 give that

|
∫ T

0
(f + g, ϕ(x)v) dτ | ≤ C‖ϕ‖1

∫ T

0
(‖D 1

2 (Gv)‖2 + ‖v‖2 + ‖g‖− 1

2

‖v‖ 1

2

)dt

≤ C(T, ‖ϕ‖1)
(
‖v0‖2 +

∫ T

0
‖g‖− 1

2

‖v‖ 1

2

dt

)
,
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hence

|
∫ T

0
([L,A]v, v)dt| ≤ C(T, ‖ϕ‖1)

(
‖v0‖2 +

∫ T

0
‖g‖− 1

2

‖v‖ 1

2

dt

)
.

Combined with (2.36)-(2.37), the last inequality gives

|
∫ T

0
(∂xϕDv, v) dt| ≤ C(T, ‖ϕ‖1)

(
‖v0‖2 +

∫ T

0
‖g‖− 1

2

‖v‖ 1

2

dt

)
. (2.65)

We pick again b ∈ C∞
0 (ω), where ω = {x ∈ T; a(x) > 0} and x0 ∈ T. Writing again b2(x) −

b2(x− x0) = ∂xϕ, we obtain successively, with (2.38) and (2.64), that
∫ T

0
‖D 1

2 (bv)‖2dt ≤ C(T )

(
‖v0‖2 +

∫ T

0
‖g‖− 1

2

‖v‖ 1

2

dt

)
,

|
∫ T

0
(b2Dv, v)dt| ≤ C

∫ T

0

(
‖v‖2 + ‖D 1

2 (bv)‖2
)
dt

≤ C(T )

(
‖v0‖2 +

∫ T

0
‖g‖− 1

2

‖v‖ 1

2

dt

)

and therefore, with (2.65),

|
∫ T

0
(b2(x− x0)Dv, v)dt| ≤ C(T )

(
‖v0‖2 +

∫ T

0
‖g‖− 1

2

‖v‖ 1

2

dt

)
.

Using a partition of unity, this yields
∫ T

0
‖v‖21

2

dt ≤ C(T )

(
‖v0‖2 +

∫ T

0
‖g‖2

− 1

2

dt

)
+

1

2

∫ T

0
‖v‖21

2

dt.

Combined with (2.64), this gives (2.63) for s = 0 when v0 ∈ H2
0 (T) and g ∈ C([0, T ],H2

0 (T)).

This is also true for v0 ∈ H0
0 (T) and g ∈ L1(0, T,H

− 1

2

0 (T)) by density.
Let us now assume that s ∈ (0, 2]. Pick again any v0 ∈ H2

0 (T), g ∈ C([0, T ],H2
0 (T)), and

let v ∈ C([0, T ],H2
0 (T)) ∩ C1([0, T ],H0

0 (T)) denote the solution of (2.62). Set w = Dsv and
h = Dsg. Note that

Ds(GDGv) = GDGw + Ew

with E = [Ds, G]DGD−s +GD[Ds, G]D−s. Note that ‖Ew‖ ≤ C‖w‖ and that w solves

wt +Hwxx +GDGw + Ew = h, w(0) = w0 := Dsv0.

Since

|
∫ T

0
(ϕw,Ew) dt| ≤ C‖ϕ‖1‖w‖2L2(0,T,H0(T))

≤ C(T, ‖ϕ‖1)
(
‖w0‖2 +

∫ T

0
‖h‖− 1

2

‖w‖ 1

2

dt

)
,

we obtain in a similar fashion as above that

‖w‖2L∞(0,T,H0(T)) +

∫ T

0
‖w‖21

2

dt ≤ C(T )

(
‖w0‖2 +

∫ T

0
‖h‖2

− 1

2

dt

)
,
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i.e.

‖v‖2L∞(0,T,Hs(T)) + ‖v‖2
L2(0,T,Hs+1

2 (T))
≤ C(T )

(
‖v0‖2s + ‖g‖2

L2(0,T,Hs− 1
2 (T))

)
. (2.66)

Inequality (2.66) and the fact that v ∈ C([0, T ],Hs
0(T)) are also true for v0 ∈ Hs

0(T) and

g ∈ L2(0, T,H
s− 1

2

0 (T)) by density. �

Corollary 2.17. Let s ≥ 0 and B ∈ L(Hs
0(T)). Then for any v0 ∈ Hs

0(T), the solution v of

vt +Hvxx +GDGv = Bv, v(0) = v0 (2.67)

fulfills v ∈ Zs,T with

||u||Zs,T
≤ C(s, T )||v0||s. (2.68)

Proof. Since A is the generator of a continuous semigroup on Hs
0(T) and B is a bounded operator

on Hs
0(T), A + B is the generator of a continuous semigroup on Hs

0(T) (see e.g. [35, Thm 1.1
p. 76]). Pick any v0 ∈ Hs

0(T), and let v denote the solution of (2.67) given by the semigroup
generated by A+ B. Noticing that g := Bv ∈ C([0, T ];Hs

0(T)), we infer from Proposition 2.16
that v ∈ Zs,T with

‖v‖L∞(0,T,Hs(T)) + ‖v‖
L2(0,T,Hs+1

2 (T))
≤ C(s, T )

(
‖v0‖s +

√
T ‖B‖L(Hs

0
(T))‖v‖L∞(0,T ;Hs(T))

)
.

Selecting T0 > 0 such that c(s, T0)
√
T0‖B‖L(Hs

0
(T)) < 1/2 yields

‖v‖L∞(0,T0,Hs(T)) + ‖v‖
L2(0,T0,H

s+1
2 (T))

≤ 2C(s, T0)‖v0‖s. (2.69)

Successive applications of (2.69) on the intervals [0, T0], [T0, 2T0],... give (2.68) for any T > 0. �

2.2.3. Proof of Theorem 2.13. Pick any s ∈ (12 , 2] and any T > 0. Let u0 ∈ Hs
0(T). We write

(2.11) in its integral form

u(t) = S(t)u0 −
∫ t

0
S(t− τ)(uux)(τ) dτ. (2.70)

Let Γ(v)(t) = S(t)u0 −
∫ t

0 S(t− τ)(vvx)(τ)dτ . We have, by Proposition 2.16, that

‖Γ(v)‖Zs,T
≤ C

(
‖u0‖s + ‖(v

2

2
)x‖

L2(0,T,Hs− 1
2 (T))

)
·
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Clearly, for u, v ∈ Zs,T ,
∫ T

0
‖(uv)x‖2s− 1

2

dt ≤ C

∫ T

0
‖uv‖2

s+ 1

2

dt

≤ C

∫ T

0

(
‖u‖2L∞(T)‖v‖2s+ 1

2

+ ‖u‖2
s+ 1

2

‖v‖2L∞(T)

)
dt

≤ C

∫ T

0

(
‖u‖2s‖v‖2s+ 1

2

+ ‖u‖2
s+ 1

2

‖v‖2s
)
dt

≤ C

(
‖u‖2L∞(0,T,Hs(T))‖v‖2

L2(0,T,Hs+1
2 (T))

+‖v‖2L∞(0,T,Hs(T))‖u‖2
L2(0,T,Hs+1

2 (T))

)

≤ C‖u‖2Zs,T
‖v‖2Zs,T

,

where we used the Sobolev embedding Hs
0(T) ⊂ L∞(T) for s > 1/2. Thus, there are some

constants C0 > 0 and C1 > 0 such that

‖Γ(v)‖Zs,T
≤ C0‖u0‖s + C1‖v‖2Zs,T

∀v ∈ Zs,T ,

‖Γ(v1)− Γ(v2)‖Zs,T
≤ C1

(
‖v1‖Zs,T

+ ‖v2‖Zs,T

)
‖v1 − v2‖Zs,T

∀v1, v2 ∈ Zs,T .

Let B = {v ∈ Zs,T ; ‖v‖Zs,T
≤ R}. We choose R in such a way that B is left invariant by Γ and

Γ contracts in B, i.e.

C0‖u0‖s +C1R
2 ≤ R, and 2C1R < 1.

It is sufficient to take R = (4C1)
−1 and u0 ∈ Hs

0(T) with ‖u0‖s ≤ ρ := R/(2C0). �

2.2.4. Proof of Theorem 2.14. We proceed as in [34]. It has been proved that (2.11) is semi-
globally exponentially stable in H0

0 (T). Obviously, the same analysis shows that the linearized
BO equation with localized damping is also exponentially stable in H0

0 (T), i.e.

‖S(t)u0‖ ≤ Ce−λt‖u0‖ (2.71)

for all u0 ∈ H0
0 (T) and some constants C, λ > 0. If u0 ∈ H2

0 (T), then u(t) = S(t)u0 solves

ut +Huxx +GDGu = 0, u(0) = u0. (2.72)

Letting v = ut, v solves also

vt +Hvxx +GDGv = 0, v(0) = v0 := −(Hu0,xx +GDGu0). (2.73)

(2.71) yields

‖v(t)‖ = ‖S(t)v0‖ ≤ Ce−λt‖v0‖,
and thus

‖S(t)u0‖2 ≤ C ′e−λt‖u0‖2.
By interpolation, this shows that for any s ∈ [0, 2], for any u0 ∈ Hs

0(T) and for some constant
C > 0 (independent of s, u0, and t), it holds

‖S(t)u0‖s ≤ Ce−λt‖u0‖s. (2.74)
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Let s > 1/2 and u0 ∈ Hs
0(T). For

u ∈ Zs,T ([n, n+ 1]) := C([n, n+ 1],Hs
0(T)) ∩ L2(n, n+ 1,H

s+ 1

2

0 (T)),

let

|||u|||n = ‖u‖L∞(n,n+1,Hs(T)) + ‖u‖
L2(n,n+1,Hs+1

2 (T))
·

Finally, let

‖u‖E = sup
n≥0

(
enλ|||u|||n

)
≤ +∞.

Introduce the space

E = {u ∈ C(R+,Hs
0(T)) ∩ L2

loc(R
+,H

s+ 1

2

0 (T)); ‖u‖E < ∞}.

Endowed with the norm ‖·‖E , E is a Banach space. We search for a solution of (2.11) in a closed

ball B = {u ∈ E; ‖u‖E ≤ R} as a fixed point of the map Γ(v)(t) = S(t)u0−
∫ t

0 S(t−τ)(vvx)(τ)dτ .
By (2.74), we have

‖S(n)u0‖s ≤ Ce−nλ‖u0‖s ∀n ≥ 0. (2.75)

Combined with Proposition 2.16, this gives for some constant C0 > 0

|||S(t)u0|||n ≤ C0 e
−nλ‖u0‖s, (2.76)

hence

‖S(t)u0‖E ≤ C0‖u0‖s. (2.77)

On the other hand, for any u, v ∈ E,

|||
∫ t

0
S(t− τ)[(uv)x(τ)]dτ |||n ≤ I1 + I2

with

I1 = |||S(t− n)

∫ n

0
S(n− τ)[(uv)x(τ)]dτ |||n,

I2 = |||
∫ t

n

S(t− τ)[(uv)x(τ)]dτ |||n
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By (2.63) and (2.76),

I1 ≤ C‖
∫ n

0
S(n − τ)[(uv)x(τ)]dτ‖s

≤ C

n∑

k=1

‖S(n − k)

∫ k

k−1
S(k − τ)[(uv)x(τ)]‖s

≤ C

n∑

k=1

e−(n−k)λ‖
∫ k

k−1
S(k − τ)[(uv)x(τ)]dτ‖s

≤ C

n∑

k=1

e−(n−k)λ‖(uv)x‖
L2(k−1,k,Hs−1

2 (T))

≤ C

n∑

k=1

e−(n−k)λ|||u|||k−1|||v|||k−1

≤ Ce−nλ‖u‖E‖v‖E .
On the other hand

I2 ≤ C‖(uv)x‖
L2(n,n+1,Hs− 1

2 (T))
≤ Ce−2nλ‖u‖E‖v‖E .

We have proved that for some constant C1 > 0

|||
∫ t

0
S(t− τ)[(uv)x(τ)]dτ |||n ≤ 2C1e

−nλ‖u‖E‖v‖E ,

hence

‖
∫ t

0
S(t− τ)[(uv)x(τ)]dτ‖E ≤ 2C1‖u‖E‖v‖E .

Thus

‖Γ(v)‖E ≤ C0‖u0‖s + C1‖v‖2E ,
‖Γ(v1)− Γ(v2)‖E ≤ C1(‖v1‖E + ‖v2‖E)‖v1 − v2‖E .

It follows that Γ contracts in the ball B = {u ∈ E; ‖u‖E ≤ R} if

2C1R < 1, and C0‖u0‖s + C1R
2 ≤ R. (2.78)

Let R = γρ (γ and ρ being determined later), and assume that ‖u0‖s ≤ ρ. The conditions
become

2C1γρ < 1, and C0 + C1γ
2ρ ≤ γ. (2.79)

Pick γ = 2C0 and ρ > 0 sufficiently small so that (2.79) holds. Then Γ contracts in B. Replacing
ρ by ‖u0‖s, we see that the fixed point u = Γ(u) satisfies

‖u‖L∞(n,n+1,Hs(T)) ≤ e−nλ‖u‖E ≤ e−nλγ‖u0‖s.
It follows that

‖u(t)‖s ≤ Ce−λt‖u0‖s ∀t ≥ 0

for some constant C > 0, provided that ‖u0‖s ≤ ρ. �
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3. Control of the Benjamin-Ono equation

Let again a and G be as in (2.10) and (2.12), respectively. We now focus on the control properties
of the full BO equation. More precisely, we aim to prove the exact controllability of the system

ut +Huxx + uux = Gh, u(0) = u0, (3.80)

where h is the control input. If the exact controllability of the linearized system is well known
(cf. Theorem A), the exact controllability of (3.80) is challenging, as the contraction mapping
theorem cannot be applied directly to BO. To overcome that difficulty, we incorporate the
feedback f = −DGu into the control input h to obtain a strong enough smoothing effect to
apply the contraction principle. Setting

h(t) = −DGu(t) +D
1

2 k(t), (3.81)

we are thus led to investigate the controllability of the system

ut +Huxx +GDGu+ uux = GD
1

2 k, u(0) = u0. (3.82)

We shall derive the following local exact controllability result.

Theorem 3.1. Let s ∈ (12 , 2] and T > 0. Then there exists δ > 0 such that for any u0, u1 ∈
Hs

0(T) with
‖u0‖s ≤ δ, ‖u1‖s ≤ δ, (3.83)

one may find a control k ∈ L2(0, T,Hs
0 (T)) such that the system (3.82) admits a (unique) solution

u in the class Zs,T for which u(T ) = u1.

The proof of Theorem 3.1 is done in three steps. In the first step, we prove the exact
controllability of the linearized system

ut +Huxx +GDGu = GD
1

2k, u(0) = u0, (3.84)

in L2
0(T). In the second step, we prove the exact controllability of (3.84) in Hs

0(T) for all
s > 0 by following the same approach as in [41]. Finally, in the third part we derive the exact
controllability of the full BO equation by using the contraction mapping theorem as e.g. in
[36, 38, 41]. Note that Theorem 1.3 follows at once from Theorem 3.1 by letting

h = −DGu+D
1

2 k ∈ L2(0, T,H
s− 1

2

0 (T)).

Proof of Theorem 3.1.

Step1. Exact controllability of (3.84) in H0
0 (T).

First, the solution of (3.82) belongs to Zs,T for u0 ∈ Hs
0(T) and k ∈ L2(0, T,Hs

0(T)), according
to Proposition 2.16. The adjoint system reads

−vt −Hvxx +GDGv = 0, v(T ) = vT . (3.85)

Scaling in (3.84) by v yields
∫

T

uvdx
∣∣T
0
=

∫ T

0

∫

T

kD
1

2 (Gv)dxdt. (3.86)
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The computations are fully justified when u0, vT ∈ H2
0 (T) and k ∈ L2(0, T,H

5

2

0 (T)), and next
extended to the case when u0, vT ∈ H0

0 (T) and k ∈ L2(0, T,H0
0 (T)) by density. Following the

classical duality approach, we are led to prove the following observability inequality

‖vT ‖2 ≤ C

∫ T

0

∫

T

|D 1

2 (Gv)|2dxdt. (3.87)

Once (3.87) is proved, the exact controllability of (3.84) follows by noticing that the operator
Γ ∈ L(H0

0 (T)) defined by Γ(vT ) = u(T ), where u denotes the solution of (3.84) associated with

u0 = 0 and k = D
1

2 (Gv) and v denotes the solution of (3.85), is onto by (3.87) and Lax-Milgram
theorem.

Let us prove (3.87) by contradiction. If (3.87) is not true, then one can pick a sequence (vnT )
in H0

0 (T) such that

1 = ‖vnT ‖2 > n

∫ T

0

∫

T

|D 1

2 (Gvn)|2dxdt, (3.88)

where vn denotes the solution of (3.85) issued from vT = vnT .
Multiplying each term in (3.85) by tvn and integrating by parts results in

T

2
‖vnT ‖2 =

1

2

∫ T

0

∫

T

|vn|2dxdt+
∫ T

0

∫

T

t |D 1

2 (Gvn)|2dxdt. (3.89)

Computations similar to those in the proof of Proposition 2.16 (changing t into τ := T − t)
give

‖vn‖
L2(0,T,H

1
2 (T))

≤ C‖vnT ‖· (3.90)

Thus, by (3.85) and (3.90), (vn) is bounded in L2(0, T,H
1

2

0 (T)) ∩H1(0, T,H− 3

2 (T)). By Aubin-
Lions’ lemma, a subsequence of (vn), still denoted by (vn), has a strong limit (say v) in
L2(0, T,H0

0 (T)). It follows from (3.88) and (3.89) that (vnT ) is a Cauchy sequence in H0
0 (T),

hence it has a strong limit (say vT ) in H0
0 (T), with ‖vT ‖ = 1. By standard semigroup theory,

vn converges in C([0, T ],H0
0 (T)) to the solution of (3.85) associated with vT , which therefore

agrees with v. By (3.88), D
1

2 (Gv) ≡ 0, hence Gv ≡ 0. We conclude that v satisfies

vt +Hvxx = 0,

Gv = 0.

It follows from Proposition 2.8 that v ≡ 0. In particular vT = v(T ) = 0, a property which
contradicts the fact that ‖vT ‖ = 1. The proof of (3.87) is achieved.

Step 2. Exact controllability of (3.84) in Hs
0(T).

Picking any number s > 0, we aim to prove the exact controllability of (3.84) in Hs
0(T). Notice

first that the system (3.85) is (backward) well-posed in H−s
0 (T), since the conclusion of Lemma

2.15 is still valid when Huxx is replaced by −Huxx in (2.61). Thus, the following estimate holds

‖v‖L∞(0,T,H−s(T)) ≤ C‖vT ‖−s.
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On the other hand, setting w = (1− ∂2
x)

− s
2 v, we see that w solves

−wt −Hwxx +GDGw = (1− ∂2
x)

− s
2 [(1− ∂2

x)
s
2 , GDG]w =: Bw

w(T ) = (1− ∂2
x)

− s
2 vT =: wT .

Note that B ∈ L(Hσ
0 (T)) for all σ ∈ R (see e.g. [21]). Using computations similar to those to

prove Corollary 2.17, we see that

‖w‖
L2(0,T,H

1
2 (T))

≤ C‖wT ‖, (3.91)

and hence

‖v‖
L2(0,T,H−s+1

2 (T))
≤ C‖vT ‖−s. (3.92)

Assuming again that u0 = 0, we first note that (3.86) may be written

〈vT , u(T )〉−s,s =

∫ T

0
〈D 1

2 (Gv), k〉−s,sdt,

where 〈·, ·〉−s,s denotes the duality pairing 〈·, ·〉H−s
0

(T),Hs
0
(T). We aim to prove the observability

inequality

‖vT ‖2−s ≤ C

∫ T

0
‖Gv‖2

−s+ 1

2

dt. (3.93)

Once (3.93) is proved, the exact controllability of (3.84) in Hs
0(T) follows easily. Indeed, if

Γ−s ∈ L(H−s
0 (T)) is defined by Γ−s(vT ) = (1 − ∂2

x)
su(T ) where u solves (3.84) with k =

(1− ∂2
x)

−sD
1

2 (Gv) and v still denotes the solution of (3.85), then

(vT ,Γ−s(vT ))−s =

∫ T

0
‖D 1

2 (Gv)‖2−sdt ≥ C

∫ T

0
‖Gv‖2

−s+ 1

2

dt ≥ C‖vT ‖2−s,

so that Γ−s : H
−s
0 (T) → H−s

0 (T) is onto. The same is true for the map vT ∈ H−s
0 (T) → u(T ) ∈

Hs
0(T). To prove (3.93), we establish first a weaker estimate

‖vT ‖2−s ≤ C

(∫ T

0
‖Gv‖2

−s+ 1

2

dt+ ‖vT ‖2−s− 1

2

)
. (3.94)

We argue again by contradiction. If (3.94) is false, then there is a sequence (vnT ) in H−s
0 (T) such

that

1 = ‖vnT ‖2−s > n

(∫ T

0
‖Gvn‖2

−s+ 1

2

dt+ ‖vnT ‖2−s− 1

2

)
. (3.95)

It follows that

vnT → 0 in H
−s− 1

2

0 (T), (3.96)

vn → 0 in C([0, T ],H
−s− 1

2

0 (T)). (3.97)

Let wn = (1− ∂2
x)

− s
2 vn. Then wn solves

−wn
t −Hwn

xx +GDGwn = (1− ∂2
x)

− s
2 [(1− ∂2

x)
s
2 , GDG]wn = Bwn,

wn(T ) = (1− ∂2
x)

− s
2 vnT =: wn

T .
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Then ‖wn
T ‖ = 1, wn

T → 0 in H
− 1

2

0 (T), and

wn → 0 in C([0, T ],H
− 1

2

0 (T)) (3.98)
∫ T

0
‖Gwn‖21

2

dt → 0. (3.99)

For (3.99), we notice that
∫ T

0
‖Gwn‖21

2

dt =

∫ T

0
‖G(1 − ∂2

x)
− s

2 vn‖21
2

dt

≤
∫ T

0
‖Gvn‖2

−s+ 1

2

dt+

∫ T

0
‖[G, (1 − ∂2

x)
− s

2 ]vn‖21
2

dt. (3.100)

The first term in the right hand side of (3.100) tends to 0 by (3.95). For the second one, we
have that

∫ T

0
‖[G, (1 − ∂2

x)
− s

2 ]vn‖21
2

dt ≤ C

∫ T

0
‖vn‖2

−s− 1

2

dt ≤ C‖vn‖2
L∞(0,T,H−s− 1

2 (T))
→ 0,

by (3.97).
From (3.91), we infer that

‖wn‖
L2(0,T,H

1
2 (T))

≤ C‖wn
T ‖. (3.101)

Arguing as in Step 1 and using (3.101), we can derive the following observability inequality

‖wn
T ‖2 ≤ C

(∫ T

0

∫

T

|D 1

2 (Gwn)|2dxdt+ ‖Bwn‖2
L2(0,T,H−

1
2 (T))

)
·

Combined with (3.98) and (3.99), this yields wn
T → 0 in H0

0 (T), contradicting the fact that
‖wn

T ‖ = 1 for all n. The proof of (3.94) is complete. Finally, we prove (3.93) by contradiction.

If (3.93) is false, then there is a sequence (vnT ) in H−s
0 (T) such that

1 = ‖vnT ‖2−s > n

∫ T

0
‖Gvn‖2

−s+ 1

2

dt. (3.102)

Extracting a subsequence still denoted by (vnT ), we can assume that (vnT ) is strongly convergent

in H
−s− 1

2

0 (T) by compactness of the embedding H−s
0 (T) ⊂ H

−s− 1

2

0 (T). Using (3.102), we infer
from (3.94) that (vnT ) is also strongly convergent in H−s

0 (T). Its limit vT satisfies ‖vT ‖−s = 1,
and the solution v of (3.85) satisfies Gv = 0 by (3.102). Thus for a.e. t ∈ (0, T )

vxxx(·, t) = Hvxxx(·, t) = 0 on ω.

We conclude with Lemma 2.9 that v ≡ 0, hence vT = 0, which contradicts ‖vT ‖−s = 1. The
proof of (3.93) is achieved.

Step 3. Fixed-point argument in Hs
0(T).

We proceed as in [36]. Pick any s ∈ (12 , 2] and any T > 0. We still denote by (S(t))t≥0 the
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semigroup introduced in Lemma 2.15 and by Zs,T the space introduced in (2.58). For v ∈ Zs,T ,
we set

ω(v) =

∫ T

0
S(T − t)(vvx)(t) dt.

From Step 2 we know that the linearized system, namely (3.84), with initial data u0 ∈ Hs
0(T)

and control function k ∈ L2(0, T,Hs
0(T)) is well-posed and exactly controllable in Hs

0(T). By
a classical functional analysis argument (see e.g. [8, Lemma 2.48 p. 58]), one can construct a
continuous operator Λ : Hs

0(T) → L2(0, T,Hs
0(T)) such that for any u1 ∈ Hs

0(T) the solution
u of (3.84) associated with u0 = 0 and k = Λ(u1) satisfies u(T ) = u1. Let us denote by
u = W (k) the corresponding trajectory. We know from Proposition 2.16 that W is continuous
from L2(0, T,Hs

0 (T)) into Zs,T . Let u0, u1 ∈ Hs
0(T) be given with

‖u0‖Hs
0
(T) < δ, ‖u1‖Hs

0
(T) < δ,

where δ > 0 will be chosen later. Let v ∈ Zs,T . If we choose k = Λ(u1 − S(T )u0 + ω(v)), then

S(t)u0 −
∫ t

0
S(t− τ)(vvx)(τ)dτ +W (k)(t) =

{
u0 if t = 0;
u1 if t = T.

It suggests to consider the nonlinear map v → Γ(v), where

Γ(v)(t) = S(t)u0 −
∫ t

0
S(t− τ)(vvx)(τ)dτ +W (Λ(u1 − S(T )u0 + ω(v)))(t).

The proof will be complete if we can show that this map has a fixed point in the space Zs,T .
Using the estimates in the proof of Theorem 2.13, we see that

‖ω(v)‖s ≤ C‖
∫ t

0
S(t− τ)(vvx)(τ)dτ‖Zs,T

≤ C‖v‖2Zs,T

and that there are some constants C0 > 0 and C1 > 0 such that

‖Γ(v)‖Zs,T
≤ C0(‖u0‖s + ‖u1‖s) + C1‖v‖2Zs,T

∀v ∈ Zs,T ,

‖Γ(v1)− Γ(v2)‖Zs,T
≤ C1

(
‖v1‖Zs,T

+ ‖v2‖Zs,T

)
‖v1 − v2‖Zs,T

∀v1, v2 ∈ Zs,T .

Let B = {v ∈ Zs,T ; ‖v‖Zs,T
≤ R}. We choose the radius R in such a way that the ball B is left

invariant by Γ and Γ contracts in B, i.e.

C0(‖u0‖s + ‖u1‖s) + C1R
2 ≤ R, and 2C1R < 1.

It is sufficient to take R = (4C1)
−1 and δ := R/(4C0). The proof of Theorem 3.1 is complete. �

Acknowledgements

The authors wish to thank Institut Henri Poincaré (Paris, France) for providing a very stim-
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[45] J.-C. Saut, Sur quelques généralisations de l’ équations de Korteweg-de Vries, J. Math. Pures Appl. 58 (1979)

21–61.
[46] T. Tao, Global well-posedness of the Benjamin-Ono equation in H1(R), J. Hyperbolic Differ. Equ. 1 (2004),

2749.

Instituto de Matematica Pura e Aplicada, Estrada Dona Castorina 110, Rio de Janeiro 22460-
320, Brazil

E-mail address: linares@impa.br

Institut Elie Cartan, UMR 7502 UHP/CNRS/INRIA, B.P. 70239, 54506 Vandœuvre-lès-Nancy
Cedex, France

E-mail address: rosier@iecn.u-nancy.fr


