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ROBUST STABILITY OF TIME-VARYING DELAY SYSTEMS: THE

QUADRATIC SEPARATION APPROACH†

Yassine Ariba, Frédéric Gouaisbaut, and Karl Henrik Johansson

ABSTRACT

In this article, we are interested in analysing stability ofsystems that
incorporate time-varying delays in their dynamics. The Lyapunov-Krasovskii
approach is definitely the most popular method to address this issue and
many results have proposed new functionals and enhanced techniques for
deriving less conservative stability conditions. In this present work, we
propose an original approach: the quadratic separation. Tothis end, the delay
operator properties are exploited to provide delay range stability conditions. In
particular,L2-norm of delay-dependent operators are computed so as to reduce
the conservatism of the approach. Moreover, the main resultis able to assess
the stability of non-small delay systems, i.e, it can detecta stability interval
for systems that are unstable without any delay. Several examples illustrate the
benefit of our methodology.

I. INTRODUCTION

Time delay system is a subclass of
infinite dimensional systems that has been frequently
employed since it can easily model commonly arising
transport and propagation phenomena. Delays can
be encountered in many processes such as biology,
chemistry, economics, population dynamics [2] as well
as in networks [3]. Unfortunately, delays are the origin
of performance and stability degradation, which thus
have motivated a lot of work. In the case of constant
delay, and unperturbed linear systems, efficient criteria
exist based on root loci techniques (see [4] for a recent
review). For the case of uncertain linear systems, the
problem has been partially solved, either by using
Lyapunov functionals [5, 6, 7] or robustness tools such
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as small gain theorem, integral quadratic constraints [5]
and quadratic separation [8]. The proposed conditions
are often rather conservative since they produce
inner approximations of the stability regions, although
recent techniques [8], [9] reduce the conservatism
by introducing redundant equations and new decision
variables in the optimization problems. Then, these
results have been extended to time varying delay
systems either using adapted Lyapunov-Krasovskii [9,
10, 11, 12, 13, 14, 15, 16] or robustness tools [17, 18,
19]. These latter methodologies often require, explicitly
or implicitly, the delay-free system to be stable, which
is a rather important restriction.

This paper aims at providing a novel approach
to address time-varying delay system stability. More
precisely, we propose criteria based on an extension of
the quadratic separation principle [20], [21]. They are
then expressed in terms of Linear Matrix Inequalities
(LMIs) which may be solved efficiently with Semi-
Definite Programming (SDP). In this method, the key
idea is how to model the operators that define the
system. At first, redundant equations are introduced
to construct an augmented model that relates the
state vector, its derivative and the delay. Then, a new
operator is proposed to refine the modelling of the
delay dynamic. At last, using the quadratic separation
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framework with an appropriate modelling, we provide
the main result: a delay range stability condition (where
the delay h is belonging to a prescribed interval
[hmin, hmax]). Differently from most of papers on this
topic [13, 22], this condition is able to detect pockets
of stability even in case of unstable delay-free systems.
We emphasize that we do not intend to present an
additional less conservative criterion that outperforms
all existing results for non small delays but rather an
original methodology to cope with systems which are
unstable for sufficiently small delays.

The outline of the paper is as follows. In Section
II , some preliminaries are presented and we state
our quadratic separation theorem as well as a set of
useful operators. In sectionIII , this latter prior result
is exploited to derive a stability condition for time-
varying delay systems. Then, an additional operator
is inserted for the conservatism reduction. At last,
numerical examples that show the effectiveness of the
proposed criterion are provided in sectionIV. Section
V concludes the paper.

Notations: Throughout the paper, the following
notations are used. The setLn

2 consists of all
measurable functionsf : R+ → Cn such ‖f‖L2

=
(

∞∫

0

(f∗(t)f(t))

)1/2

dt <∞. When context allows it,

the superscriptn of the dimension will be omitted. The
setLn

2e denotes the extended set ofLn
2 which consists

of the functions whose time truncation lies inLn
2 . For

two symmetric matrices,A andB, A > (≥) B means
thatA−B is (semi-)positive definite.AT denotes the
transpose ofA. 1n and0m×n denote, respectively, the
identity matrix of sizen and null matrix of sizem×
n. If the context allows it, the dimensions of these
matrices are omitted.diag(A1, . . . , Ak) stands for the
block diagonal matrix withA1, . . . , Ak on the diagonal.
Introduce as well the truncation operatorPT such that:

PT (f) = fT =

{
f(t), t ≤ T,
0, t > T.

II. PRELIMINARIES

2.1. Problem statement

Consider the following time-varying delay system:
{
ẋ(t) = Ax(t) +Adx(t− h(t)) ∀t ≥ 0,
x(t) = φ(t) ∀t ∈ [−hmax, 0],

(1)
where x(t) ∈ Rn is the state vector,φ is the initial
condition andA,Ad ∈ Rn×n are constant matrices. The

delayh is time varying with

h(t) ∈ [hmin, hmax] and |ḣ(t)| ≤ d, (2)

wherehmin, hmax andd are given positive constants. In
this work, we aim at assessing the stability of system
(1) via the quadratic separation principle originally
developed for robust control in [23]. We will show that
various criteria, related to the available informations on
the delay, can be derived choosing appropriately a set of
operators.

2.2. Stability analysis via quadratic separation

The quadratic separation provides a fruitful
framework to address stability of non-linear and
uncertain systems [20], [21]. Recent studies [8] have
shown that such a framework reduces significantly the
conservatism of the stability analysis of time-delay
systems with constant delay. In this paper we extend this
method to time varying delay systems, which involves
the development of results for a new set of operators.
Consider the interconnection in Figure1 whereE andA
are two, real valued, possibly non-square, matrices and
∇ is a linear operator fromL2e to L2e. For simplicity,
we assume thatE is full column rank. Assuming well-
posedness, we are interested in looking for conditions
that ensure stability of the interconnection.

+

+

zw

w̄

z̄

w − w̄ = ∇z

E(z − z̄) = Aw

Fig. 1. Feedback system.

Theorem 1 The interconnected system of Figure1
is stable if there exists a symmetric matrixΘ = ΘT

satisfying both conditions

[
E −A

]⊥T

Θ
[
E −A

]⊥
> 0 (3)

∀u ∈ L2e, ∀T > 0, 〈

[
1

PT∇

]

uT ,Θ

[
1

PT∇

]

uT 〉 ≤ 0

(4)
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PROOF : Inspired from [20], the proof is detailed in
[18]. ♦
This result includes two conditions: a matrix inequality
(3) related to the lower block of the feedback system
and an inner product (4) that states an Integral Quadratic
Constraint (IQC) on the upper block. It will be used
throughout the paper to prove stability of systems under
consideration.

2.3. Some suitable operators

It is required to define appropriate operators to
model the time-delay system (1) as the feedback
system in Figure1. Clearly, two operators are essential,
reflecting the dynamics and the delay: the integral
operator

I : L2e → L2e,

x(t) →
t∫

0

x(θ)dθ,
(5)

and the delay operator (or shift operator)

D : L2e → L2e,
x(t) → x(t− h),

(6)

The next step is to characterize the two operators by the
use of IQCs introduced in the following two lemmas,
which are used to derive stability criteria for time-delay
systems in the next section.

Lemma 1 An IQC for the operatorI is given by the
following inequality:∀x ∈ Ln

2e and∀P > 0,

〈

[
1n

PTI1n

]

xT ,

[
0 −P

−P 0

] [
1n

PTI1n

]

xT 〉 ≤ 0.

PROOF: Simple calculus shows that∀T > 0, ∀x ∈ Ln
2e,

〈

[
1n

I1n

]

x,

[
0 −P

−P 0

] [
1n

I1n

]

x〉

= −2
T∫

0

x(t)TP
t∫

0

x(s)ds dt

= −2
T∫

0

d
dt (Ix)

TP (Ix)dt

= −(
∫ T

0
x(s)ds)TP (

∫ T

0
x(s)ds) ≤ 0

♦

Lemma 2 An IQC for the operatorD is given by the
following inequality:∀T > 0, ∀x ∈ Ln

2e and∀Q > 0,

〈

[
1n

PTD1n

]

xT ,

[
−Q 0

0 Q(1− ḣ)

] [
1n

PTD1n

]

xT 〉 ≤ 0.

(7)

PROOF : We get that∀T > 0, ∀x ∈ Ln
2e,

〈

[
1n

D1n

]

x,

[
−Q 0

0 Q(1− ḣ)

] [
1n

D1n

]

x〉

= −
∫ +∞

0
xT (u)Qx(u)du+

∫∞

0
xTd (t)Qxd(t)(1− ḣ(t))dt

= −
∫ +T

0
xT (t)Qx(t)dt +

∫ T−h(T )

−h(0)
xT (u)Qx(u)du

= −
∫ T

T−h(T )
x(u)TQx(u)du ≤ 0

wherexd(t) = x(t− h(t)). ♦
Since the IQC for the delay operatorD do not depend
on h, it is clear that it will induce some conservatism.
As an example, in the constant delay case, the IQC
defined by Lemma2 is equivalent to that the delay
operator is replaced by a norm-bounded uncertainty.
The phase ofe−hs is not taken into account. This can
be approached by the operatorδ1(s) = 1−e−hs

s , [19]. It
can be embedded as a norm bounded uncertainty:

sup
ω

∥
∥
∥
∥

1− e−jωh

jω

∥
∥
∥
∥
≤ hmax.

The operator can also be interpreted in the first-order
Taylor remainder of the exponential functione−hs:

e−hs = 1− hsδ1(s).

Following the same idea, we formulate now the time-
varying counterpart by considering a new operatorF
defined as follows:

F : L2e → L2e,

x(t) →
t∫

t−h(t)

x(s)ds. (8)

Its characterization through an IQC can be derived as
follows:

Lemma 3 An IQC for the operatorF = (1−D) ◦ I is
given by the following inequality:∀x ∈ Ln

2e,

〈

[
1n

PTF1n

]

xT ,

[
−h2maxR 0

0 R

] [
1n

PTF1n

]

xT 〉 ≤ 0,

wherehmax is the upperbound on the delayh(t) andR
is some positive definite matrix.
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PROOF : See [19] or [18]. ♦

The operatorF = (1 −D) ◦ I can be slightly trans-
formed as F̄ = 1

h(t)F . The corresponding integral
constraint is then expressed as follows.

Lemma 4 An IQC for the operatorF̄ is given by the
following inequality:∀T > 0, ∀x ∈ Ln

2e, ∀R > 0,

〈

[
1n

PT F̄1n

]

xT ,

[
−hmaxR 0

0 h(t)R

] [
1

PT F̄1n

]

xT 〉 ≤ 0.

PROOF : Omitted. ♦

An interesting contribution of this work is then the
introduction of a novel operator that improves the
modelling of the delay dynamic. This operator is related
to the Taylor remainder of order two:

H =
I2 −DI2 − h(t)I

h(t)
: x(t) →

1

h(t)

t∫

t−h(t)

t∫

s

x(θ)dθds.

(9)
The following lemma gives a parameterized constraint
onH.

Lemma 5 An IQC for the operatorH is given by the
following inequality:∀T > 0, ∀x ∈ Ln

2e, ∀S > 0,

〈

[
1n

PTH1n

]

xT ,

[

−
h2

max

2 S 0

0 2S

] [
1n

PTH1n

]

xT 〉 ≤ 0.

PROOF : Note that

‖Hx‖2 =
1

h2(t)






t∫

t−h(t)

t∫

s

x(θ)dθds






T 




t∫

t−h(t)

t∫

s

x(θ)dθds






Using Cauchy-Schwartz inequality and setting̃H =

Hh(t), ∀T > 0, ∀x ∈ Ln
2e, we get the following

inequality,

‖H̃x‖2 ≤






t∫

t−h(t)

t∫

s

dθds











t∫

t−h(t)

t∫

s

‖x(θ)‖2dθds




 ,

‖H̃x‖2

h2(t)/2
≤

t∫

t−h(t)

t∫

s

‖x(θ)‖2dθds,

∫ ∞

0

2

h2(t)
‖H̃x‖2dt ≤

∞∫

0

0∫

−hmax

0∫

s

‖xt(θ)‖
2dθdsdt,

∫ ∞

0

2

h2(t)
‖H̃x‖2dt ≤

h2max

2

∫ ∞

0

‖x(t)‖2dt.

Hence, we get

∫ ∞

0

2

h2(t)
‖H̃x‖2 −

h2max

2
‖x(t)‖2dt ≤ 0,

which concludes the proof. ♦

This result is a key result for the main theorem
because it allows to build a stability condition that does
not require the system to be stable for small delays as
we will see in sectionIV.

III. MAIN RESULTS

We present in this section the main results of
the article which is based on the quadratic separation
framework already used for constant delay systems.
This approach allows us to establish the main theorem
for the robust delay range stability analysis.

3.1. Methodology

To illustrate the proposed methodology, let us
reformulate the system (1) as the feedback in Figure1.
As a first modelling, the system (1) can be described as
the feedback




x(t)
x(t− h(t))

x(t)− x(t− h(t))





︸ ︷︷ ︸

w(t)

=





I1n 0 0

0 D1n 0

0 0 F1n





︸ ︷︷ ︸

∇





ẋ(t)
x(t)
ẋ(t)





︸ ︷︷ ︸

z(t)

,

(10)
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with





1 0 0

0 1 0

−1 0 1

0 0 0






︸ ︷︷ ︸

E

z(t) =






A Ad 0

1 0 0

0 0 0

1 −1 −1






︸ ︷︷ ︸

A

w(t). (11)

Then, according to Theorem1, we have to find
a separatorΘ that fulfills both inequalities (3)-(4).
Combining the three constraints related to the different
operators (stated by the lemmas in Section2.3), a global
(conservative) constraint on∇ is deduced. Hence, the
matrix

Θ =











0 0 0 −P 0 0

0 −Q 0 0 0 0

0 0 −h2maxR 0 0 0

−P 0 0 0 0 0

0 0 0 0 Q(1− ḣ(t)) 0

0 0 0 0 0 R











(12)
whereP , Q andR aren× n positive definite matrices,
satisfies the inequality (4). The interconnected system
(10)-(11) (and therefore system (1)) is thus stable if
the matrix inequality (3), with E , A andΘ defined as
(11) and (12), holds. Because of the occurrences of
hmax and ḣ(t) in the criterion, it is refered to asdelay
and rate dependent. Settingḣ(t) = d in the separator,
the condition becomes a single LMI that can be easily
solved via SDP.

Remark 1 It has been shown in [18] that the above
criterion, based on the three operators, provides the
same results in terms of conservativeness as several
classical results of the literature [6, 24]. Indeed,
such a particular choice of operators and separator
amounts to choosing a Lyapunov-Krasovskii functional
candidate of the form:

V (xt) = xTt (0)Pxt(0) +

0∫

−h(t)

xTt (θ)Qxt(θ)dθ

+

0∫

t−hm

0∫

θ

ẋTt (s)Rẋt(s)dsdθ.

Further discussions on the quadratic separation method
and the Lyapunov-Krasovskii counterpart for the
constant delay case can be found in [8]. Other authors
have emphasized the links between the Lyapunov
method and the robust analysis in general, e.g., [11, 23,
25].

Remark 2 A simpler criterion can be derived by
removingF from∇. In that case, the stability condition
is independent of the delay because no information on
the size ofh(t) (for instance,hmax) appears in the
matricesE , A and Θ. However, a bound oṅh is still
required.

Remark 3 Because the inequality in the Lemma2
imposes a constraint on the delay variationḣ(t), a rate
independent condition can be obtained if the system
(1) is represented only through the first and the third
operators of (10).

In the next sections, we investigate new operators
for the delayed dynamics. The objective is to reduce
the conservatism of the stability analysis by taking
into account some further informations on the delay.
Throughout the paper we will apply the following
procedure:

(a) Rewrite the delay system (1) as an interconnected
feedback.

(b) Embed the integrator, the delay and other
auxiliary operators into the matrix∇.

(c) Construct IQCs for∇.

(d) Establish the LMIs of Theorem1 and compute the
separatorΘ.

3.2. Model extension

By extending the dynamics of the time-delay
system, it is possible to achieve less conservative
results, see [26, 8, 27]. An augmented state is composed
of the original state vector and its derivative. By
defining relationship between augmented stateẋ, ẍ,
the delayh and its derivativėh, an enhanced stability
condition is provided. Differentiating the system (1), we
get:

ẍ(t) = Aẋ(t) + (1− ḣ(t))Adẋ(t− h(t)).

Consider
{
ẋ(t) = Ax(t) +Adx(t− h(t)),

ẍ(t) = Aẋ(t) + (1− ḣ(t))Adẋ(t− h(t)).
(13)

Introduce the augmented state

ς(t) =

[
ẋ(t)
x(t)

]

, (14)

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
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so by specifying the relationship between the two
components ofς(t) with the equality [0 1]ς̇(t) =
[1 0]ς(t), we have the descriptor system

Eς̇(t) = Āς(t) + Ādς(t− h(t)), (15)

where

E =





1 0

0 1

1 0



 , Ā =





A 0

0 A
0 1



 ,

Ād =





Ad 0

0 (1− ḣ(t))Ad

0 0



 .

3.3. Delay range stability condition

We now model the augmented time-varying delay
system (15) through the new set of operators:






ς(t)
ςd(t)
w1(t)
w2(t)






︸ ︷︷ ︸

w(t)

=






I12n 0 0 0

0 D12n 0 0

0 0 F̄12n 0

0 0 0 H1n






︸ ︷︷ ︸

∇






ς̇(t)
ς(t)
ς̇(t)
ẍ(t)






︸ ︷︷ ︸

z(t)

(16)
with

ςd(t) = ς(t− h(t)),

w1(t) =
ς(t)− ς(t− h(t))

h(t)
,

w2(t) = ẋ(t)−
x(t)− x(t− h(t))

h(t)
= E1ς(t)− E2w1(t)

andE1 =
[
1 0

]
andE2 =

[
0 1

]
. Then, accord-

ing to the Lemmas (1)-(5), the separator

Θ =

[
Θ11 Θ12

∗ Θ22

]

, (17)

Θ11 = diag
(
02n,−Q ,−hmaxR,−

h2

max

2
S
)
,

Θ12 = diag
(
− P, 05n

)
,

Θ22 = diag
(
02n, (1− ḣ(t))Q , h(t)R, 2S

)
,

with some positive definite matricesP ,Q,R ∈ R
2n×2n

andS ∈ Rn×n, fulfils the requirement (4) of Theorem
1. Consequently, the stability of (15) (and thus (1))
holds if

ξT (t)Θ(h(t), ḣ(t))ξ(t) > 0 (18)

such that
[
E −A

]
ξ(t) = 0 with ξ =

[
z(t)
w(t)

]

. This

condition is equivalent to (3) of Theorem1. Condition
(18) can be rewritten as another equivalent condition

ψT (t)NT (ḣ(t))Θ(ḣ(t))N(ḣ(t))ψ(t) > 0, (19)

whereψ =






x(t)
ς(t− h(t))
w1(t)
w2(t)




, such thatS(h(t))ψ(t) = 0

with

S =





A −1 Ad −1h(t) 0 0

1 0 −1 0 −1h(t) 0

A 0 Ad 0 −1 −1





(20)
and

N =

















AA Ad(1− ḣ) AAd

A 0 Ad

A 0 Ad

1 0 0

AA Ad(1− ḣ) AAd

A 0 Ad

AA Ad(1− ḣ) AAd

A 0 Ad

08n×3n

16n

















.

(21)
Applying Finsler’s lemma, we note that condition (19)
is equivalent to

NT (ḣ(t))ΘN(ḣ(t)) +XS(h(t)) + ST (h(t))XT > 0.
(22)

It is easy to show thatNT (ḣ(t))ΘN(ḣ(t)) is affine,
and thus convex, inh and ḣ. So condition (22) has to
be assessed only at the four vertices of the polytop
generated by the intervals ofh(t) andḣ(t). We are now
in a position to state our main result.

Theorem 2 For given positive scalarsd, hmin and
hmax, if there exist positive definite matricesP , Q,
R ∈ R2n×2n, a positive definite matrixS ∈ Rn×n and
a matrix X ∈ R6n×3n, then the system (1) with a
time-varying delay constrained by (2) is asymptotically
stable if the LMI (22) holds for ḣ(t) ∈ {−d, d} and
h(t) ∈ {hmin, hmax}.

Remark 4 Most of the papers in the literature provide
the so-called delay dependent stability condition using
the Lyapunov-Krasovskii method (see for example [6,
24, 28, 29]). Basically, a stable delay-free system
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is considered and the maximal value of the delay
that preserves the stability is looked for. Recently,
some papers have studied the problem of finding the
largest delay interval[hmin, hmax] for which the delay
system is stable. In that case, the Lyapunov-Krasovskii
functionnal depends explicitly on the delayh(t), but
also on the lower and upper bound [30, 13, 14, 22]. In
these papers, they explore tightly the relations between
x(t− hmin) and x(t − hmax) through the use of well-
fitted Lyapunov-Krasovskii functionals. Nevertheless,
their results are restricted to the case of a stable
delay free system, i.e. a stable matrixA+Ad. We
address in this paper the tricky case of the delay range
condition where the delay belongs to an interval (h(t) ∈
[hmin, hmax]) and the system may be unstable for small
delays.

3.4. Robust stability

Quadratic separation provides a suitable frame-
work for stability analysis of uncertain delay systems:

ẋ(t) = A(∆)x(t) +Ad(∆)x(t− h(t)) (23)

where
[
A(∆) Ad(∆)

]
=

[
A Ad

]
+B∆

[
C Cd

]
.

The second term of the right hand side describes the
uncertainty characterizing system (23). The uncertain
time-varying matrix∆(t) satisfies

∆T (t)∆(t) ≤ 1, ∀t ≥ 0, ∀∆ ∈ Ω, (24)

and models non-linear and neglected dynamics as well
as parametric uncertainties. The matricesB, C andCd

are constant and of appropriate dimensions. According
to the set of admissible uncertainties and (24), we have
to find a separatorU such that

〈

[
1

∆

]

x,

[
U1 U2

U∗
2 U3

]

︸ ︷︷ ︸

U

[
1

∆

]

x〉 < 0, ∀∆ ∈ Ω.

(25)
For instance, assumeΩ is a set of diagonal real-valued
matrices with bounded uncertainties:

Ω =
{
∆ = diag(δ1, ..., δN ) | |δi| ≤ δ̄i

}
.

Then, inequality (25) holds with

U = diag
(
−δ̄21u1, . . . ,−δ̄

2
NuN , u1, . . . , uN

)

whereui, i = 1, ..., N , are scalar decision variables. We
propose to analyze the robust stability of system (23)
with the following theorem.

Theorem 3 For given positive scalarshmax and d, if
there exists positive definite matricesP , Q, R ∈ Rn×n

and matricesU1, U2, U3 such that (25) holds, then
system (23) with a time-varying delay constrained by
(2) is asymptotically stable for any uncertainty∆ ∈ Ω
if the LMI condition (3) holds withΘ, E andA defined
as follows:

Θ =

[
Θ11 Θ12

Θ∗
12 Θ22

]

,
Θ11 = diag(0n,−Q ,−h2

maxR,U1),
Θ12 = diag(−P, 02n,U2),
Θ22 = diag(0n, (1− d)Q ,R,U3),

(26)

E =








1n 0 0 0

0 1n 0 0

−1n 0 1n 0

0 0 0 1n

0 0 0 0







,

A =








A Ad 0 B
1n 0 0 0

0 0 0 0

C Cd 0 0

1n −1 −1 0







.

(27)

PROOF : First, introducing the exogenous signals

w∆ = ∆z∆, with z∆ = Cx(t) + Cdx(t − h(t)),

we rewritte system (23) as the interconnection of






x(t)
x(t− h(t))

x(t)− x(t − h(t))
w∆(t)






︸ ︷︷ ︸

w(t)

= ∇






ẋ(t)
x(t)
ẋ(t)
z∆(t)






︸ ︷︷ ︸

z(t)

with ∇ = (I1n,D1n,F1n,∆) and

Ez(t) = Aw(t), (28)

E and A are defined in (27). Combining every IQC
related to each operators defined by lemmas and the
struture of the uncertainty leading to (25), a separator
of the form of (26) fulfills the requirement (4). Finally,
condition (3) provides the robust (with respect to the
uncertain setΩ) stability criterion. ♦

For the sake of simplicity, Theorem3 is given only
with the two operatorsD andF . In the case of time
invariant uncertainties, it is easy to extend to the third
operatorH. If ∆ is time-dependent, the model extension
(Subsection3.2) is however more tricky to apply and a
good knowledge of the uncertainty is required.
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IV. NUMERICAL EXAMPLES

We illustrate the developed theory through three
examples.

4.1. First example: delay dependent case

Consider

ẋ(t) =

[
−2 0
0 −0.9

]

x(t) +

[
−1 0
−1 −1

]

x(t− h(t)).

(29)
First, let us remark that the delay-free case is stable.
Next, the maximal allowable delay,hmax, is computed.
To demonstrate the effectiveness of our approach,
results are compared to the literature. All papers, except
[17, 19, 31], use Lyapunov theory in order to derive
stability criteria. In [17], [19], the stability problem is
solved in an IQC framework. The results are shown in
Table1.

In [19] and [31], the delay is modeled as an
uncertain parameter and appropriate weighting filters
are used to bound it. Their methodologies provide very
good results, however, they are restricted to time-delay
system that are stable without delay. Although Theorem
2 does not provide the best condition, it provides
conservatism reduction compared to many conditions
from the literature. Besides, Theorem2 addresses the
stability of systems withinterval delays, which may be
unstable for small delays (or without delays).

4.2. Second example: delay range case

Consider ÿ(t)− 0.1ẏ(t) + 2y(t) = u(t), with a
static delayed output feedbacku(t) = ky(t− h(t)).
Choosingk = 1, we get:

ẋ(t) =

[
0 1
−2 0.1

]

x(t) +

[
0 0
1 0

]

x(t− h(t)).

(30)
In order to assess the interval of the delay such that
system (30) is stable, Theorem2 is applied with given
hmin and hmax. Then, a sliding window principle
is performed to stretch the bounds. The results are
presented in Table2.

Theorem 2 allows us to assess a conservative
region of stability w.r.t.k and h(t) (for d = 1). It
provides a set of values ofk that ensures a stabilizing
delayed output feedback for̈y(t)− 0.1ẏ(t) + 2y(t) =
u(t) as shown in Figure2.

Table 2. Interval of stabilizing delays for system (30)

d hmin hmax

0 0.102 1.424
0.1 0.102 1.424
0.2 0.103 1.423
0.5 0.104 1.421
0.8 0.105 1.419
1.0 0.105 1.418
0 (analytical) 0.10016826 1.7178

Fig. 2. Stability region of ÿ(t) − 0.1ẏ(t) + 2y(t) = ky(t− h(t))
w.r.t.k andh(t).

4.3. Third example: robust stability

Consider

ẋ(t) =

[
−2 + δ1 cos t 0

0 −1 + δ2 sin t

]

x(t)

+

[
−1 + γ1 cos t 0

−1 −1 + γ2 sin t

]

x(t− h(t)),

(31)
extracted from [32]. δi and γi are uncertain bounded
parameters:

|δ1| ≤ 1.6, |δ2| ≤ 0.05, |γ1| ≤ 0.1, |γ2| ≤ 0.3.
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Table 1. The maximal allowable delayshmax for system (29)

d 0 0.1 0.2 0.5 0.8 1 ∀d > 1

Fridman et al (2002) [6] 4.472 3.604 3.033 2.008 1.364 0.999 0.999

Wu et al (2004) [24] 4.472 3.604 3.033 2.008 1.364 - -

Kao et al (2005) [17] 4.472 3.604 3.033 2.008 1.364 0.999 -

Fridman et al (2006) [11] 1.632 1.632 1.632 1.632 1.632 1.632 1.632

Kao et al (2007) [19] 6.117 4.714 3.807 2.280 1.608 1.360 -

He et al (2007) [28] 4.472 3.605 3.039 2.043 1.492 1.345 1.345

He et al (2007) [9] 4.472 3.605 3.039 2.043 1.492 1.345 1.345

Ariba et al (2009) [31] 6.117 4.794 3.995 2.682 1.957 1.602 1.345

Sun et al (2010) [14] 4.476 3.611 3.047 2.072 1.590 1.529 -

Theorem2 5.120 4.081 3.448 2.528 2.152 1.991 -

Table 3. Maximal allowable delayhmax for the system (31)
w.r.t. d.

d 0 0.1 0.5 0.8

[32] 0.241 0.234 0.188 0.110

[24] 1.149 1.106 0.924 0.760

[19] 1.416 1.302 0.974 0.829

Theorem3 1.515 1.422 1.105 0.910

Let us rewrite the system as in (23) with

A =

[
−2 0
0 −1

]

, Ad =

[
−1 0
−1 −1

]

,

B = 12, C = diag(1.6, 0.05), Cd = diag(0.1, 0.3).

Simulation results are gathered in the Table3.

V. CONCLUSION

In this paper, stability analysis of a time-varying
delay system was studied by means of quadratic
separation. Inspired from previous work on time-delay
systems with constant delay [8], novel stability criteria
for time-varying delay system were provided. Using
an augmented state, which emphasizes the relation
between ḣ and (ẋ, ẍ), the resulting criteria were
expressed in terms of a convex optimization problem
with LMI constraints. Finally, numerical examples
show that this method reduced conservatism and
improved the maximal allowable interval on the delay.
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