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ROBUST STABILITY OF TIME-VARYING DELAY SYSTEMS: THE
QUADRATIC SEPARATION APPROACHT

Yassine Ariba, Frédéric Gouaisbaut, and Karl Henrik Johansson

ABSTRACT

In this article, we are interested in analysing stabilitysgstems that
incorporate time-varying delays in their dynamics. Thepwy@aov-Krasovskii
approach is definitely the most popular method to addressifisue and
many results have proposed new functionals and enhancedi¢gees for
deriving less conservative stability conditions. In thisegent work, we
propose an original approach: the quadratic separatiothi3end, the delay
operator properties are exploited to provide delay rargjglty conditions. In
particular,Lo-norm of delay-dependent operators are computed so asuoaed
the conservatism of the approach. Moreover, the main resalble to assess
the stability of non-small delay systems, i.e, it can degestability interval
for systems that are unstable without any delay. Severahpbes illustrate the
benefit of our methodology.

I. INTRODUCTION as small gain theorem, integral quadratic constramjts [

) ) and quadratic separatioi][ The proposed conditions
~ Time delay system is a subclass of 41 often rather conservative since they produce
infinite dimensional systems that has been frequently jnner approximations of the stability regions, although
employed since it can easily model commonly arising recent techniquess], [9] reduce the conservatism
transport and propagation phenomena. Delays canpy introducing redundant equations and new decision
be encountered in many processes such as biologYyayiaples in the optimization problems. Then, these
chemistry, economics, population dynamigkds well — reqits have been extended to time varying delay
as in networks3]. Unfortunately, delays are the origin systems either using adapted Lyapunov-Krasovskii [
of performance and stability degradation, which thus 10, 11, 12, 13, 14, 15, 16] or robustness toolsL[, 18,
have motivated a lot of work. In the case of constant ) g These latter methodologies often require, explicitly
delay, and unperturbed linear systems, efficient criteria implicitly, the delay-free system to be stable, which
exist based on root loci techniques (ségfor a recent is a rather important restriction.
review). For the case of uncertain linear systems, the This paper aims at providing a novel approach

problem has been partially solved, either by using (, 5qqgress time-varying delay system stability. More
Lyapunov functionalsy, 6, 7] or robustness tools such precisely, we propose criteria based on an extension of
the quadratic separation principl2(], [21]. They are
'\\(ATrlth?griisp\tlvri?f?m\éegeJLg)r/t%ezn(t)%?.Electrical Engineeringlan then expressed in terms of Linear Matrix Inequalities
Computer Science, Icarﬁ, 75 avenue de Grande gretagne, 3130 LM,IS,) which may.be solved efflc!ently with Semi-
Toulouse, France/assi ne. ari ba@ cam fr]. Definite Programming (SDP). In this method, the key
F. Gouaisbaut is with the LAAS ; CNRS ; Universite de idea is how to model the operators that define the
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This article is partially based on the conference pafir [ delay dynamic. At last, using the quadratic separation

(© 2008 John Wiley and Sons Asia Pte Ltd and Chinese AutomatntrGidSociety
Prepared usingsjcauth.cls [Version: 2008/07/07 v1.00]



2 Asian Journal of Control, Vol. 00, No. 0, pp. 1-10, Month 2008

framework with an appropriate modelling, we provide delayh is time varying with
the main result: a delay range stability condition (where '
the delay h is belonging to a prescribed interval h(t) € [hmin, hmax] and |h(t)] < d, (2)
[Fomin, hmax))- Differently from most of papers on this
topic [13, 22, this condition is able to detect pockets Wherehmin, hmax andd are given positive constants. In
of stability even in case of unstable delay-free systems. this work, we aim at assessing the stability of system
We emphasize that we do not intend to present an (1) via the quadratic separation principle originally
additional less conservative criterion that outperforms developed for robust control i2B]. We will show that
all existing results for non small delays but rather an various criteria, related to the available informations on
original methodology to cope with systems which are the delay, can be derived choosing appropriately a set of
unstable for sufficiently small delays. operators.

The outline of the paper is as follows. In Section
[I, some preliminaries are presented and we state
our quadratic separation theorem as well as a set of2.2. Stability analysisvia quadratic separation
useful operators. In sectiofi, this latter prior result
is exploited to derive a stability condition for time-
varying delay systems. Then, an additional operator
is inserted for the conservatism reduction. At last,
numerical examples that show the effectiveness of the
proposed criterion are provided in sectibh. Section
V concludes the paper.

Notations. Throughout the paper, the following

The quadratic separation provides a fruitful
framework to address stability of non-linear and
uncertain systems2[)], [21]. Recent studiesg] have
shown that such a framework reduces significantly the
conservatism of the stability analysis of time-delay
systems with constant delay. In this paper we extend this
method to time varying delay systems, which involves
notations are used. The sety consists of all the d(_—:‘velopm_ent of resultg for_ anew set of operators.
measurable functionsf : R* — C" such ||f| ., = C0n5|derthemterconnectl_on in Figurevhere& anplA

oo 1/2 are two, real valued, possibly non-square, matrices and
(f(f*(t)f(t))) dt < co. When context allows it, ~ V is a linear operator fronk,, to Ls.. For simplicity,

0 we assume that is full column rank. Assuming well-
posedness, we are interested in looking for conditions
that ensure stability of the interconnection.

the superscript of the dimension will be omitted. The
set L}, denotes the extended set &f which consists
of the functions whose time truncation lies ir§. For

two symmetric matricesd and B, A > (>) B means _
that A — B is (semi-)positive definited” denotes the L@H w—1w=Vz
transpose ofd. 1, and0,,x, denote, respectively, the

identity matrix of sizen and null matrix of sizen x w >
n. If the context allows it, the dimensions of these 3
matrices are omittedliag(A,..., A;) stands for the E(z—2) = Aw 4>®<7

block diagonal matrix wittd,, ..., A, on the diagonal.

Introduce as well the truncation operalor such that: Fig. 1. Feedback system.

Pr(f) =fT={ sy

Theorem 1 The interconnected system of Figufie
Il. PRELIMINARIES is stable if there exists a symmetric matfix= 67

satisfying both conditions
2.1. Problem statement

Consider the following time-varying delay system: (&€ A ]lT o[& -A ]L >0 (3)
(t) = Ax(t) + Agz(t — h(t)) vt >0,
() = o(t) Yt € [~ humax, 0],
D e Ly, v >0 1 o| ! <0
where z(t) € R" is the state vectorp is the initial U € L2e,  { Prv | YT | Ppv ur) <
condition and4, A; € R™*™ are constant matrices. The 4)
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PROOF : Inspired from PRQ], the proof is detailed in  Lemma?2 An IQC for the operatoD is given by the
[18]. & following inequality:vT > 0,Vx € L3, andv@ > 0,

This result includes two conditions: a matrix inequality

(3) related to the lower block of the feedback system <[ 1o ] T, { —Q 0 ] [ 1n ] zr) < 0.
and an inner producty that states an Integral Quadratic PrDl, 0 Q(—h) PrDl,

Constraint (IQC) on the upper block. It will be used @)
throughout the paper to prove stability of systems under
consideration. PROOF: We get that/T > 0,Vz € L},
1n - 0 1,
2.3. Some suitable operators ([ Pl }x, { OQ Q1 — i) } { D1 ]:c>
It is required to define appropriate operators to oo
model the time-delay systemi)( as the feedback = —J, =’ (w)Quz(u)du+ [;° x] (1)Qza(t)(1 — h(t))dt
system in Figurd.. Clearly, two operators are essential, +T T T-h(T) 1
reflecting the dynamics and the delay: the integral = (H)Qx(t)dt + [, o) (w)Qz(u)du
operator
T: Lge— Lo, - fT—h(T) 2(u)" Qe(u)du < 0
t
£) = [ 2(0)db, () wherexz,(t) = x(t — h(t)). o

Since the IQC for the delay operatbrdo not depend
on h, it is clear that it will induce some conservatism.

and the delay operator (or shift operator) As an example, in the constant delay case, the 1QC

DL defined by Lemma2 is equivalent to that the delay
. 2e —7 L2e; . .
_ (6) operator is replaced by a norm-bounded uncertainty.
z(t) = z(t — h), L . .
The phase oé~"* is not taken into account This can
The next step is to characterize the two operators by thebe approached by the operators) = ,[19. 1t

use of IQCs introduced in the following two lemmas, can be embedded as a norm bounded uncertamty
which are used to derive stability criteria for time-delay
systems in the next section. sup

w

— hmax .

’ 1— efjwh

Jw
The operator can also be interpreted in the first-order

Lemmal An IQC for the operatotZ is given by the  Taylor remainder of the exponential functien”s:
following inequality:vx € L3, andvP > 0, Chs
=1— hsdi(s).

<[ 1n ] { 0 -P ] [ 1n } ) <. Following the same idea, we formulate now the time-
Pr71, -P 0 Pr71, varying counterpart by considering a new operafor
defined as follows:

: Lo L e
PROOF: Simple calculus shows the” > 0,z € L2, FoLoe = Ly .

z(t) —» [ x(s)ds. ®)
1n O —-P 1n t*h(t)
<[11]"”’[—P 0“11]"”> o .
" n Its characterization through an 1QC can be derived as
T . follows:
=2 [x(t)TP [x(s)dsdt _
0 0 Lemma 3 An IQC for the operatotF = (1 — D)o Zis
T

_ —2f %(Ix)TP(Im)dt given by the following inequalityia € LY.,

1" maxR 0 1"
fo (s)ds)" P(fy w(s)ds) <0 <[]P’T]-'1n]mT’{ 0 RHPTHH]WSO’

& whereh,,.x is the upperbound on the delayt) and R
is some positive definite matrix.

(© 2008 John Wiley and Sons Asia Pte Ltd and Chinese AutomatitrGidSociety
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PrROOF: See [L9 or [19]. O inequality,
The operator7 = (1 — D)o Z can be slightly trans-

formed as F = ;7. The corresponding integral Lot Lot
constraint is then expressed as follows. | Ha||? < /d@ds /Ha:(@)HQdeds ,
t—h(t) s t—h(t) s
~ t
s gi [ He]|” 2
Lemma4 An IQC for the operatotF is given by the 12002 < / /Ha:(@)” dfds,
following inequality:vT > 0,Vz € L3,,VR > 0, h
1 hmaxR 0 1 A
n ~—Mmax 9 -
<[ PrF1, ]IT[ 0 h(t)R } { PrF1, }W =0 /O hz(t)|Hx”2dt§/ / /Ilwt(G)IIQdesdt,
0 —Amax S
* 9 R, [
. —— | Ha||Pdt < —mex / t)||2dt.
PROOF: Omitted. & /0 h2(t)H zldt < 2 Jo ol

An interesting contribution of this work is then the
introduction of a novel operator that improves the pHence, we get
modelling of the delay dynamic. This operator is related

to the Taylor remainder of order two: 2 - D2 ax
y | el - 2 el <o,

T2 _DT2 — W T which concludes the proof. ¢
H = 0 ®) : m(ﬁ)—> / / )dOds.
t h(t)s This result is a key result for the main theorem
9) because it allows to build a stability condition that does
The following lemma gives a parameterized constraint not require the system to be stable for small delays as
OonH. we will see in sectionV.

1. MAIN RESULTS

Lemma5 An IQC for the operatofH is given by the

o - We present in this section the main results of
following inequality:vT > 0,Vz € L3,,VS > 0,

the article which is based on the quadratic separation
framework already used for constant delay systems.
1 _Rag g 1 This approach allows us to establish the main theorem
<[ ]P)T;“-n } T, { 2 0g } { }P’T;Lln ] ) < 0. for the robust delay range stability analysis.

3.1. Methodology

PROOE : Note that To illustrate the proposed methodology, let us
reformulate the systeni) as the feedback in Figure
As a first modelling, the systeni)(can be described as

! Lot the feedback
|Ha||? = / / 0)dOds / /m(@)d@ds .
x(t) 71, 0 0 x(t)
(—h()s (—h(t)s a(t — h(t)) =| 0 D1, 0 x(t)
x(t) — x(t — h(t)) 0 0 Fl, x(t)
Using Cauchy-Schwartz inequality and settifity= wlt) v (1)
Hh(t), VYT >0,Vze Ly, we get the following (10)

(© 2008 John Wiley and Sons Asia Pte Ltd and Chinese AutomatitrGidSociety
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1 00 A Ay 0
0 1 0 1 0 0
o1 lF0=10o o o [w® @
0 0 0 1 -1 -1

£ A

Then, according to Theoreni, we have to find

a separator© that fulfills both inequalities J)-(4).
Combining the three constraints related to the different
operators (stated by the lemmas in Secfidi), a global
(conservative) constraint oW is deduced. Hence, the
matrix

0 0 0 -pP 0 0
0 -Q 0 0 0 0
P ~h2. R| O 0 0
“ | =P 0 0 0 0 0
0 0 0 0 Q(I-h) 0
0 0 0 0 0 R

L a2y

whereP, Q and R aren x n positive definite matrices,
satisfies the inequalityd]. The interconnected system
(10)-(11) (and therefore systent)) is thus stable if
the matrix inequality §), with £, A and© defined as
(11) and (2), holds. Because of the occurrences of
hmax @ndh(t) in the criterion, it is refered to adelay
and rate dependenSettingh(t) = d in the separator,
the condition becomes a single LMI that can be easily
solved via SDP.

Remark 1 It has been shown inljg] that the above
criterion, based on the three operators, provides the

same results in terms of conservativeness as several

classical results of the literature6] 24]. Indeed,
such a particular choice of operators and separator
amounts to choosing a Lyapunov-Krasovskii functional
candidate of the form:

0

V(x:) = ! (0)Px(0) + / 1 (0)Qux(0)db

&l (s)Riy(s)dsdd.

Further discussions on the quadratic separation method
and the Lyapunov-Krasovskii counterpart for the
constant delay case can be found 8}.[Other authors

Remark 2 A simpler criterion can be derived by
removingF fromV. In that case, the stability condition

is independent of the delay because no information on
the size ofh(t) (for instance,h.,.x) appears in the
matrices&, A and ©. However, a bound on is still
required.

Remark 3 Because the inequality in the Lemn2a
imposes a constraint on the delay variatibft), a rate
independent condition can be obtained if the system
(1) is represented only through the first and the third
operators of 10).

In the next sections, we investigate new operators
for the delayed dynamics. The objective is to reduce
the conservatism of the stability analysis by taking
into account some further informations on the delay.
Throughout the paper we will apply the following
procedure:

(2) Rewrite the delay syster)(@s an interconnected
feedback.

(b) Embed the integrator, the delay and other
auxiliary operators into the matrix’.

(c) Construct IQCs foiv.

(d) Establish the LMIs of Theoretrand compute the
separatoro.

3.2. Model extension

By extending the dynamics of the time-delay
system, it is possible to achieve less conservative
results, seed6, 8, 27]. An augmented state is composed
of the original state vector and its derivative. By
defining relationship between augmented stater,

the delayh and its derivativeh, an enhanced stability
condition is provided. Differentiating the systeft),(we

get:

#(t) = Ad(t) + (1 — h(t)) Agi(t — h(1)).

Consider
{ i(t) = Az(t) + Agz(t — h(t)), (13)
Z(t) = Az(t) + (1 — h(t))Aga(t — h(t)).

Introduce the augmented state

have emphasized the links between the Lyapunov

method and the robust analysis in general, e.1, R3,

25.

(14)

(© 2008 John Wiley and Sons Asia Pte Ltd and Chinese AutomatntrGidSociety
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so by specifying the relationship between the two

components of¢(t) with the equality [0 1](t) =
[1 0]<(t), we have the descriptor system
E¢(t) = Ag(t) 4+ Aas(t — h(2)), (15)

where

3.3. Delay range stability condition

We now model the augmented time-varying delay
system {5) through the new set of operators:

<(t) Il O 0 o0 $(t)
Sd t) - 0 Dlgn 0 0 §(t)
wi(t) | 0 0 Fla O <(t)
wo(t) 0 0 0 Hl, i(t)
——
w(t) v (t)
(16)
with
sa(t) = <(t = (1)),
_s(t) —<(t=h(t))
=T e
ws(t) = ity — T =TEZPO) g B

andEy =[ 1 0 ]andE;=[0 1 |.Then,accord-
ing to the Lemmasl()-(5), the separator

0| |

011 = diag(Ozn, —Q, —hmax R, —
O12 = diag( - P, 05n);
O3z = diag(02n, (1 — 2(1)) Q. h(t)R, 25),

611 612

[ 0u, a7)

hﬁlax
=5 5);

with some positive definite matricd @, R € R?"x2n
andS € R™*", fulfils the requirement4) of Theorem
1. Consequently, the stability ofLH) (and thus 1))
holds if

M (0)O((1), h(1)&(t) > 0 (18)

suchthaf & —A ]&(t) = owithe = [ Z((?) }This

condition is equivalent to3) of Theoreml. Condition
(18) can be rewritten as another equivalent condition

TN (h(£)O(h(t))N (h(t)(t) >0, (19)
z(t)
wherey = g(tw: ggt))  such thas(h())u(t) = 0
wg(t)
with
A -1 A; —1h(t) 0 0
S=|1 0 -1 0 —1h(t) 0
A 0 Ay 0 -1 -1
] (20)
and
[ AA Ay(1—h) AAg 1
A 0 Ag
A 0 Ay
1 0 o |,
N = AA Ag(1—h) AAg | BN
A 0 Ag
AA Ag(1—h) AAg
A 0 Ay
]-6n
i (21)

Applying Finsler's lemma, we note that conditiohd)
is equivalent to

NT(h(t))ON (h(t)) + XS(h(t)) + ST (h(t))XT > 0.

(22)
It is easy to show thatv” (A(t))ON (h(t)) is affine,
and thus convex, ik and . So condition 22) has to
be assessed only at the four vertices of the polytop
generated by the intervals bft) andi(t). We are now
in a position to state our main result.

Theorem 2 For given positive scalarsi, h.,; and
hmax, If there exist positive definite matrice?, Q,
R € R?"*2n g positive definite matri¥ € R**" and
a matrix X € R®»>37 then the systeml)] with a
time-varying delay constrained bg)(is asymptotically
stable if the LMI R2) holds for i(t) € {—d,d} and
h(t) € {hmina hmax}-

Remark 4 Most of the papers in the literature provide
the so-called delay dependent stability condition using
the Lyapunov-Krasovskii method (see for example [
24, 28, 29)). Basically, a stable delay-free system

(© 2008 John Wiley and Sons Asia Pte Ltd and Chinese AutomatitrGidSociety
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is considered and the maximal value of the delay Theorem 3 For given positive scalaré,,.. andd, if
that preserves the stability is looked for. Recently, there exists positive definite matricBs Q, R € R"*"
some papers have studied the problem of finding theand matricesU;, U,, Us such that 25) holds, then
largest delay interva(hmin, Amax] fOr which the delay  system Z3) with a time-varying delay constrained by
system is stable. In that case, the Lyapunov-Krasovskii (2) is asymptotically stable for any uncertainty € Q2

functionnal depends explicitly on the delayt), but
also on the lower and upper bound(, 13, 14, 22]. In

these papers, they explore tightly the relations between

x(t — hmin) @nd x(t — hmax) through the use of well-
fitted Lyapunov-Krasovskii functionals. Nevertheless,
their results are restricted to the case of a stable
delay free system, i.e. a stable matuk+ A;. We
address in this paper the tricky case of the delay range
condition where the delay belongs to an intervelt] €
[hmin, hmax]) @nd the system may be unstable for small
delays.

3.4. Robust stability

Quadratic separation provides a suitable frame-
work for stability analysis of uncertain delay systems:

(t) = A(A)z(t) + Ag(A)z(t — h(t))  (23)

where

[ AA) Aa(A) ]=[A Ag]+BA[C Cua].

The second term of the right hand side describes the

uncertainty characterizing syster3]. The uncertain
time-varying matrixA(¢) satisfies

AT(H)A(t) <1, Vt >0, VA € Q, (24)

and models non-linear and neglected dynamics as well

as parametric uncertainties. The matriéggs”' andCy

are constant and of appropriate dimensions. According

to the set of admissible uncertainties a@d)( we have
to find a separatar such that

[2)[ 212

- )

Us Us ]:c><0,VA€Q.

U
(25)
For instance, assuneis a set of diagonal real-valued
matrices with bounded uncertainties:

Q = {A =diag(d1,....0n) | 6] < &}
Then, inequality 25) holds with
U = diag (fgful, .

<2
,*5N’LLN,’U,1,...,’U,N)

whereu;,i =1, ..., N, are scalar decision variables. We
propose to analyze the robust stability of syst&i8) (
with the following theorem.

if the LMI condition @) holds with®, & and A defined
as follows:

1) o) O11 = diag(om _Q7 _hriaxRa Ul)a
O = |: il @12:| s @12 = diag(fP, 02,1, U2),

12 = 922 = diag(onv (1 - d)Qa Rv U3>a
(26)

r 1, 0 0 O

0 1, 0 O

&= -1, 0 1, 0 |,

0 0o 0 1,

L O 0 0 O
(27)

rA A; 0 B

1, 0 0 0

A= 0 O 0 O

c C; 0 0

L1, -1 -1 0

PROOF: First, introducing the exogenous signals
wa = Aza, With za = Cx(t) + Cax(t — h(t)),

we rewritte systemZ3) as the interconnection of

(1) i(t)

z(t — h(t)) _y | )
z(t) — x(t — h(t)) ()
wa(t) za(t)

w(t)
with V = (Z1,, D1,, F1,, A) and

Ez(t) = Aw(t), (28)

& and A are defined in 7). Combining every IQC
related to each operators defined by lemmas and the
struture of the uncertainty leading t@5), a separator

of the form of @6) fulfills the requirement4). Finally,
condition @) provides the robust (with respect to the
uncertain sef) stability criterion. O

For the sake of simplicity, Theorefis given only
with the two operator® and F. In the case of time
invariant uncertainties, it is easy to extend to the third
operator{. If A istime-dependent, the model extension
(SubsectiorB.2) is however more tricky to apply and a
good knowledge of the uncertainty is required.

(© 2008 John Wiley and Sons Asia Pte Ltd and Chinese AutomatitrGidSociety
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IV. NUMERICAL EXAMPLES Table 2. Interval of stabilizing delays for systeB0Y
We illustrate the developed theory through three d e 7
examples. 0 0.102 1.424
0.1 0.102 1.424
. ) 0.2 0.103 1.423
4.1. First example: delay dependent case 05 0.104 1.421
Consider 0.8 0.105 1.419
1.0 0.105 1.418
] —2 0 ~1 0 0 (analytical) 0.10016826 1.7178
x(t) = { 0 —09 ] x(t) { 1 1 ]x(t—h(t)).
(29)
First, let us remark that the delay-free case is stable.
Next, the maximal allowable delay,.x, is computed. o5

To demonstrate the effectiveness of our approach,
results are compared to the literature. All papers, except
[17, 19, 31], use Lyapunov theory in order to derive
stability criteria. In [L7], [19], the stability problem is
solved in an IQC framework. The results are shown in
Tablel.

In [19] and [31], the delay is modeled as an
uncertain parameter and appropriate weighting filters
are used to bound it. Their methodologies provide very
good results, however, they are restricted to time-delay
system that are stable without delay. Although Theorem
2 does not provide the best condition, it provides
conservatism reduction compared to many conditions
from the literature. Besides, Theoretraddresses the
stability of systems wittinterval delayswhich may be

unstable for small delays (or without delays). 0 05 1 15
Delay h(t)

Gain k

4.2. Second exa_rnp]e: delay range case Fig. 2. Stability region ofg(t) — 0.1y(t) + 2y(¢) = ky(t — h(t))
w.r.t. k andh(t).

Consider g(t) — 0.19(t) + 2y(t) = u(t), with a
static delayed output feedback(t) = ky(t — h(t)).

Choosingk = 1, we get:
4.3. Third example: robust stability

i(t) = { Oh Jx(t)+ { D ]x(th(t)).

Consider
(30)

In order to 'assess the interval' of th<=T delgy sgch that _ —9 4 6y cost 0
system 80) is stable, Theorer2 is applied with given r(t) = [ 0 1+ 8ysint ] x(t)
hmin @nd hpa.x. Then, a sliding window principle
is performed to stretch the bounds. The results are + { —1+7cost 0 z(t — h(t)),
presented in Tabla. -1 —1+2sint

Theorem 2 allows us to assess a conservative . (31)
region of stability w.r.t.k and A(t) (for d = 1). It extracted from 32]. §; and~; are uncertain bounded
provides a set of values d@f that ensures a stabilizing Parameters:
delayed output feedback fap(t) — 0.1y(t) 4+ 2y(t) =
u(t) as shown in Figuré. |01] < 1.6, |d2] < 0.05, |y1] < 0.1, 2] < 0.3.

(© 2008 John Wiley and Sons Asia Pte Ltd and Chinese AutomatitrGidSociety
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Table 1. The maximal allowable delajs,.x for system 29)

d | o Jo1]o2]|05] 08| 1 |vi>1]
Fridman et al (2002)q || 4.472| 3.604] 3.033] 2.008| 1.364| 0.999| 0.999
Wu etal (2004)24] | 4.472] 3.604| 3.033| 2.008] 1.364| - -
Kao etal (2005)17] || 4.472| 3.604] 3.033| 2.008| 1.364| 0.999| -
Fridman et al (2006)1[1] || 1.632| 1.632] 1.632] 1.632] 1.632] 1.632| 1.632
Kao etal (2007)19] | 6.117] 4.714| 3.807| 2.280]| 1.608] 1.360| -
He et al (2007)28] 4.472] 3.605| 3.039| 2.043| 1.492] 1.345| 1.345
He et al (2007)9] 4.472| 3.605| 3.039| 2.043| 1.492| 1.345| 1.345
Ariba etal (2009)31] || 6.117| 4.794| 3.995| 2.682| 1.957| 1.602| 1.345
Sunetal (2010)14] || 4476 3.611] 3.047| 2.072| 1.500| 1.529] -

Theorem? 5.120| 4.081| 3.448| 2.528] 2.152] 1.991| -

Table 3. Maximal allowable delajmax for the system 1)

w.r.t. d.
| d | o ] o1] 05] 08]
[327 | 0.241] 0.234] 0.188] 0.110
[24 | 1.149] 1.106] 0.924] 0.760
[19 | 1.416] 1.302] 0.974] 0.829
Theorem3 | 1.515| 1.422] 1.105] 0.910

Let us rewrite the system as ia3) with

-2 0 -1 0
A:[o —1]’Ad:[—1 -1

|\

B = 1,, C = diag(1.6, 0.05), Cq = diag(0.1, 0.3).

Simulation results are gathered in the Tahle

V. CONCLUSION

In this paper, stability analysis of a time-varying

delay system was studied by means of quadratic
separation. Inspired from previous work on time-delay
systems with constant dela§][ novel stability criteria

for time-varying delay system were provided. Using
an augmented state, which emphasizes the relation
betweenh and (&,%), the resulting criteria were
expressed in terms of a convex optimization problem
with LMI constraints. Finally, numerical examples
show that this method reduced conservatism and
improved the maximal allowable interval on the delay.
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