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Abstract In this paper we provide a complete and irreducible representation
for transversely isotropic sixth order tensors having minor symmetries. Such
tensors appear in some practical problems of elasticity for which their inversion
is required. For this kind of tensors, we provide an irreducible basis which
possesses some remarkable properties, allowing us to provide a representation
in a compact form which uses two scalars and three matrices of dimension
2, 3 and 4. It is shown that the calculation of sum, product and inverse of
transversely isotropic sixth order tensors is greatly simplified by using this new
formalism and appears to be appropriate for deriving new various solutions to
some practical problems in mechanics which use such kinds of higher order
tensors. For instance, we derive the fields within a cylindrical inhomogeneity
submitted to remote gradient of strain. The method of resolution uses the
Eshelby equivalent inclusion method extended to the case of a polynomial type
eigenstrain. It is shown that the approach leads to a linear system involving
a sixth order tensor whose closed form solution is derived by means of the
tensorial formalism introduced in the first part of the paper.
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1 Introduction

The characterization and classification of the material symmetries1 for an
anisotropic fourth order tensor have been investigated by several researchers,
notably by Love [12], Voigt [30], Gurtin [10] and Thurston [28], Nye [21], Hou
and Del Pierro [11], Forte and Vianello [8], Chadwick et al. [4] among many
others. In these studies, the authors express the different forms of the elasticity
tensor into a matrix of dimension 6 × 6 (by means of Voigt type notations)
in the cartesian system. In the paper of Walpole [32] and later in [3], coor-
dinate free representations of the elasticity tensors are derived by means of
irreducible bases which prove to have interesting properties for the tensorial
calculus. Indeed, by inspecting the properties of the multiplication table as-
sociated to these irreducible bases, symbolic representations which use scalars
and matrices have been provided and shown to be appropriate for performing
the standard tensorial operations such as the multiplication between two ten-
sors and the inversion of a fourth order tensor. These “symbolic” or “compact”
representations are very useful and suitable for deriving the solutions of elas-
ticity problems for which the multiplication or more specially the inversion of
fourth order tensors are required.
Some fundamental theories as well as practical problems in the area of me-
chanics require the introduction of tensors whose order is higher than 4. For
instance, the theories of gradient elasticity or the theory of microstructures
in elasticity (see Toupin [29], Mindlin [13], Mindlin & Eshel [14], Suiker and
Chang [26]) introduce gradient elastic tensors of order 5, 6, ... in addition to
the commonly used fourth order elasticity tensor. The use of such high order
tensors raises a number of fundamental questions, especially concerning their
inversion or the condition of positiveness when computing the elastic energy
from these tensors. On the other hand, solutions to special elasticity prob-
lems, such as the solution to higher order inhomogeneity problems, require
the inversion of tensors of order 6, 8, etc. (see Sendeckyj [22], Moschovidis [17],
Moschovidis and Mura [18], Asaro and Barnett [1], Furuhashi and Mura, [9],
Mura [19]). Although the tensorial equation produced in this case can be solved
numerically, it is obviously of interest to derive closed form solutions which can
cover many applications. Inverting such tensors involves the algebra of these
higher order tensors. On the other hand, an irreducible basis for isotropic sixth
and eighth order tensors having the minor symmetries2 and a closed-form so-
lution of higher order inhomogeneity problems have been recently provided by
Monchiet and Bonnet [15]. However, the hypothesis of isotropy restricts the
applicability of this new formalism for handling the problem of a spherical
inhomogeneity. In this paper we propose to extend these results to the case
of transversely isotropic sixth order tensors. We derive an irreducible basis,

1 There are various and non equivalent definitions of the symmetry classes. Forte and
Vianello [8], Chadwick et al. [4] introduced only eight symmetry classes while Hou and Del
Pierro [11] introduced ten symmetry classes.

2 The definition of minor symmetries for sixth order tensors is given in section 2 and is
defined by Monchiet and Bonnet [15] for tensors of order higher than 6.
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constituted of 31 elements, for any transversely isotropic sixth order tensors.
The proposed representation is coordinate free since all these tensors are con-
structed as the outer products of elementary tensors attached to the direction
of transverse isotropy. The multiplication tables are provided in the paper as
well as a compact representation which uses two scalars and three matrices of
dimension 2, 3 and 4. The efficiency of this new formalism and its ability to
derive closed form solution to linear elasticity problems is thereafter illustrated
in the case of a cylindrical inhomogeneity subjected to a remote uniform gra-
dient of strain.

The paper is organized as follows:

– Section 2 states about the definition of transversely isotropic tensors and
addresses the problem related to their inversion.

– In section 3, we prove that the dimension of a transversely isotropic sixth
order tensor is 31.

– Section 4 then proposes an irreducible basis for such tensors and provides
the multiplication tables as well as the compact representation.

– Section 5 expounds the problem of an ellipsoidal inhomogeneity subjected
to a gradient of strain and its method of resolution based on the Eshelby
equivalent inclusion problem. Closed form solutions are then provided for
the cylindrical inhomogeneity.

Below are provided some specific notations used in the paper:

a tensor of rank 1,

a tensor of rank 2 and 3,

A tensor of rank 4 and 6,

⊗ tensorial product between two tensors,

⊙n nth contraction between two tensors (ex: (A⊙3 a)ijk = Aijkpqrapqr).

2 Statement of the problem

Consider the following linear relation:

A⊙n a = b (1)

involving two tensors a and b of order n and a 2nth order tensor A. In (1),
the symbol “⊙n” represents the n

th contraction between two tensors such that
(A⊙n a)i..j = Ai..jp..qap..q. In this paper we only examine the cases n = 2 and
n = 3.
In the case n = 2, tensors a and b are symmetric second order tensors, aij = aji
and bij = bji. Tensor A is a fourth order tensor having the minor symmetries,
Aijpq = Ajipq = Aijqp, but not the major symmetry Aijpq 6= Apqij .
For the case n = 3, tensors a and b are third order tensors which are symmetric
according to their first two indices: aijk = ajik and bijk = bjik. Due to the
symmetries of a and b, Aijkpqr is invariant by any permutation of indices
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(i, j), and (p, q); these symmetries are called minor symmetries for the sixth
order tensor. A tensor of components Ai...j in the cartesian frame (e1, e2, e3)
is assumed symmetric with respect to the linear transformation R if:

Ai...j = Rip...RjqAp...q. (2)

We assume that:
• A is invariant by the symmetry with respect to the plane Ox1x2 characterized
by the transformation of components Rij = δij − 2ninj and n is the vector e3.
• Ai..j is invariant through any rotation by an angle of θ around the axis Ox3.
In other words, Aijkpqr remains unchanged under the transformation (2) where
the components of the matrix Rij are given by:

Rij =








cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1








. (3)

With the above properties of invariance, tensor A is transversely isotropic and
we denote by E2n the space of such tensors (with n = 2 for fourth order tensors
and n = 3 for sixth order tensors).

For the case n = 2, tensor A is defined by 6 independent coefficients.
Providing a basis in the case of such symmetric tensors has been effected
in [3]. However, the product of two such symmetric tensors is not generally
symmetric and it is therefore important to study simultaneously symmetric
and unsymmetric tensors. So, an irreducible basis for such tensors has been
first provided in [31] and later in [32]. In the following, we recall the principal
results about this decomposition.
Any fourth order tensor A ∈ E4 can be constructed by the linear combination:

A =
n=6∑

n=1

anTn (4)

where the components of tensors Tn for n = 1..6 are given by:







[T1]ijpq = (πipπjq + πiqπjp − πijπpq)/2,

[T2]ijpq = (πipnjnq + πiqnjnp + πjpninq + πjqninp)/2,

[T3]ijpq = πijπpq/2,

[T4]ijpq = πijnpnq/
√
2,

[T5]ijpq = ninjπpq/
√
2,

[T6]ijpq = ninjnpnq

(5)
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where πij is defined by:

πij = δij − ninj (6)

and ni are the components of the normal unit vector n defining the direction
orthogonal to the plane of transverse isotropy. The double contraction between
two tensors taken from (T1, ..,T6) is provided in table 1.

⊙2 T1 T2 T3 T4 T5 T6

T1 T1 0 0 0 0 0

T2 0 T2 0 0 0 0

T3 0 0 T3 T4 0 0

T4 0 0 0 0 T3 T4

T5 0 0 T5 T6 0 0

T6 0 0 0 0 T5 T6

Table 1: The double contraction between the Tn for n = 1..6

It can be observed that the set of tensors {T1,T2,T3,T4,T5,T6} is consti-
tuted of three groups which are independents for the composition ⊙2, they
are: {T1}, {T2}, {T3,T4,T5,T6}. Note that tensor A ∈ E4 has the major sym-
metry only if a4 = a5 in (4). The table shows clearly that the product of two
symmetric tensors is generally not symmetric. For completeness, we provide
the relations giving the coefficients a1, .., a6 in (4) as function of the compo-
nents of tensor A:

a1 = Aijpqπipπjq/2−Aijpqπijπpq/4, a2 = Aijpqπipnjnq,

a3 = Aipjqπipπjq/2, a4 = Aijpqπpqninj/
√
2,

a5 = Aijpqπijnpnq/
√
2, a6 = Aijpqninjnpnq.

(7)

Denoting T n(a) = Tn ⊙2 a for n = 1..6, their components are:







T 1
ij(a) = πipπjqapq − πijapqπpq/2,

T 2
ij(a) = (πipnj + πjpni)apqnq,

T 3
ij(a) = πijapqπpq/2,

T 4
ij(a) = πijapqnpnq/

√
2,

T 5
ij(a) = ninjapqπpq/

√
2,

T 6
ij(a) = ninjapqnpnq.

(8)
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It follows that the linear relation (1) for n = 2, can be rewritten into the form:







T 1(a) = a1T
1(a),

T 2(a) = a2T
2(a),

T 3(a) = a3T
3(a) + a4T

4(a),

T 6(a) = a5T
5(a) + a6T

6(a)

(9)

where the an for n = 1..6 are the components of tensor A along the basis
(T1, ...,T6). Owing to these results, it appears that the components of tensor
A can be represented by two scalars and a 2× 2 matrix. This compact repre-
sentation is written into the symbolic form: A = {a1, a2, A} where the matrix
A is defined by:

A =




a3 a4

a5 a6



 . (10)

It turns out that this symbolic notation A = {a1, a2, A} is useful for perform-
ing the standard tensorial operations. For instance, let us introduce a second
tensor B, we denote by b1, ..b6 its components along the basis (T1, ...,T6) and
{b1, b2, B} its compact representation. The product between A and B defines
the fourth order tensor C = A⊙2B whose components are C = {c1 = a1b1, c2 =
a2b2, C = A.B} where A.B represents the standard matrix product between A
and B. The inverse of tensor A is simply obtained by inverting the elements of
its compact representation: A−1 = {1/a1, 1/a2, A−1} where A−1 denotes the
inverse of the 2× 2 matrix.
Such a representation is useful for doing the classical tensorial operations and
is convenient for many practical problems in mechanics such as Eshelby’s in-
homogeneity problem [5]. In the following section, we aim at deriving a similar
representation for transversely isotropic sixth order tensors.

3 Dimension of the space containing transversely isotropic and
symmetric sixth order tensors

A key point in determining the representation of a tensor of a specific type
by an irreducible basis lies in the calculation of the total number of elements
of the basis. In this section, we address a general method for computing the
dimension of the space containing sixth order tensors having the minor symme-
tries and we provide results for the particular case of the transversely isotropic
symmetry.

As effected for the case of fourth order tensors, Voigt type notations are suit-
able for representing such tensors by a 6×6 matrice. In the following, we extend
it to the case of a sixth order tensor. This is achieved by a vector representation
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of third-order tensors. Any third order tensor a, which is symmetric according
to its two first indices (aijk = ajik) depends on 18 independent components
and can the been represented along tensors vn for n = 1..18 which are defined
by :







v1 = f1 ⊗ e1, v2 = f2 ⊗ e1, v3 = f3 ⊗ e1,

v4 = f6 ⊗ e2, v5 = f5 ⊗ e3, v6 = f2 ⊗ e2,

v7 = f1 ⊗ e2, v8 = f3 ⊗ e2, v9 = f6 ⊗ e1,

v10 = f4 ⊗ e3, v11 = f3 ⊗ e3, v12 = f1 ⊗ e3,

v13 = f2 ⊗ e3, v14 = f5 ⊗ e1, v15 = f4 ⊗ e2,

v16 = f4 ⊗ e1, v17 = f5 ⊗ e2, v18 = f6 ⊗ e3

(11)

where e1, e2, e3 are the unit vectors of the cartesian basis while the second
order tensors fn for n = 1..6 are defined by :







f1 = e1 ⊗ e1, f2 = e2 ⊗ e2, f3 = e3 ⊗ e3,

f4 =
√
2e2 ⊗s e3, v5 =

√
2e1 ⊗s e3, f6 =

√
2e1 ⊗s e2

(12)

where ⊗s represents the symmetrized tensorial product of two vectors: u⊗sv =
(u⊗ v + v ⊗ u)/2. With the above definitions for tensors vn, the basis v1..v18

is orthonormal for the composition “⊙3” since :

vr ⊙3 vs = δrs (13)

for any r, s = 1..18. In relation (1) (for the case n = 3), tensors a, b and A are
decomposed along the basis vn for n = 1..18 :

a = aIvI , b = bIvI , A = AIJvI ⊗ vJ . (14)

By convention the upper case indices vary from 1 to 18. Einstein summation
convention for repeated indices is applied in the above expressions. For in-
stance aIvI = a1v1+ ...+a18v18. The third order tensors a and b can then be
replaced by two vectors of dimension 18 having respectively the components
aI and bI for I = 1..18. In the linear relation b = A⊙3 a, the components of b
depend on the ones of a by: bI = AIJaJ where AIJ is a matrix of dimension
18×18 which depends on 324 independent coefficients. When tensor A has the
major symmetry, matrix AIJ is symmetric and depends on 171 independent
coefficients. Tensors vI ⊗ vJ for I, J = 1..18 constitute then an irreducible
basis for general sixth order tensors. When A is invariant by rotation or reflec-
tion (cf. relation (2)), the total number of independent coefficients of A can
be strongly reduced and the definition of a new irreducible basis is required.
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By adopting the above contracted notations, the transformation rule (2) reads:

AIJ = RIPRJQAPQ (15)

where matrix RIJ are the components of tensor R defined by Rijkpqr =
(RipRjq +RiqRjp)Rkr/2 with the above contracted notations. In the case of a
plane symmetry with respect to the plane Ox1x2, RIJ is diagonal and is given
by:

RIJ = diag(1, 1, .., 1
︸ ︷︷ ︸

10 times

,−1,−1, ..,−1
︸ ︷︷ ︸

8 times

). (16)

In the case of a rotation of an angle θ around the axis Ox3, the matrix RIJ is
obtained by the concatenation of different matrices as follows:

RIJ =








R1
ij R2

ij 0

−R2
ij R1

ij 0

0 0 R3
ij







. (17)

In the above expressions, matrices R1
ij , R2

ij are squared matrices of dimension
5, defined by:

R1
ij = p












p2 q2 0
√
2q2 0

q2 p2 0 −
√
2q2 0

0 0 1 0 0
√
2q2 −

√
2q2 0 p2 − q2 0

0 0 0 0 1












,

R2
ij = q













q2 p2 0
√
2p2 0

p2 q2 0 −
√
2p2 0

0 0 1 0 0
√
2p2 −

√
2p2 0 q2 − p2 0

0 0 0 0 1













.

(18)
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R3
ij is squared matrix of dimension 8; its components are:

R3
ij =





















1 0 0 0 0 0 0 0

0 p2 q2 0 0 0 0 −
√
2pq

0 q2 p2 0 0 0 0
√
2pq

0 0 0 p2 q2 − pq −pq 0

0 0 0 q2 p2 pq pq 0

0 0 0 − pq pq p2 − q2 0

0 0 0 − pq pq − q2 p2 0

0
√
2pq −

√
2pq 0 0 0 0 p2 − q2





















. (19)

The invariance condition (15) is now verified with expressions (16) and (17) for
the matrix RIJ . These computations are elementary and lead to the following
form for AIJ :

AIJ =











fij 0 0 0

0 fij 0 0

0 0 gij 0

0 0 0 hij











(20)

where fij , gij and hij are squared matrices of dimension 5, 5 and 3 respectively.
The following equalities hold for the components of these matrices:







f21 − f12 =
√
2(f14 + f41), f11 − f22 =

√
2(f24 + f41) =

√
2(f42 + f14),

2f44 = f11 + f22 − f21 − f12,
√
2f45 = f15 − f25,

√
2f43 = f13 − f23,

√
2f54 = f51 − f52, f34 = f31 − f32,

g12 = g13, g14 = g15, g21 = g31, g22 = g33, g23 = g32, g24 = g35,

g25 = g34, g41 = g51, g42 = g53, g43 = g52, g44 = g55, g45 = g54,

h22 = h11, h23 = h13 = g42 − g43,
√
2h32 =

√
2h31 = g24 − g34,

h21 = h12, h33 = g22 − g23, h11 + h12 = g44 − g45.

(21)

Matrices fij and gij for i, j = 1..5 and hij for i, j = 1..3 are defined by 59
coefficients. Moreover, by considering the above 28 equalities, it follows that
the total number of independent coefficients for matrix AIJ is 31.
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4 An irreducible basis for transversely isotropic sixth order tensors

In this section we propose a canonical basis for transversely isotropic sixth
order tensors. The dimension of A ∈ E6 being 31, an irreducible basis of such
kind of tensor comprises 31 independent tensors. The method of construction
uses a decomposition of a third order tensor related to the transverse isotropy.

First, we decompose the third order tensor a, of components aijk, on the
form:

aijk = wijk + uijnk + njvik + nivjk + ninjrk

+(nisj + njsi)nk + γninjnk

(22)

where ni are the components of the vector n of transverse isotropy. The inner
product between wijk, uij , vij , ri, si with ni is null:

wijknk = wikjnk = wkijnk = 0,

uijnj = ujinj = vijnj = vijni = 0,

rini = sini = 0.

(23)

The computation of wijk, uij , vij , ri, si and γ from equations (22) and (23)
leads to the following expressions:







γ = aijkninjnk,

ri = πirapqrnpnq,

si = πipapqrnqnr,

uij = πipπjqapqrnr,

vij = πiqπjrapqrnp,

wijk = πipπjqπkrapqr

(24)

where it is recalled that πij = δij − ninj . Note that uij is symmetric, uij =
uji; vij which is non-symmetric, is decomposed into a symmetric and a skew
symmetric tensor:

vij = vsij + vaij (25)

with:

vsij =
1

2
(vij + vji), vaij =

1

2
(vij − vji). (26)
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Tensors u and vs are decomposed into two-dimensional spherical and devia-
toric parts:

uij = uij − πijα, vsij = vsij − πijβ (27)

with:

α =
1

2
πpqapqrnr, β =

1

2
πqrapqrnp. (28)

Finally we introduce a similar decomposition for wijk:

wijk = wijk + piπjk + pjπik + qkπij (29)

with:

pi = wijkπjk/2− wjkiπjk/4, qi = 3wjkiπjk/4− wijkπjk/2 (30)

where the third order tensor w is traceless: wijj = wjji = 0 and is invariant by
any permutation of its indices, wijk = wkij = wjki = wkji = wikj = wjik. Let
us recall that any third order tensor having the minor symmetries depends on
18 independent coefficients. Each one of vectors p, q, r and s, of components
pi, qi, ri and si, depends on 2 coefficients. The second order tensors u, vs and
va are defined by 2, 2 and 1 independent coefficient. The third order tensor
w depends on 2 independent coefficients. The total number of independent
coefficients of each element of the decomposition are recalled below:

α β γ p q r s u vs va w a

1 1 1 2 2 2 2 2 2 1 2 18

Table 1 Number of independent coefficients of the elements of the decomposition of the
third order tensor a
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The various outer products of wijk, v
s
ij , uij , v

a
ij , ti, si, x, vm and um with

πij and ni provide 31 third order tensors having the following components:

T 1
ijk(a) = wijk, T 2

ijk(a) = niv
a
jk + njv

a
ik,

T 3
ijk(a) = uijnk, T 4

ijk(a) = 2vsijnk,

T 5
ijk(a) = (niujk + njuik)/2, T 6

ijk(a) = niv
s
jk + njv

s
ik,

T 7
ijk(a) = απijnk, T 8

ijk(a) = 2βπijnk,

T 9
ijk(a) = γπijnk, T 10

ijk(a) = α(niπjk + njπik)/2,

T 11
ijk(a) = β(niπjk + njπik), T 12

ijk(a) = γ(niπjk + njπik)/2,

T 13
ijk(a) = αninjnk, T 14

ijk(a) = 2βninjnk,

T 15
ijk(a) = γninjnk, T 16

ijk(a) = piπjk + pjπik,

T 17
ijk(a) = (qiπjk + qjπik)/2, T 18

ijk(a) = (riπjk + rjπik)/2,

T 19
ijk(a) = (siπjk + sjπik)/2, T 20

ijk(a) = 2πijpk,

T 21
ijk(a) = πijqk, T 22

ijk(a) = πijrk,

T 23
ijk(a) = πijsk, T 24

ijk(a) = 2ninjpk,

T 25
ijk(a) = ninjqk, T 26

ijk(a) = ninjrk,

T 27
ijk(a) = ninjsk, T 28

ijk(a) = 2(pinj + pjni)nk,

T 29
ijk(a) = (qinj + qjni)nk, T 30

ijk(a) = (rinj + rjni)nk,

T 31
ijk(a) = (sinj + sjni)nk.

(31)

In relation b = A ⊙3 a, the third tensor b is a transversely isotropic and
linear function of the third order tensor a. The third order tensors T n(a) for
n = 1..31 provide a complete and irreducible representation for the third order
valued tensor function b. This is proved in appendix A. We now introduce
the sixth order tensors Tn for n = 1..31 such that T n(a) = Tn ⊙3 a. The
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components of these tensors are given below:

[T1]ijkpqr = πkr(πipπjq + πjpπiq)/2− 3πijπpqπkr/4

+πij(πprπkq + πqrπkp)/4 + πpq(πirπjk + πjrπik)/4

−πik(πjpπqr + πjqπpr)/4− πjk(πipπqr + πiqπpr)/4,

[T2]ijkpqr = (ninpπjq + ninqπjp + njnpπiq + njnqπip)πkr/4

−(πirnj + πjrni)nqπkp/4− (πirnj + πjrni)npπkq/4,

[T3]ijkpqr = (πipπjq + πiqπjp − πijπpq)nknr/2,

[T4]ijkpqr = −(npπqr + nqπpr)nkπij/2

+(πiqπjr + πjqπir)npnk/2 + (πipπjr + πjpπir)nqnk/2,

[T5]ijkpqr = −(niπjk + njπik)πpqnr/4

+(πipπkq + πiqπkp)njnr/4 + (πjpπkq + πjqπkp)ninr/4,

[T6]ijkpqr = (ninpπjq + ninqπjp + njnpπiq + njnqπip)πkr/4

+(πirnjnq + πjrninq)πkp/4 + (πirnjnp + πjrninp)πkq/4

−(ninpπqr + ninqπpr)πjk/4− (njnpπqr + njnqπpr)πik/4,

[T7]ijkpqr = πijπpqnknr/2,

[T8]ijkpqr = (npπqr + nqπpr)nkπij/2,

[T9]ijkpqr = πijnpnqnknr,

[T10]ijkpqr = (niπjk + njπik)nrπpq/4,

[T11]ijkpqr = (npπqr + nqπpr)(niπjk + njπik)/4,

[T12]ijkpqr = (πiknj + πjkni)nrnpnq/2,

[T13]ijkpqr = ninjπpqnknr/2,

[T14]ijkpqr = (πprnq + πqrnp)ninjnk/2,

[T15]ijkpqr = ninjnknpnqnr,

[T16]ijkpqr = πjk(πipπqr + πiqπpr − πpqπir)/4

+πik(πjpπqr + πjqπpr − πpqπjr)/4,

(32)
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[T17]ijkpqr = πjk(3πpqπir − πipπqr − πiqπpr)/8

+πik(3πpqπjr − πjpπqr − πjqπpr)/8,

[T18]ijkpqr = (πirπjk + πjrπik)npnq/2,

[T19]ijkpqr = (πipnq + πiqnp)πjknr/4 + (πjpnq + πjqnp)πiknr/4,

[T20]ijkpqr = πij(πprπkq + πqrπkp − πpqπkr)/2,

[T21]ijkpqr = πij(3πpqπkr − πprπkq − πqrπkp)/4,

[T22]ijkpqr = πijnpnqπkr,

[T23]ijkpqr = (npπqk + nqπpk)nrπij/2,

[T24]ijkpqr = (πprπqk + πqrπpk − πpqπkr)ninj/2,

[T25]ijkpqr = (3πpqπkr − πprπqk − πqrπpk)ninj/4,

[T26]ijkpqr = ninjnpnqπkr,

[T27]ijkpqr = (πpknq + πqknp)ninjnr/2,

[T28]ijkpqr = (πipπqr + πiqπpr)njnk/2 + (πjpπqr + πjqπpr)nink/2

−(niπjr + njπir)nkπpq/2,

[T29]ijkpqr = 3(niπjr + njπir)nkπpq/4− (πipπqr + πiqπpr)njnk/4

−(πjpπqr + πjqπpr)nink/4,

[T30]ijkpqr = (πirnj + πjrni)nknpnq,

[T31]ijkpqr = (πipnjnq + πiqnjnp + πjpninq + πjqninp)nknr/2.

(33)

The set of tensors Tn for n = 1...31 constitutes then an irreducible basis for
any transversely isotropic sixth order tensor having the minor symmetries.
Then any tensor A ∈ E6 can be read:

A =
n=31∑

n=1

anTn (34)

where the an are the components of tensor A in the basis (T1, ...,T31). The
relations giving the coefficients an for n = 1..31 as functions of the components
Aijkpqr are given in appendix B. It must be emphasized that relations (60) can
also be used to prove that tensors Tn for n = 1..31 are linearly independent.
Indeed, in (34), tensor A if the components Aijkpqr are null and, from relations
(60), if an = 0 for n = 1..31.

The triple contraction between two elements of the basis Tn are given in table
2 together with tables 3, 4 and 5. It can be observed that the set of tensors
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(T1, ...,T31) is constituted of 5 groups which are independent for the composi-
tion ⊙3. These groups are {T1}, {T2}, {T3, ...,T6}, {T7, ...,T15}, {T16, ...,T31},
and define sub-spaces of E6 whose dimensions are respectively: 1, 1, 4, 9, 25.
This irreducible basis is constituted of two kinds of elements:

• the first kind of tensors are idempotent since they are invariants by the
inner product “⊙3”, i.e. Tn ⊙3 Tn = Tn. These tensors are T1, T2, T3, T6,
T7, T11, T15, T16, T21, T26, T31 and correspond to the tensors that appear
in the diagonal of table 1.

• other tensors are nilpotent; the inner product “⊙3” of these tensors by
themselves gives the null tensor , ie. Tn ⊙3 Tn = 0. These tensors appear
only out of the diagonal in table 1.

It can be noticed that the irreducible basis for fourth order tensors, defined in
(8), is also constituted of idempotent tensors (T1, T2, T3 and T6) and nilpotent
tensors (they are T4 and T5). Note also that similar structures has been also
obtained for sixth and eighth order isotropic tensors in Monchiet and Bonnet
[15], [16].
It can be observed that the set (E6,⊙3, I) defines a monoid (an algebraic
structure with a single associative binary operation and an identity element).
I represents the identity for isotropic sixth order tensors having the minor
symmetries and is such that I ⊙3 a = a for any third order tensor a. The
components of the sixth order identity tensor are Iijkpqr = Iijpqδkr where
Iijpq = (δipδjq + δiqδjp)/2 are the components of the identity tensor for sym-
metric fourth order tensors. The decomposition of I along the basis (T1, ...,T31)
is I = T1+T2+T3+T6+T7+T11+T15+T16+T21+T26+T31 and corresponds to
the sum of all idempotent tensors, which is also a property shared by isotropic
tensors. As a consequence, every third order tensor can be decomposed into:

a = T 1(a) + T 2(a) + T 3(a) + T 6(a) + T 7(a) + T 11(a) + T 15(a)

+T 16(a) + T 21(a) + T 26(a) + T 31(a).
(35)
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⊙3 T1 T2 T3 . . . T6 T7 . . . T15 T16 . . . T31

T1 T1 0 0 . . . 0 0 . . . 0 0 . . . 0

T2 0 T2 0 . . . 0 0 . . . 0 0 . . . 0

T3 0 0 0 . . . 0 0 . . . 0

...
...

... Table 3
...

. . .
...

...
. . .

...

T6 0 0 0 . . . 0 0 . . . 0

T7 0 0 0 . . . 0 0 . . . 0

. . .
...

...
...

. . .
... Table 4

...
. . .

...

T15 0 0 0 . . . 0 0 . . . 0

T16 0 0 0 . . . 0 0 . . . 0

. . .
...

...
...

. . .
...

...
. . .

... Table 5

T31 0 0 0 . . . 0 0 . . . 0

Table 2: The triple contraction between the Tn for n = 1..31

⊙3 T3 T4 T5 T6

T3 T3 T4 0 0

T4 0 0 T3 T4

T5 T5 T6 0 0

T6 0 0 T5 T6

Table 3: The triple contraction between the Tn for n = 3..6
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⊙3 T7 T8 T9 T10 T11 T12 T13 T14 T15

T7 T7 T8 T9 0 0 0 0 0 0

T8 0 0 0 T7 T8 T9 0 0 0

T9 0 0 0 0 0 0 T7 T8 T9

T10 T10 T11 T12 0 0 0 0 0 0

T11 0 0 0 T10 T11 T12 0 0 0

T12 0 0 0 0 0 0 T10 T11 T12

T13 T13 T14 T15 0 0 0 0 0 0

T14 0 0 0 T13 T14 T15 0 0 0

T15 0 0 0 0 0 0 T13 T14 T15

Table 4: The triple contraction between the Tn for n = 7..15

⊙3 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31

T16 T16 T17 T18 T19 0 0 0 0 0 0 0 0 0 0 0 0

T17 0 0 0 0 T16 T17 T18 T19 0 0 0 0 0 0 0 0

T18 0 0 0 0 0 0 0 0 T16 T17 T18 T19 0 0 0 0

T19 0 0 0 0 0 0 0 0 0 0 0 0 T16 T17 T18 T19

T20 T20 T21 T22 T23 0 0 0 0 0 0 0 0 0 0 0 0

T21 0 0 0 0 T20 T21 T22 T23 0 0 0 0 0 0 0 0

T22 0 0 0 0 0 0 0 0 T20 T21 T22 T23 0 0 0 0

T23 0 0 0 0 0 0 0 0 0 0 0 0 T20 T21 T22 T23

T24 T24 T25 T26 T27 0 0 0 0 0 0 0 0 0 0 0 0

T25 0 0 0 0 T24 T25 T26 T27 0 0 0 0 0 0 0 0

T26 0 0 0 0 0 0 0 0 T24 T25 T26 T27 0 0 0 0

T27 0 0 0 0 0 0 0 0 0 0 0 0 T24 T25 T26 T27

T28 T28 T29 T30 T31 0 0 0 0 0 0 0 0 0 0 0 0

T29 0 0 0 0 T28 T29 T30 T31 0 0 0 0 0 0 0 0

T30 0 0 0 0 0 0 0 0 T28 T29 T30 T31 0 0 0 0

T31 0 0 0 0 0 0 0 0 0 0 0 0 T28 T29 T30 T31
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Table 5: The triple contraction between the Tn for n = 16..31

By using the decomposition (35) for the third order tensor b = A ⊙3 a, we
obtain:







T 1(b) = a1T
1(a),

T 2(b) = a2T
2(a),

T 3(b) = a3T
3(a) + a4T

4(a),

T 6(b) = a5T
5(a) + a6T

6(a),

T 7(b) = a7T
7(a) + a8T

8(a) + a9T
9(a),

T 11(b) = a10T
10(a) + a11T

11(a) + a12T
12(a),

T 15(b) = a13T
13(a) + a14T

14(a) + a15T
15(a),

T 16(b) = a16T
16(a) + a17T

17(a) + a18T
18(a) + a19T

19(a),

T 21(b) = a20T
20(a) + a21T

21(a) + a22T
22(a) + a23T

23(a),

T 26(b) = a24T
24(a) + a25T

25(a) + a26T
26(a) + a27T

27(a),

T 31(b) = a28T
28(a) + a29T

29(a) + a30T
30(a) + a31T

31(a)

(36)

where coefficients an for n = 1..31 are the components of A as defined in (34).
Consequently, it is possible to represent A by two scalars, and three matrices
of dimension 2, 3 and 4 with the following symbolic notations:

A = {a1, a2, A1, A2, A3}. (37)

The components of A1, A2 and A3 are:

A1 =




a3 a4

a5 a6



 , A2 =








a7 a8 a9

a10 a11 a12

a13 a14 a15







, A3 =











a16 a17 a18 a19

a20 a21 a22 a23

a24 a25 a26 a27

a28 a29 a30 a31











(38)

and the an for n = 1..31 are the components of A in the basis Tn with n = 1..31
as defined in relation (34). For instance the identity I reads:

I =







1, 1,




1 0

0 1



 ,








1 0 0

0 1 0

0 0 1







,











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

















. (39)
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Let us now introduce a second tensor B, whose components in the basis
(T1, ...,T31) are denoted by bn. We use the same compact representation for
this tensor: B = {b1, b2, B1, B2, B3}. We now introduce the tensor C defined by
C = A⊙3B; its components along (T1, ...,T31) are denoted by cn for n = 1..31.
The elements of the compact representation of tensor C are {c1, c2, C1, C2, C3}
with:

c1 = a1b1, c2 = a2b2, C1 = A1B1, C2 = A2B2, C3 = A3B3
(40)

where the standard matrix product rule is applied between the matrices An

and Bn for obtaining the matrix Cn. The inversion of tensor A is then obviously
obtained by inverting all the elements of its compact representation:

A
−1 =

{
1

a1
,
1

a2
, A−1

1 , A−1
2 , A−1

3

}

. (41)

The existence of such an inverse is obviously dependent on the inverse of its
components. As an illustration purpose, we now aim at applying this formalism
for deriving closed-form solutions of the second order inhomogeneity problem.

5 Application to the second order inhomogenity problem

Eshelby’s solutions [5,6] for inclusions and for equivalent inhomogeneity prob-
lems are fundamental to many problems in material science, mechanics of
composite, etc. In the terminology of Eshelby [5] and Mura [19], an inclusion
denotes a subdomain subjected to an eigenstrain while an inhomogeneity is a
domain whose elastic properties differ from those of the surrounding medium.
Eshelby’s results [5,6] are well known for the case of a prescribed constant
eigenstrain in an infinite isotropic medium: it gives a constant strain field
inside an ellipsoidal inclusion while the exterior point solution (outside the in-
clusion) is heterogeneous. The strain field within the inclusion is then explicitly
given as a function of the eigenstrain by means of the well-known fourth order
Eshelby’s tensor. The Eshelby equivalent method handles the problem of a
single ellipsoidal inhomogeneity by replacing it with an inclusion having prop-
erly chosen eigenstrains. The strain field within the inhomogeneity remains
constant and can be expressed in terms of the remote constant strain field by
inverting a fourth order tensor which does not possess the major symmetry.
Later, Sendeckyj [22], Moschovidis [17], Moschovidis and Mura [18], Asaro and
Barnett [1], generalize Eshelby’s solution to the case of prescribed polynomial
fields. In these studies, the following result has been proved: the strain in an

ellipsoidal subdomain of an infinite linear elastic medium which undergoes an

eigenstrain on the form of a polynomial of degree N , is also a polynomial with

the same degree N . The expansions of the eigenstrain and of the interior point
solution for the strain field along polynomial functions introduce tensors of
order 2, 3, 4 etc and higher order Eshelby tensors of order 6, 8 etc. It has
been pointed out in Mura [19] that the strain disturbance due to a polyno-
mial type remote strain field of degree N can be simulated by an appropriate
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polynomial eigenstrain field of degree N . Note that the utility of the result
for N = 1 has been addressed by Eshelby [7] for treating ellipsoidal inhomo-
geneities submitted to far-field torsion and flexure. Solutions to higher order
inclusion problems are also the bases of numerous works dealing with multiple
ellipsoidal inhomogeneities, among which Moschovidis and Mura [18], Mura
[19], Shodja and Sarvestani [23], Shodja et al. [24], Benedikt et al. [2].
In the next section we propose to recall the solution of the second order in-
clusion problem and we deal with the problem of an ellipsoidal inhomogeneity
submitted to a remote gradient of strain. Closed form solutions are provided
in section 5.2 for the case of a cylindrical inhomogeneity for which the sixth
order tensor, which has to be inverted, presents a transverse isotropy, the axis
of isotropy being parallel to the axis of the cylinder.

5.1 The general case of an ellipsoidal inhomogeneity

Consider an ellipsoidal inhomogeneity, of stiffness tensor C, embedded in an
infinite elastic matrix of stiffness tensor C

0. We denote by (x1, x2, x3) the
cartesian coordinates, (e1, e2, e3) the orthonormal basis and by a1, a2, a3 the
radii of the ellipsoid along the three axes of the cartesian frame. The inclusion
is located at the origin and its volume is defined by:

x2
1

a21
+

x2
2

a22
+

x2
3

a23
≤ 1. (42)

The ellipsoidal inhomogeneity contains an isotropic elastic material, µ and λ
being its Lamé coefficients. The infinite medium is also isotropic and its elastic
moduli are denoted by µ0 and λ0. This inhomogeneity is subjected to a remote
strain field on the form ε∞ij = bijkxk where x, of components xk, denotes the
vector position. This problem is called “second order inhomogeneity problem”
since an uniform gradient of strain is applied at the infinity instead of the
constant strain considered by Eshelby [5]. The strain disturbance due to the
application of bijk at infinity can be recovered by considering an appropriate
inclusion problem. This auxiliary problem is the following: an ellipsoidal do-
main, defined by (42), is subjected to a prescribed eigenstrain on the form
ε∗ij(x) = eijkxk (with eijk = ejik). As shown in Sendeckyj [22], Moschovidis
[17], the solution of this auxiliary problem is:

ui(x) =
1

8π(1− ν0)

{

Ψr,pqiepqr − 2ν0Φr,ieppr − 4(1− ν0)Φr,keikr

}

. (43)

The associated strain field, ε(x), reads:

εij(x) =
1

8π(1− ν0)

{

Ψr,pqijepqr − 2ν0Φr,ijeppr

−2(1− ν0)(Φr,jkeikr + Φr,ikejkr)
}(44)
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in which Φi and Ψi are respectively harmonic and bi-harmonic potentials whose
expressions can be also found in the book of Mura [19] (see equations 12.13
and 12.14) and are recalled in the appendix C. The strain field (44) for an
interior point (i.e. within the ellipsoidal domain) is linear according to the
vector position and can be put into the form:

εij(x) = Sijkpqrepqrxk (45)

where Sijkpqr are the components of the sixth order Eshelby tensor denoted
S. The associated stress field reads:

σij(x) = C0
ijmn(Smnkpqrepqr − emnk)xk. (46)

The components of the sixth order Eshelby tensor, S, have not been explicitly
derived in Mura [19]; their computation is detailed in appendix C and the final
expression is given below:

8π(1− ν0)Sijkpqr =
{

δijδkrδpq

[

TIPR + 2ν0IIR
]

+2Iijpqδkr

[

TIJR + (1− ν0)(IIR + IJR)
]

+2IpqkrδijTIKR + 2Iijkrδpq

[

TIJP + 2ν0IIJ
]

+2(Iijprδkq + Iijqrδkp)
[

TPQR + (1− ν0)IKR

]

+2(Iijkpδqr + Iijkqδpr)
[

TKPQ + (1− ν0)IKR

]}

a2R.

(47)

The following summation convention has been used: repeated lower case indices
are summed from 1 to 3; upper case indices (unlike in section 3) take on the
same values as the corresponding lower case ones but are not summed. For
example, in the monomial aiaibI , the repeated index is i and the upper case
index takes the same value as i; it gives: aiaibI = a21b1+a22b2+a23b3. The reader
can refer to Mura [19] for more details and examples about this summation
convention. The Iij and Tijk coefficients are defined by the following elliptic
integrals:

Iij = 2πa1a2a3

∫ +∞

0

ds

(a2i + s)(a2j + s)∆(s)
,

Tijk = 2πa1a2a3

∫ +∞

0

sds

(a2i + s)(a2j + s)(a2k + s)∆(s)

(48)

with: ∆(s) = (a21 + s)1/2(a22 + s)1/2(a23 + s)1/2. Note that Iij and Tijk are
invariant by any permutation of their indices. The closed form expressions of
the integrals appearing in (48) can be found in Moschovidis [17], Mura [19] for
the case of a spheroidal inhomogeneity and particularly for the special case of
a cylinder.
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Let us now come back to the inhomogeneity problem. Using the equivalent
Eshelby inclusion method, the eigenstrain ε∗ij(x) is chosen as:

ε∗ij(x) = −Yijpqεpq(x) (49)

where Yijpq is defined by:

Yijpq =

(

1− k

k0

)

Jijpq +

(

1− µ

µ0

)

Kijpq (50)

where k = λ+2µ/3 is the bulk modulus of the inclusion while k0 = λ0+2µ0/3
is the bulk modulus of the infinite matrix. In (50), Jijpq = δijδpq/3 andKijpq =
Iijpq−Jijpq where it is recalled that Iijpq = (δipδjq+δiqδjp)/2. The strain field
in the ellipsoidal inhomogeneity is also linear according to the vector position
and can then be written as εij(x) = aijkxk where aijk are the components of a
constant third order tensor a which possesses the symmetry with respect to its
two first indices. The strain field, solution of the inhomogeneity problem, is the
sum of: (i) the prescribed remote strain field ε∞ij = bijkxk, (ii) the disturbed
strain field due to the applied eigenstrain ε∗ij(x) = eijk where eijk is related
to aijk by eijk = Sijkpqrapqr. It follows that a is solution of a linear system on
the form (1) in which the components of A are given by:

Aijkpqr = Iijkpqr − SijkmnrYmnpq (51)

where it is recalled that Iijkpqr are the components of the sixth order identity
tensor having the minor symmetries (see section 4).

5.2 Closed-form solution for a cylindrical inhomogeneity

We propose here to consider the case of the cylindrical inhomogeneity. We
put a1 = a2 = a (a being the radius of the circular section), while a3 tends
to infinity. The second order Eshelby tensor S defined in equation (47) with
the definitions (48) can be represented along the basis (T1, ...,T31) where e3
is the direction of transverse isotropy. For the computation of the elements of
the compact representation of S, denoted {s1, s2, S1, S2, S3}, we use the base
change relations provided in appendix B. The final expressions for the compo-
nents of the Eshelby tensor are (see appendix D for the detailed expressions
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of coefficients sn in the case of a spheroidal inhomogeneity):

s1 =
1

4

3− 4ν0
1− ν0

, s2 = 0,

S1 =
1

4(1− ν0)




3− 4ν0 0

2(1− 2ν0) 2(1− ν0)



 ,

S2 =
1

2(1− ν0)








1 0 2ν0

2ν0 2(1− ν0) 2

0 0 0







,

S3 =
1

4(1− ν0)











4(1− ν0) 2 2ν0 2(1− 2ν0)

0 1 ν0 1

0 0 0 4(1− ν0)

0 0 0 2(1− ν0)











.

(52)

Tensor A, defined by (51), is also a transversely isotropic sixth order tensor.
Its representation by means of the symbolic notation A = {a1, a2, A1, A2, A3}
is then possible. For the computation of A, it is convenient to transform the
inner product SijkmnrYmnpq into a triple contraction between two sixth or-
der tensors: tensor S and tensor Y∗ whose components are Y ∗

ijkpqr = Yijpqδkr
where Yijpq is defined by (50). In this manner, tensor A can be rewritten as
A = I− S⊙3 Y

∗ where it is recalled that I is the identity for sixth order ten-
sors having minor symmetries and for the triple contraction ⊙3. The compact
representation of tensor Y∗ is {ξ, ξ, Y1, Y2, Y3} with:

Y1 =




ξ 0

0 ξ



 , Y2 =








(2κ+ ξ)/3 0 (κ− ξ)/3

0 ξ 0

2(κ− ξ)/3 0 (κ+ 2ξ)/3







,

Y3 =











ξ 0 0 0

(κ− ξ)/3 (2κ+ ξ)/3 (κ− ξ)/3 0

(κ− ξ)/3 2(κ− ξ)/3 (κ+ 2ξ)/3 0

0 0 0 ξ











(53)

in which κ and ξ are given by:

κ = 1− k

k0
, ξ = 1− µ

µ0

. (54)
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Finally, the inversion of A is performed by inverting the elements of its compact
representation. It leads to:

b1 =
4(1− ν0)

∆1

, b2 = 1, b3 = b1, b4 = 0, b5 =
4ξ(1− 2ν0)

(2− ξ)∆1

,

b6 =
2ξ

2− ξ
, b7 =

6(1− ν0)

∆2

, b8 = 0, b9 =
κ(1 + ν0)− ξ(1− 2ν0)

∆2

,

b10 = 2
2κ(1 + ν0)− ξ(2− ν0)

(1− ξ)∆2

, b11 =
1

1− ξ
,

b12 =
2κ(1 + ν0) + 2ξ(2− ν0)− 3κξ(1 + ν0)

(1− ξ)∆2

,

b13 = b14 = 0, b15 = 1, b16 =
12(1− ν0)− 2κ(1 + ν0)− ξ(1− 2ν0)

∆3

,

b17 = 2
2κ(1 + ν0) + ξ(1− 2ν0)

∆3

, b18 =
2κ(1 + ν0)− 2ξ(1− 2ν0)

∆3

,

b19 =
6ξ(1− 2ν0)

∆3

, b20 =
(κ− ξ)(1 + ν0)

∆3

,

b21 = 2
6(1− ν0)− κ(1 + ν0) + ξ(7ν0 − 5)

∆3

,

b22 =
(κ(1 + ν0)− ξ(1− 2ν0))(1− ξ)

∆3

, b23 =
3ξ(1− ξ)(1− 2ν0)

∆3

− ξ

2− ξ
,

b24 = b25 = 0, b26 = 1, b27 =
2ξ

2− ξ
, b28 = b29 = b30 = 0, b31 =

2

2− ξ

(55)

with:

∆1 = 4(1− ν0) + ξ(4ν0 − 3),

∆2 = 6(1− ν0)− 2κ(1 + ν0)− ξ(1− 2ν0),

∆3 = 12(1− ν0)− 4κ(1 + ν0) + ξ(16ν0 − 11) + 2κξ(1 + ν0) + ξ2(1− 2ν0)

(56)

which allows the explicit computation of the strain field inside the cylinder
produced by the heterogeneity problem.

6 Conclusion

In this paper we have provided two new results:

• The first concerns the linear algebra of transversely isotropic sixth order
tensors having the minor symmetries. For this class of symmetry, it has
been shown that any sixth order tensor depends on 31 independent coeffi-
cients. An irreducible basis for such tensors has then been provided as well
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as a representation by means of two scalars and three matrices of dimen-
sions 2, 3, and 4. This formalism is shown to be very useful for performing
the classical tensorial operations since it reduces to matrix operations on
matrices possessing small dimensions.

• The second result has concerned the area of micromechanics of heteroge-
nous materials. More precisely, we have derived the strain field occurring
within a cylindrical elastic inhomogeneity embedded in an infinite elastic
matrix and submitted to a remote gradient of strain. The Eshelby equiv-
alent method, which has been employed for deriving the closed-form solu-
tion, requires the inversion of a transversely isotropic sixth order tensor for
which the tensorial formalism introduced in the first part of the paper has
been used.

The compact representation proposed in this paper for transversely isotropic
sixth order tensor could be also used for deriving various results in the con-
text of micromechanics of heterogeneous material (for instance, the problems
related to the interaction between two inhomogeneities [24]). Moreover, this
tensorial formalism can be also used for deriving the condition of positiveness
of elastic energy of generalized continuum theories (as already done in the case
of isotropic materials in [16]).
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A Demonstration of the completeness and irreducibility of the
Tn(a)

We aim at proving that the third order tensors Tn(a), defined by relations (31), are linearly
independent. Consider then the following third order tensor c defined by:

c =
∑

n

ϕnT
n(a). (57)
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Replacing in relations (36) tensor b by c and coefficients an by ϕn, the condition c = 0 leads
to:























































































































ϕ1T
1(a) = 0,

ϕ2T
2(a) = 0,

ϕ3T
3(a) + ϕ4T

4(a) = 0,

ϕ5T
5(a) + ϕ6T

6(a) = 0,

ϕ7T
7(a) + ϕ8T

8(a) + ϕ9T
9(a) = 0,

ϕ10T
10(a) + ϕ11T

11(a) + ϕ12T
12(a) = 0,

ϕ13T
13(a) + ϕ14T

14(a) + ϕ15T
15(a) = 0,

ϕ16T
16(a) + ϕ17T

17(a) + ϕ18T
18(a) + ϕ19T

19(a) = 0,

ϕ20T
20(a) + ϕ21T

21(a) + ϕ22T
22(a) + ϕ23T

23(a) = 0,

ϕ24T
24(a) + ϕ25T

25(a) + ϕ26T
26(a) + ϕ27T

27(a) = 0,

ϕ28T
28(a) + ϕ29T

29(a) + ϕ30T
30(a) + ϕ31T

31(a) = 0.

(58)

Using the defintions for the Tn(a) (see relations (31)), it can be easily show that the above
relations also read:























































































































ϕ1w = 0,

ϕ2v
a = 0,

ϕ3u+ 2ϕ4v
s = 0,

ϕ5u+ 2ϕ6v
s = 0,

ϕ7α+ 2ϕ8β + ϕ9γ = 0,

ϕ10α+ 2ϕ11β + ϕ12γ = 0,

ϕ13α+ 2ϕ14β + ϕ15γ = 0,

2ϕ16p+ ϕ17q + ϕ18r + ϕ19s = 0,

2ϕ20p+ ϕ21q + ϕ22r + ϕ23s = 0,

2ϕ24p+ ϕ25q + ϕ26r + ϕ27s = 0,

2ϕ28p+ ϕ29q + ϕ30r + ϕ31s = 0.

(59)

Quantities α, β, γ, p, q, r, s, u, vs, va, w being linearly independents, the above linear
system is verified iff ϕn = 0 for n = 1..31.
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B Base change relations

Here we provide the expressions of coefficients an for n = 1..31, as defined in (34), as
functions of the components Aijkpqr:

a1 = Aijkpqrπipπjqπkr/3− 5Aijkpqrπijπpqπkr/24

+Aijkpqrπikπpqπjr/12−Aijkpqrπikπjqπpr/3 +Aijkpqrπirπkqπpr/3,

a2 = Aijkpqrπjqπkrninp −Aijkpqrπjrπqkninp,

a3 = Aijkpqrπipπjqnknr/2−Aijkpqrπijπpqnknr/4,

a4 = Aijkpqrπiqπjrnpnk/2−Aijkpqrπijπqrnpnk/4,

a5 = Aijkpqrπjpπkqninr −Aijkpqrπjkπpqninr/2,

a6 = Aijkpqrπjqπkrninp/2 +Aijkpqrπjrπqkninp/2−Aijkpqrπjkπqrninp/2,

a7 = Aijkpqrπijπpqnknr/2, a8 = Aijkpqrπijπqrnpnk/2,

a9 = Aijkpqrπijnpnqnknr/2, a10 = Aijkpqrπjkπpqninr,

a11 = Aijkpqrπjkπqrninp, a12 = Aijkpqrπiknpnqnjnr,

a13 = Aijkpqrπpqninjnknr, a14 = Aijkpqrπprninjnknq ,

a15 = Aijkpqrninjnknpnqnr,

a16 = Aijkpqrπikπjqπpr/3−Aijkpqrπirπkqπpr/3,

−Aijkpqrπijπpqπkr/6 +Aijkpqrπipπjqπkr/6 +Aijkpqrπikπpqπjr)/6,

a17 = Aijkpqrπikπpqπjr/2−Aijkpqrπijπpqπkr/4,

a18 = Aijkpqrπikπjrnpnq/2−Aijkpqrπijπkrnpnq/4,

a19 = Aijkpqrπikπjqnpnr −Aijkpqrπijπqknpnr/2,

a20 = Aijkpqrπijπpqπkr/4−Aijkpqrπipπjqπkr/4

−Aijkpqrπikπpqπjr/4 +Aijkpqrπirπkqπpr/2,

a21 = 3Aijkpqrπijπpqπkr/8−Aijkpqrπikπpqπjr)/4,

a22 = 3Aijkpqrπijπkrnpnq/8−Aijkpqrπikπjrnpnq/4,

a23 = 3Aijkpqrπijπqknpnr/4−Aijkpqrπikπjqnpnr/2,

a24 = Aijkpqrπpkπqrninj/2, a25 = Aijkpqrπpqπkrninj/2,

a26 = Aijkpqrπkrninjnpnq/2, a27 = Aijkpqrπpkninjnqnr,

a28 = Aijkpqrπjpπrqnink/2, a29 = Aijkpqrπjrπpqnink/2,

a30 = Aijkpqrπirnpnqnknj/2, a31 = Aijkpqrπipnjnqnknr.

(60)
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C Derivation of the components of the sixth order Eshelby tensor

The expressions of the harmonic potential Φi and of the biharmonic potential Ψi can be
found in Mura [19] (see equations 12.13 and 12.14).They read:

Φr = a2RxrVR,

Ψr,i = −
1

4
δira

2
R

{

(V − xkxkVK)− a2R(VR − xkxkVRK)
}

+a2Rxrxi(VI − a2RVIR).

(61)

For an interior point (within the inhomogeneity), Φr and Ψr are polynomial functions re-
spectively of rank 3 and 5. The sixth order Eshelby tensor is then given by:

8π(1− ν0)S
0
ijkpqr = Ψr,pqijk − 2ν0Φr,ijkδpq

−(1− ν0)(Φr,jkqδip + Φr,ikqδjp + Φr,jkpδiq + Φr,ikpδjq)
(62)

where the Vi..j are given, for an interior point, by:

Vi..j =
1

2
(Ii..j − xkxkIi..jK) (63)

and the Ii..j integrals are defined by:

Ii..j = 2πa1a2a3

∫

+∞

0

ds

(a2i + s)...(a2j + s)∆(s)
. (64)

The derivatives of Vi..j read (see Mura 1987, eq. 11.40.3):

Vi..j,k = −xkIi..jK . (65)

It can then be shown that:

Φr,i = a2RδirVR − a2RxrxiIIR,

Φr,ij = −a2RδirxjIJR − a2R(δjrxi + δijxr)IIR,

Φr,ijk = −2a2RIijkrIIJ − a2RδijδkrIIR,

Ψr,ijkpq = {δijδkrδpqTIPR + 2IijpqδkrTIJR + 2IpqkrδijTIKR

+2IijkrδpqTIJP + 2(Iijprδkq + Iijqrδkp)TPQR

+2(Iijkpδqr + Iijkqδpr)TKPQ}a2R

(66)

where the Tijk are related to the Ii..j integrals by:

Tijk = Iijka
2
K − Iij = Iijka

2
J − Iik = Iijka

2
I − Ijk. (67)

The Tijk are invariant by any permutation of the indices i, j, k. An integral expression for
the Tijk is also given in equation (48). It is obtained by replacing the Ii..j in (67) by their
expression given by (64). Finally, from (62) and (66), it is easy to obtain expression (47).
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D Components of the second order Eshelby tensor for spheroidal
inhomogeneities

We consider here the case of a spheroidal inhomogeneity. We put a1 = a2 = b and a3 = a.
By ǫ = a/b we define the aspect ratio of the spheroid. Expressions for Iij and Tijk are:

I11 = I22 = I12 =
π(3b2(η − 1) + 2a2)

2b2(a2 − b2)
, I13 = I23 =

2π(1− 3η)

a2 − b2
,

I33 =
4π(3ηa2 − b2)

3a2(a2 − b2)
,

T111 = T112 = T122 = T222 =
π(6a2b2(2− 3η) + 3b4(η − 1)− 4a4)

12b2(a2 − b2)2
,

T113 = T123 = T223 =
π(3b2(η − 1) + 12ηa2 − 2a2)

2(a2 − b2)2
,

T133 = T233 =
2π(b2(5− 9η)− 6a2η)

3(b2 − a2)2
,

T333 =
4π(3a2(5η − 1)− 2b2)b2

15a2(b2 − a2)2

(68)

where η is defined by:

η =















ab2

c3
arctanh

{ c

a

}

−
b2

c2
(prolate spheroid)

−
ab2

c3
arctan

{ c

a

}

+
b2

c2
(oblate spheroid)

(69)

The introduction of η allows to produce various equations which are valid for both the case
of an oblate spheroid (a ≤ b) and a prolate spheroid (b ≥ a). Due to the symmetries of the
problem, the second order Eshelby tensor is transversely isotropic and a representation of
this tensor along the basis (T1, ...,T31) is then possible:

S =
n=31
∑

n=1

snTn (70)
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where the sn for n = 1..31 are defined by:

s1 =
3T111 + 4(1− ν0)I11

4π(1− ν0)
b2, s2 =

I13

4π
b2,

s3 =
T113 + 2(1− ν0)I13

4π(1− ν0)
a2, s4 =

T113 + (1− ν0)I13

4π(1− ν0)
b2,

s5 =
T113 + (1− ν0)I13

2π(1− ν0)
a2, s6 =

2T113 + (1− ν0)(2I11 + I13)

4π(1− ν0)
b2,

s7 =
T113 + I13

2π(1− ν0)
a2, s8 =

2T113 + (1− ν0)I13

4π(1− ν0)
b2,

s9 =
3T133 + 2ν0I13

8π(1− ν0)
a2, s10 =

2T113 + (1 + ν0)I13

2π(1− ν0)
a2,

s11 =
4T113 + (1− ν0)(4I11 + I13)

4π(1− ν0)
b2, s12 =

3T133 + 2I13

4π(1− ν0)
a2,

s13 =
3[T133 + 2ν0I33]

4π(1− ν0)
a2, s14 =

3T133 + 2I13 − 2ν0I13

4π(1− ν0)
b2,

s15 =
3[5T333 + 2(2− ν0)I33]

8π(1− ν0)
a2, s16 =

3T111 + (3− 2ν0)I11

2π(1− ν0)
b2,

s17 =
3T111 + 2I11

2π(1− ν0)
b2, s18 =

T113 + 2ν0I11

4π(1− ν0)
b2,

s19 =
T113 + (1− ν0)I13

2π(1− ν0)
a2, s20 =

3T111 + I11

4π(1− ν0)
b2,

s21 =
3T111 + 2I11

4π(1− ν0)
b2, s22 =

T113 + 2ν0I11

8π(1− ν0)
b2,

s23 =
T113

4π(1− ν0)
a2, s24 =

2T113 + ν0I13

4π(1− ν0)
b2,

s25 =
T113 + ν0I13

2π(1− ν0)
b2, s26 =

3T133 + 2(2− ν0)I13

8π(1− ν0)
b2,

s27 =
3T133 + 2(1− ν0)I13

4π(1− ν0)
a2, s28 =

4T113 + (3− ν0)I13

8π(1− ν0)
b2,

s29 =
2T113 + (1 + ν0)I13

4π(1− ν0)
b2, s30 =

3T133 + 2I13

8π(1− ν0)
b2,

s31 =
3T133 + (1− ν0)(3I33 + I13)

4π(1− ν0)
a2.

(71)


