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Abstract. Starting from inhomogeneous time scaling and linear decorrelation between successive price

returns, Baldovin and Stella recently proposed a powerful and consistent way to build a model describing

the time evolution of a �nancial index. We �rst make it fully explicit by using Student distributions instead

of power law-truncated Lévy distributions and show that the analytic tractability of the model extends to

the larger class of symmetric generalized hyperbolic distributions and provide a full computation of their

multivariate characteristic functions; more generally, we show that the stochastic processes arising in this

framework are representable as mixtures of Wiener processes. The basic Baldovin and Stella model, while

mimicking well volatility relaxation phenomena such as the Omori law, fails to reproduce other stylized

facts such as the leverage e�ect or some time reversal asymmetries. We discuss how to modify the dynamics

of this process in order to reproduce real data more accurately.

1 How Scaling and E�ciency Constrains

Return Distribution

Finding a faithful stochastic model of price time series is

still an open problem. Not only should it replicate in a

uni�ed way all the empirical statistical regularities, often

called stylized facts, (cf e.g. [1,2]), but it should also be

easy to calibrate and analytically tractable, so as to facili-

tate its application to derivative pricing and �nancial risk

assessment. Up to now none of the proposed models has

been able to meet all these requirements despite their va-

riety. Attempts include ARCH family ([3,4] and references

therein), stochastic volatility ([5] and references therein),

multifractal models ([6�9] and references therein), multi-
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timescale models ([10�12]), Lévy processes ([13] and ref-

erences therein), and self-similar processes ([14]).

Recently Baldovin and Stella (Ba-St thereafter) pro-

posed a new way of addressing the question. We advise the

reader to refer to the original papers [15�17] for a full de-

scription of the model as we shall only give a brief account

of its main underlying principles. Using their notation let

S(t) be the value of the asset under consideration at time

t, the logarithmic return over the interval [t, t+δt] is given

by rt,δt = lnS(t+δt)− lnS(t); the elementary time unit is

a day, i.e., t = 0, 1, . . . and δt = 1, 2, . . . days. In order to

accommodate for non-stationary features, the distribution

of rt,δt is denoted by Pt,δt(r) which contains an explicit de-

pendence on t. The most impressive achievement of Ba-St

is to build the multivariate distribution P
(n)
0,1 (r0,1, . . . , rn,1)

of n consecutive daily returns starting from the univariate

distribution of a single day provided that the following

conditions hold:

1. No trivial arbitrage: the returns are linearly indepen-

dent, i.e. E(ri,1, rj,1) = 0 for i 6= j, with the standard

condition E(ri,1) = 0.

2. Possibly anomalous scaling of the return distribution

with respect to the time interval δt, with exponent D:1

P0,δt(r) =
1

δtD
P0,1

( r

δtD

)

.

3. Identical form of the unconditional distributions of the

daily returns up to a possible dependence of the vari-

1 See Ref. [18] for a recent review of anomalous scaling in

�nance.

ance on the time t, i.e.

Pt,1(r) =
1

at
P0,1

(
r

at

)

.

As shown in the addendum of [16] these conditions

admit the solution

f
(n)
0,1 (k1, . . . , kn) = g̃(

√

a2D1 k21 + · · ·+ a2Dn k2n), (1)

where f
(n)
0,1 is the characteristic function of P

(n)
0,1 , g̃ the

characteristic function of P0,1, and a2Di = i2D − (i− 1)2D.

In this way the full process is entirely determined by the

choice of the scaling exponent D and the distribution P0,1.

Therefore the characteristic function of Pt,δt(r) is

ft,T (k) = f
(n)
0,1 (0, . . . , 0

︸ ︷︷ ︸

t terms

, k, . . . , k
︸ ︷︷ ︸

δt terms

, 0, . . . , 0)

= g̃(k
√

(t+ δt)2D − t2D),

i.e.

Pt,δt(r) =
1

√

(t+ δt)2D − t2D
P0,1

(

r
√

(t+ δt)2D − t2D

)

.

The functional form of g̃ in Eq. (1) introduces a depen-

dence between the unconditional marginal distributions of

the daily returns by the means of a generalized multipli-

cation ⊗ in the space of characteristic functions, i.e.,

f
(n)
0,1 (k1, . . . , kn) = g̃(aD1 k1)⊗g̃ · · · ⊗g̃ g̃(a

D
n kn),

with ⊗g̃ de�ned by

x⊗g̃ y = g̃
(√

[g̃−1(x)]2 + [g̃−1(y)]2
)

. (2)

At �rst sight this last equation may seem a trivial identity,

but it does hide a powerful statement. Suppose indeed that

instead of starting with the probability distribution g̃, one
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takes a general distribution with �nite variance σ2 = 2 and

characteristic function p̃1, then it is shown in [15] that

lim
N→∞

p̃1

(
k√
N

)

⊗g̃ · · · ⊗g̃ p̃1

(
k√
N

)

︸ ︷︷ ︸

N terms

= g̃(k). (3)

This means that in this framework the return distribution

at large scales is independent of the distribution of the re-

turns at microscopic scales: it is completely determined by

the correlation introduced by the multiplication ⊗g̃, with

�xed point g̃. Note that if g̃ is the characteristic function

of the Gaussian distribution, then ⊗g̃ reduces to the stan-

dard multiplication and one recovers the standard Central

Theorem Limit.

As the volatility of the model shrinks in an inexorable

way, Baldovin and Stella propose to restart the whole

shrinking process after a critical time τc long enough for

the volatility autocorrelation to fall to the noise level. In

this way one recovers a sort of stationary time series when

their length is much greater than τc. In this case one ex-

pects that the empirical distribution of the return P̄δt(r)

over a time horizon δt ≪ τc, evaluated with a sliding win-

dow satis�es

P̄δt(r) =
1

τc

τc−1∑

t=0

Pt,δt(r). (4)

In the original papers no market mechanism is proposed

for modeling the restart of the process; it is simply stated

that the length of di�erent runs and the starting points of

the processes could be stochastic variables. In their simu-

lations the length of the processes was �xed to τ = 500,

which corresponds to slightly more than two years of daily

data. The current approach to restarts is less rigid. [19]

propose to have Poisonnian restarts, which decouples more

clearly the dynamics into endegeneous and exogeneous

parts and allows for easier calibration.

2 A Fully Explicit Theory with Student

Distributions

In [16] a power law truncated Lévy distribution is chosen

to describe the returns

g̃(k) = exp

( −Bk2

1 + Cαk2−α

)

. (5)

In [20] it is shown that this expression is indeed the char-

acteristic function of a probability density with power law

tails whose exponent is exponent 5 − α. However, this

choice is problematic in two respects: its inverse Fourier

cannot be computed explicitly, which prevents a fully ex-

plicit theory. In addition, for Eq. (1) to be consistent,

g̃(
√

k21 + · · ·+ k2n) must be the characteristic function of

a multivariate probability density for all n. In [16] only

numerical checks are performed to verify this property.

But as discussed for example in [2] both truncated Lévy

and Student distributions yield acceptable �ts of the re-

turns on medium and small time scales. In the present

context, the Student distribution, sometimes referred to

as q-Gaussian in the case of non-integer degrees of free-

dom, is a better choice; it provides analytic tractability

while �tting equally well real stock market prices (see also

[21]). The �t of the daily returns of the S&P 500 index in

the period with a Student distribution

g1(x) =
Γ ( ν2 + 1

2 )

π1/2λΓ ( ν2 )

1

(1 + x2

λ2 )
ν
2
+ 1

2
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Fig. 1: Centered distribution of the 14956 daily returns of

the S&P 500 index (January, 3th 1950 - June, 11th 2009),

and the corresponding �tting with Student (ν = 3.21, λ =

0.0109) and Gaussian distribution (σ = 0.0095).

is reported in Fig. 12.

The characteristic function of the Student density is

g̃(k) =
21−

ν
2

Γ ( ν2 )
k

ν
2 K ν

2
(k), (6)

where Kα is the modi�ed Bessel function of third kind. As

demonstrated in the appendix, the inverse Fourier trans-

form of g̃(
√

k21 + · · ·+ k2n) for any integer n is simply the

multivariate Student distribution (see also [23]). The gen-

eral form of this distribution can be written as

g(ν)n (x,Λ) =
Γ ( ν2 + n

2 )

πn/2(detΛ)1/2Γ ( ν2 )

1

(1 + xtΛ−1x)
ν
2
+n

2

,

(7)

where ν > 1 is the exponent of the power law of the

tails, P(r > R) ∝ 1/Rν and Λ is a positive de�nite sym-

metric matrix governing the variance-covariance matrix

E(xi, xj) =
Λij

ν−2 , which does exist provided that ν > 2.

2 All the graphics and numerical calculations have been per-

formed with [22].

In passing, the same properties are shared by multi-

variate symmetric generalized hyperbolic distributions in-

troduced in �nance by [24] (see also [25]). The general

case is obtained by an a�ne change of variable, but for

the sake of brevity let us restrict to

f(x) =
α

n
2

(2π)
n
2 K ν

2
(α)

1

(1 + r2)
ν
4
+n

4

K ν
2
+n

2
(α
√

1 + r2)

for x ∈ R
n and r the usual euclidean norm of x. Student

distributions are recovered in the limit α → 0+. As shown

in the appendix, its characteristic function is given for any

n by

f̃n(k) =
K ν

2
(
√
α2 + k2)

K ν
2
(α)

(α2 + k2)
ν
4

α
ν
2

with k =
√∑n

i=1 k
2
i .

In the following we restrict the discussion to the Stu-

dent distributions. Hence we assume that the distribution

of the return is given by Eq. (7) with characteristic func-

tion given by Eq. (6), where Λ is a diagonal matrix

k =
√
ktΛk

= λ
√

k20 + (22D − 1)k21 + · · ·+ (n2D − (n− 1)2D)k2n−1

and λ2 governs the variance of the returns on the time

scale chosen as a reference. Thanks to the fact that the

diagonal elements of Λ form a telescoping series the pro-

cess is indeed consistent for any number of discrete steps.

Moreover it can be generalized to the continuous time by

setting, in the same consistent way,

P(r0,∆t0 , rt1,∆t1 , . . . , rtn−1,∆tn−1
)

= g(ν)n (r0,∆t0 , rt1,∆t1 , . . . , rtn−1,∆tn−1
,Λ)

= diag(t2D1 , t2D2 − t2D1 , . . . , t2Dn − t2Dn−1)),
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where tj =
∑j−1

i=0 ∆ti, j ≥ 1 and now Λ = diag(t2D1 , t2D2 −

t2D1 , . . . , t2Dn − t2Dn−1). The existence of the continuum pro-

cess is then guaranteed by the Kolmogorov extension the-

orem. Starting from this expression a wider class of pro-

cesses can be generated by suitable transformations of the

time, i.e., by substituting the function ti → t2Di for any

monotonically increasing continuous function ti → T (ti).

The process followed by the price x(t) = lnS(t) is a Stu-

dent process too, with same exponent ν and non diagonal

matrix Λij = (−1)i+jT (tmin(i,j)).

The Student setting makes easier to interpret the cor-

relations induced by the pointwise non-standard product

of (2) in the characteristic function space. If we consider

two variables x1 and x2 distributed according to g1(x), the

joint probability function will be g2(x1, x2). The variables

Xi = G(xi) =
´ xi

−∞
dx g1(x) are distributed uniformly

on the interval [0, 1]; by de�nition, the copula function

c(X1, X2) (cf. e.g. [26] for a general theory) is

c(X1, X2) = g2(G
−1(X1), G

−1(X2))
dx1

dX1

dx2

dX2

=
g2(G

−1(X1), G
−1(X2))

g(G−1(X1)) g(G−1(X2))
.

In our case c is none other than the Student copula func-

tion, generally applied in �nance for describing the corre-

lation among asset prices ([27,28]). A picture of this cop-

ula density with ν = 3 and Λ the identity matrix is given

in Fig. 2. Although Student and generalized hyperbolic

distributions are usually adopted for modeling returns of

several assets over the same time intervals, the framework

proposed by Baldovin and Stella allow them to model the

returns of a single asset over di�erent time intervals.

3 The Baldovin-Stella Process as

Multivariate Normal Variance Mixtures

According to the Ba-St framework we have to look for

functions φ : R → C, such that g̃n : R
n → C with

g̃n(k1, k2, . . . , kn) = φ(k21 + k22 + · · ·+ k2n) is the character-

istic function of a probability distribution for any n. Then

from Eq. (8) we obtain a unique stochastic process with a

well-de�ned continuous limit.

Ba-St processes can be fully characterized if one re-

gards their �nite dimensional marginals as instances of

multivariate normal variance mixtures U = σN , where σ

is an univariate random variable with positive values, σ2

having cumulative distributionG, andN is an n-dimensional

normal random variable independent from σ. Leaving aside

trivial a�ne changes of variables, we can assume that the

covariance matrix of N is the identity matrix. By �rst

conditioning its evaluation on the value of σ, and then

computing its mean over σ, it is immediate to see that

the characteristic function g̃Un (k1, k2, . . . , kn) of U is

g̃Un (k1, k2, . . . , kn) = φσ2

(
1

2
(k21 + k22 + · · ·+ k2n)

)

,

where φσ2(s) is the Laplace transform associated to G

φσ2(s) =

ˆ

∞

0

dx e−sxdG(x).

As this construction is independent from n, an admissible

choice for φ is φ(s) = φσ2( s2 ), where φσ2 is the Laplace

transform associated to any random variable σ2 with pos-

itive values.

The crucial point is that by Schoenberg's theorem in

[29] (see also the self-contained discussion about normal
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Fig. 2: Student copula density with ν = 3 and trivial correlation matrix.

variance mixtures in [30]) this family exhausts all the pos-

sible choices, i.e. φ(k21 + k22 + · · · + k2n) is a characteristic

function of a probability distribution for any n if and only

if φ(s) is the Laplace transform a univariate random vari-

able with positive values.

Hence a multivariate distribution for the returns can

be built in the Ba-St framework if and only if it admits a

representation as a normal variance mixture.

In passing we note that the choice of Ba-St in their

original papers for the distribution (5) is indeed admissi-

ble, as in [20] it is shown that

φS(s) = exp

( −Bs

1 + Cαs1−α/2

)

is completely monotone, hence a Laplace transform by the

virtue of Bernstein's theorem.

Now it is immediate to see that all the stochastic pro-

cesses Xσ
t (ω) that can arise in the Ba-St framework admit

the following representation on a suitably chosen �ltered

probability space (Ω,F ,P), over which a positive random

variable σ(ω) and a Wiener process Wt(ω) independent

from σ are de�ned:

Xσ
t (ω) = σ(ω)Wt2D (ω) . (8)

We only have to show that the �nite dimensional marginal

laws of Xσ
t (ω) are the same as those arising from (8). In-

deed if we �rst evaluate the expectations over W , condi-

tional on σ, we will obtain a Gaussian multivariate distri-
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bution

P(Xt1 , Xt2 , . . . , Xtn | σ)

=
1

(2πσ2)
n
2

exp

[

− 1

2σ2

(
X2

t1

t2D1
+

(Xt2 −Xt1)
2

t2D2 − t2D1

+ · · ·+ (Xtn −Xtn−1
)2

t2Dn − t2Dn−1

)]

;

the eventual average over σ will then lead to the same mul-

tivariate normal variance mixtures as in (8), with the ap-

propriate covariance matrix (just note that∆ti = ti+1−ti,

and ri,∆ti = Xti+1
−Xti). In particular, the processes in-

troduced in Sec. 2 correspond to an inverse Gamma dis-

tribution of σ2 in the Student case, and a Generalized

Inverse Gaussian distribution in the hyperbolic case.

The stochastic di�erential equation obeyed by (8) is

dXσ
t (ω) = σ(ω)tD−

1
2 dWt ,

This equation shows that the volatility of the processes ad-

missible in the Ba-St framework has a deterministic time

dynamic, and that its source of randomness is just ascrib-

able to its initial value.

Eventually we can conclude that a stochastic process

is compatible with the Ba-St framework if and only if it

is a variance mixture of Wiener processes whose variance

is distributed according an arbitrary positive law, with a

deterministic power law time change. This explains why

using use this framework to model real price returns, one

inevitably has to assume that the real price dynamics is

composed by sequences of di�erent realizations, as done

by Ba-St. This is necessary not only because otherwise

the model would predict a persistent and deterministic

volatility decay for D < 1/2, but also because σ is �xed

in each realization. The limitations of this kind of mod-

els in describing real returns will be made more manifest

in the following section, but now we already know their

mathematical foundations.

The asset prices can be modeled in an obvious arbi-

trage free way

S(t, ω) = S0 exp

(

rt+ σ(ω)Wt2D (ω)−
1

2
σ2(ω)t2D

)

,

with r the �xed default free interest rate, and where we left

the dependence on ω explicit in order to emphasise the fact

that σ is a random variable. The pricing of options is then

the same as in the Black-Scholes model, with an additional

average over σ(ω). For instance the price C(T,K) of a call

option with maturity T and strike K is

C(T,K) = S0Eσ(N(d1))− e−rTKEσ(N(d2)) ,

with as usual N is the normal cumulative distribution,

d1 =
ln S0

K + rt+ 1
2σ

2t2D

σtD
,

d2 =
ln S0

K + rt− 1
2σ

2t2D

σtD
,

and the additional expectation Eσ has to be evaluated

according to the distribution of σ.

4 Applicability of this Framework to Real

Markets

The axiomatic nature of the derivation of Baldovin and

Stella is elegant and powerful: its ability to build mathe-

matically multivariate price return distributions from a

univariate distribution using only a few reasonable as-

sumptions is impressive. Nevertheless, as stated in the in-

troduction, a model of price dynamics must meet many
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requirements in order to be both relevant and useful. In

this section, we examine its dynamics thoroughly.

4.1 Volatility dynamics

In Fig. 3.a we report the results of three simulations of the

return process, each one of 500 steps and with parameters

ν = 3.2 and D = 0.20. In each run the volatility decays

ineluctably, as explained in the previous section. Indeed

by �xing the time interval δti = 1, we see from Eq. (8)

that the unconditional volatility of the rt,1 returns is pro-

portional to
√

(t+ 1)2D − t2D, i.e., to tD−1/2 for t ≫ 1:

the unconditional volatility decreases if D < 1/2 and in-

creases if D > 1/2, in both cases according to a power law.

This appears quite clearly in Fig. 3.b, where we have com-

puted the mean volatility decay, measured as the absolute

values of the return, over 10000 process simulations. The

parameters of the distributions have been chosen close to

those representing real returns (see below).

The conditional volatility can be easily computed: the

distribution of the return rn,1 conditioned to the previ-

ous return realizations r0,1, . . . , rn−1,1 is again a Student

distribution with exponent ν′ = ν + n and conditional

variance

[(n+ 1)2D − n2D]

(

1 +

n−1∑

i=0

r2i,1
(i+ 1)2D − i2D

)

.

From this expression it is clear that volatility spikes in a

given realisation of the process tend to be persistent (see

Fig. 3.a); this is the main reason why �uctuation patterns

di�er much from one run to an other. This can be also

understood by appealing to the characterization of this

kind of processes we did in Sec. 3: each single run is just a

realization of a Wiener process, whose variance is chosen

at the beginning according to an Inverse Gamma distribu-

tion RΓ ( ν2 ,
λ
2 ), and that decays in time according to the

deterministic law tD−
1
2 .

4.2 Decreasing volatility and restarts

The very �rst model introduced by Ba-St has constant

volatility, which corresponds to Λ being a multiple of the

identity matrix. This unfortunate feature is the main rea-

son behind the introduction of weights, whose e�ect is akin

to an algebraic stretching of the time, or, as put forward

by Ba-St, to a time renormalization. This in turn causes

a deterministic algebraic decrease of the expectation of

the volatility, as explained above and depicted in Fig. 3.b;

hence the need for restarts, each attributed to an external

cause.

Although this dynamics may seem quite peculiar, such

restarts are found at market crashes, like the recent one

of October 2008, which are followed by periods of alge-

braically decaying volatility. This leads to an analogous

of the Omori law for earthquakes, as reported in [31] and

[32]. The Ba-St model, by construction, is able to repro-

duce this e�ect in a faithfully way. In Fig. 4 the cumu-

lative number of times the absolute value of the returns

N(t) exceeds a given thresholds is depicted, for a single

simulation of the process and three di�erent value of the

threshold. The �t with the prediction of the Omori law

N(t) = K(t+ t0)
α −Ktα0 is evident.
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Fig. 3: Process simulation with ν = 3.2, D = 0.20, and λ = 0.107.

Crashes are good restart candidates: they provide clearly

de�ned events that synchronize all the traders' actions. In

that view, they provide an other indirect way to measure

the distribution of timescales of traders, which are thought

to be power-law distributed ([33]).

Another example of algebraically decreasing volatility

was recently reported by [34] in foreign exchange mar-

kets in which trading is performed around the clock. Un-

derstandably, when a given market zone (Asia, Europe,

America) opens, an increase of activity is seen, and vice-

versa. Speci�cally, this work �ts the decrease of activ-

ity corresponding to the afternoon trading session in the

USA with a power-law and �nds an algebraic decay with

exponent η = 0.35; this is exactly the same behavior

as the one of Ba-St model between two restarts, with

D = 1− 2η = 0.3. No explanation of why the trading ac-

tivity should result in this speci�c type of decay has been

put forward in our knowledge. In this case the starting

time of the volatility decay corresponds to the maximum

of activity of US markets.

At any rate, restarts are a simple way to keep the dy-

namics alive. In real markets however, there is no reason

to assume that D is time independent. For instance, Ref.

[35] measures a quantity related to D as a function of

time and �nds a non-trivial time dependence, particularly

in times of crisis.
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Fig. 5: Scaling exponents: S&P 500 data and simulations compared with theoretical prediction. All the simulations

have been done with the same parameters: 30 runs of 500 steps, with ν = 3.2, D = 0.220

4.3 Apparent multifractality

The Baldovin and Stella model is able to reproduce the

apparent multifractal characteristics of the real returns,

i.e. the shape of ζ(q) where 〈|rδt|q〉 = δtζ(q).

The expectation is evaluated according the distribu-

tion (4), i.e. taking the mean over independent runs of the

process. Hence the expectation of the qth moment in this

model is

〈|r|q〉P̄δt
=

〈|r|q〉Pt=0,δt=1

τc

τc−1∑

t=0

[(t+ δt)2D − t2D]q/2 (9)

(see the addendum to [16]). The exponents ζ(q) are evalu-

ated as the slopes of the linear �tting of ln(〈|r|q〉P̄δt
) with

respect to ln(δt). Hence in our case they are determined

by the expression ln
∑τc−1

t=0 [(t + δt)2D − t2D]q/2, and de-

pend only on D and τc. In Fig. 5.a is depicted the �tting

of the S&P 500 exponents with the model (9). The best �t

is obtained with D = 0.212 and τc = 5376. Unfortunately

a value of τc that large is di�cult to justify, as in the case

of S&P 500 we have only 14956 daily returns, i.e. less than

three runs of a process with such a length. The other �t

is obtained by �rst �xing τc = 500, as in [16] and yields

D = 0.220.

The statistical signi�cance of this approach seems any-

way questionable. In Fig. 5.b we compare the theoretical

expectation of the exponents with simulations. We choose

the parameters τc = 500, D = 0.220 both for simulations

and analytic model, with ν = 3.22. The number of restarts

in the simulation is 30 in order to have a number of data

points similar to the S&P 500. It is evident that the ex-
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Fig. 4: Omori law for a single run of the process, with

D = 0.20, ν = 0.32. N(t) is the cumulative number the

absolute value of the return exceeds a given thresholds.

Three di�erent values of the threshold l have been chosen,

measured with respect to the standard deviation σ of the

data. The dashed lines represents the �t with the Omori

law N(t) = K(t+ t0)
α −Ktα0 .

ponents evaluated from the simulated data have a really

large variance.

The problem is that if the tail exponent ν = 3.22, from

an analytic perspective the moments with q > 3.22 are in-

�nite, hence, should not be taken into account in the mul-

tifractal analysis (for an analytic treatment of multifractal

analysis see [36�38]). The situation is somehow di�erent

in the case of multifractal models of asset returns ([39,6]),

where the theoretical prediction of the tail exponents of

the return distribution is relatively high (see the review

of [9]), and the moments usually empirically measured do

exist even from the analytic point of view. For attempts

to reconcile the theoretical predictions of the multifractal

models with real data see [40] and [41].

It is worth remembering that the anomalous scaling

of the empirical return moments does not imply that the

return series has to be described by a multifractal model,

as already pointed out some time ago in [42] and [43]:

the long memory of the volatility is responsible at least

in part for the deviation from trivial scaling. A more de-

tailed analysis of real data reported in [44] seems indeed to

exclude evident multifractal properties of the price series.

5 Missing Features

Since in this model the volatility is constant in each re-

alization and bound to decrease unless a restart occurs,

it is quite clear that it does not contain all the richness

of �nancial market price dynamics. Restarting the whole

process is not entirely satisfactory, as in reality the in-

crease of volatility is not always due to an external shock.

Volatility does often gradually build up through a feed-

back loop that is absent from the Ba-St mechanism. Thus,

large events and crashes can also have a endogenous cause,

e.g. due to the in�uence of traders that base their decisions

on previous prices or volatility, such as technical analysts

or hedgers. A quantitative description of this kind of phe-

nomena is attempted for instance in [45,46], by appeal-

ing to discrete scale invariance (see also the viewpoint ex-

pressed in [47] and references therein). This kind of e�ect

is completely missing from the original Ba-St mechanism.

Volatility build-ups can be simulated with D > 1/2,

getting at constant D the equivalent of the inverse Omori
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law for earthquakes [48]. This kind of dynamics has been

reported to happen prior to some �nancial market crashes

[46]. At a smaller time scale, foreign exchange intraday

volatility patterns have a systematically increasing part

whose �t to a possibly arbitrary power-law, as performed

in [34] (η = 0.22), corresponds indeed to choosing D =

0.56. To our knowledge, volatility build-ups either do not

follow a particular and systematic law, or perhaps have

not yet been the objects of a thorough study.

Because of the symmetric nature of all the distribu-

tions derived above, all the odd moments are zero, hence,

the skewness of real prices cannot be reproduced. This

shows up well in Fig. 3 of [17]. Another consequence is

that it is impossible to replicate the leverage e�ect, i.e.

the negative correlation between past returns and future

volatility, carefully analyzed in [49].

In any case, the decrease of the �uctuations in the Ba-

St process is a deterministic outcome of the anomalous

scaling law tD with D < 1/2, and results in a strong tem-

poral asymmetry of the corresponding time series. But

quite remarkably it misses the time-reversal asymmetry

reported in [50] and [51]. Indeed real �nancial time se-

ries are not symmetric under time reversal with respect

to even-order moments. For instance, there is no leverage

e�ect in foreign exchange rates, and their time series are

not as skewed as indices, but they do have a time arrow.

One of the indicators proposed in [50] is the correlation

between historical volatility σ
(h)
δth

(t) and realized volatility

σ
(r)
δtr

(t). The historical volatility series σ
(h)
δth

(t) represents

the volatility computed using the data in the past interval

[t− δth, t], and σ
(r)
δtr

(t) represents the volatility computed

using the data in the future interval [t, t+ δtr]; the corre-

lation between the two series is then analyzed as a func-

tion of both δtr and δth. Real �nancial time series present

an asymmetric graph with respect the change δth ↔ δts,

with a strong indication that historical volatility at a given

time scale δth is more likely correlated to realized volatil-

ity with time scale δtr < δth, with peaks of correlation at

time scales related to human activities. The asymmetry

characteristic is absent in the Baldovin and Stella model,

as showed in Fig. 6.

Without random restarts, the strong correlation be-

tween returns guarantees the slow decay of the volatility

but induces some side e�ects. The distribution of the re-

turns in the model is essentially the same with identical

power law exponent for the tails. This happens indepen-

dently of the time interval δt over which the returns are

evaluated, as long as δt ≪ τc, with τc of the order of

hundreds days. Hence the weekly returns are distributed

as the daily returns, while in real data the tail exponent

begins to increase in a remarkable way already at the in-

traday level ([52]). The strong correlation also slows down

the convergence to the Gaussian distribution of the re-

turns when measured on larger time scale. Even if the

kurtosis is not de�ned analytically in principle, it is pos-

sible to measure the empirical kurtosis of the returns of

a simulated time series and compare with the kurtosis of

real data. In Fig. 7 we show the kurtosis of the return dis-

tribution among simulations and daily return of the S&P

500 index; the kurtosis has been computed for the returns
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Fig. 6: Correlation between historical and realized volatility of the simulated process, over di�erent time interval δt.

The analyzed time series was composed by 1000 runs of the basic process, each one with 200 steps, and parameter

ν = 3.22, D = 0.20.

over di�erent interval δt, and the simulated processes had

the same length (30 runs of 500 steps) of the real series.

6 Possible Improvements

The main limitations of the model originally proposed by

Baldovin and Stella are poor volatility dynamics, lack of

skewness, some unwanted symmetry with respect to time,

and slow convergence to a Gaussian. In addition to ran-

dom restarts, we think it worthwhile considering other

modi�cations.

The volatility dynamics can be improved by introduc-

ing an appropriate dynamics for the exponentD, i.e. intro-

ducing a dynamic D(t) controlling the di�usive process.

This is equivalent to starting with a model with constant

volatility, i.e. with Λ proportional to the identity matrix,

1 2 5 10 20 50 100

1
2

5
1
0

2
0

Kurtosis excess decay

δt

κ
(δ

t) S&P 500

Simulations

Fig. 7: Comparison of the kurtosis of the returns evaluated

over a time interval δt. Each one of the three simulations

are composed by 30 runs, 500 steps long, in order to have

a length comparable with that of the S&P 500 returns.

The parameters are ν = 3.2, D = 0.20, λ = 0.1.
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and then introducing an appropriate evolution for the time

t. This technique is employed for instance in the Multifrac-

tal Random Walk model ([39]), where the time evolution

is driven by a multifractal process, or when the time evo-

lution is modeled by an increasing Lévy process (see e.g.

[13]). In this last case we would obtain a mixing of Wiener

processes driven by a subordinator.

The lack of skewness is a common problem of stochas-

tic volatility models: one usually writes the return at time

t as rt,δt = ǫ(t)σ(t), where ǫ(t) is sign of the return and

σ(t) its amplitude, a symmetric setting if the distribution

of ǫ(t) is even. One remedy found for instance in [8] is to

bias the sign probabilities while enforcing a zero expecta-

tion; more precisely,

P

(

ǫ = ± 1/
√
2

1/2± ǫ

)

= 1/2± ǫ.

Another possibility for introducing skewness is that of con-

sidering normal mean-variance mixtures, instead of sim-

ply normal variance ones. For instance, this would have

implied the use of the multivariate skewed Student distri-

bution in the model described in Sec. 2.

The decay of the tail exponent of the return distri-

bution, represented in Fig. 7, could be implemented by

introducing two di�erent Student distributions: a univari-

ate with exponent νr for modeling the daily returns, and

a multivariate one with a much larger exponent νc for

modeling the correlations among them. By taking into ac-

count the generalized central limit theorem expressed in

Eq. (3), the distribution of returns at intermediate time

scales will interpolate between the two exponents, yielding

the desired feature.

The Zumbach mugshot is one of the most di�cult styl-

ized facts to reproduce. To our knowledge the best results

in that respect was achieved in [12], where a speci�c real-

ization of a quadratic GARCH model is introduced, moti-

vated by the di�erent activity levels of traders with di�er-

ent investment time horizons, which take into account the

return over a large spectrum of time scales. More speci�-

cally Borland and Bouchaud use

σ2
i = σ2

0

[

1 +

∞∑

δt=1

g∆t

r2i,δt
σ2
0τδt

]

,

with τ �xing the time scale, rt,δT = lnS(t+ δT )− lnS(t),

gδt measuring the impact on the volatility by traders with

time horizon δt, and chosen by the authors gδt = g/(δt)α.

This expression is rewritten also in the form

σ2
i = σ2

0 +
∑

j<i,k<i

M(i, j, k)
rjrk
τ

,

with

M(i, j, k) =
∞∑

∆t=max(i−j,i−k)

gδt
δt

.

In the present framework this would correspond to use

a highly non-trivial matrix Λ, introducing linear correla-

tion among returns at any time lag. This means that the

Ba-St process would no longer be a model of returns, but

of stochastic volatility.

7 Discussion and Conclusions

When employed with self-decomposable distributions like

the Student or the Generalized Hyperbolic as introduced

in Sec. 2, the resulting description of the process return is

di�erent than that of other models in the literature. First
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our Student process is not stationary, hence di�erent from

the class of Student processes discussed in [53], where the

main focus is on stationary ones. The processes (8) are

also di�erent from the one studied in [54]: the latter too

are continuous and based on the Student distributions,

but de�ned by the stochastic di�erential equation

dXt = tD−
1
2

√

2Dc0
ν − 1

√

1 +
X2

t

c0t2D
dW ;

apart from the striking di�erence with Eq. (8), in [55] it

is shown that not all the marginal distribution laws of Xt

are of Student type.

Instead in [24] the Generalized Hyperbolic laws are

adopted for describing the returns at a �xed time scale;

these laws are then extended to the other time scales us-

ing the standard Lévy process construction: in this case

the distributions at the other time scales are no more of

Generalized Hyperbolic type.

The Baldovin and Stella model is also intrinsically sim-

pler than the ones described in [56], where the volatility

has a dynamic modeled by Ornstein-Uhlenbeck type pro-

cesses,

dσ2
t = −λσ2

t dt+ dLt

driven by an arbitrary Lévy process Lt. In this case, ac-

cording to the choice of Lt, any self-decomposable distri-

bution (like the Generalized Inverse Gaussian, or any of its

special cases, like the Inverse Gamma) can arise as the dis-

tribution of σ2
t for any t. But this simpli�cation comes at a

high price: while in Barndor�-Nielsen σ is truly dynamic,

it is �xed in Ba-St for any single process realization.

In addition, the models analyzed in [14] are of a dif-

ferent type, even if there are some analogies in the un-

derlying principles. In [14] indeed an anomalous scaling

is introduced by considering self-similar processes, and

in that framework any self-decomposable distribution can

employed for modeling returns, but once again only at

a �xed time scale, as in the standard case of Lévy pro-

cesses. The main di�erence is that in [14] the returns at

di�erent times are assumed to be totally independent, but

not identically distributed: instead Baldovin and Stella as-

sume that the returns are only linearly independent, but

now with identical distributions at all the time scales, up

to a simple rescaling.

In conclusion, despite its current inability to reproduce

all the needed stylized facts, the new framework proposed

by Baldovin and Stella introduces a new mechanism for

modeling returns, based on a few reasonable �rst princi-

ples. We therefore think that, once suitably modi�ed for

instance along the lines proposed above, the Ba-St frame-

work can provide a new tool for building models of �nan-

cial price dynamics from reasonable assumptions.

Appendix: Some Useful Facts About Student

and Symmetric Generalized Hyperbolic Dis-

tributions

Characteristic function of Student distributions

The standard form of univariate Student distribution is

g1(x) =
Γ ( ν2 + 1

2 )

π1/2Γ ( ν2 )

1

(1 + x2)
ν
2
+ 1

2

,
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while the multivariate one is

gn(x) =
Γ ( ν2 + n

2 )

πn/2Γ ( ν2 )

1

(1 + r2)
ν
2
+n

2

with r =
√∑n

i=1 x
2
i and P(r > R) ∝ 1/Rv.

Using some standard relationships involving Bessel func-

tions one can compute analytically the corresponding char-

acteristic function:

g̃1(k1) =

ˆ +∞

−∞

dx1 e
ik1x1g1(x1)

=
2Γ ( ν2 + 1

2 )

π1/2Γ ( ν2 )
kν
ˆ +∞

0

dx (k2 + x2)−
ν
2
−

1
2 cos(x)

=
21−

ν
2

Γ ( ν2 )
k

ν
2 K ν

2
(k),

with k = |k1|, Kα the modi�ed Bessel function of third

kind, and the employ of identity 7.12.(27) of [57]

Kν(z) =
(2z)ν

π1/2
Γ (ν +

1

2
)

ˆ

∞

0

dt (t2 + z2)−ν−1/2 cos(t)

ℜ(ν) > −1

2
, | arg(z) |< π

2
.

For an alternative derivation we refer to [58] and to the

discussion in [53]. An alternative expression is found in

[59].

For general n we obtain again the same expression.

Indeed

g̃n(k) =

ˆ

Rn

dnx eik·xgn(x)

=
Γ ( ν2 + n

2 )

πn/2Γ ( ν2 )

ˆ

dn−2Ω

ˆ +∞

0

dr rn−1

ˆ π

0

dφ sinn−2(φ)eikr cosφ(1 + r2)−
ν
2
−

n
2

=
2n/2Γ ( ν+n

2 )

Γ ( ν2 )
k1−n/2

ˆ +∞

0

dr rn/2(1 + r2)−
ν
2
−

n
2 Jn/2−1(kr)

=
21−

ν
2

Γ ( ν2 )
k

ν
2 K ν

2
(k),

with k =
√∑n

i=1 k
2
i , d

n−2Ω the surface element of the

sphere Sn−2, φ the angle between k and x and the employ

of identities 7.12.(9)

Γ (ν +
1

2
)Jν(z) =

1

π1/2
(
z

2
)ν
ˆ π

0

dφ eiz cosφ(sinφ)2ν

ℜ(ν) > −1

2
, (10)

and 7.14.(51) of [57],

ˆ

∞

0

dt Jµ(bt)(t
2+z2)−νtµ+1 = (

b

2
)ν−1 z

1+µ−ν

Γ (ν)
Kν−µ−1(bz)

ℜ(2ν − 1

2
) > ℜ(µ) > −1, ℜ(z) > 0.

Eventually one �nds

g̃n(k) = g̃1

(√

k21 + · · ·+ k22

)

.

With the linear change of variables x → C
−1

x, set-

ting Λ
−1 = (CT )−1

C
−1, i.e. Λ = CC

T , one obtains the

following generalizations:

gn(x) =
Γ ( ν2 + n

2 )

πn/2(detΛ)1/2Γ ( ν2 )

1

(1 + xtΛ−1x)
ν
2
+n

2

, (11)

with characteristic function

g̃n(k) =
21−

ν
2

Γ ( ν2 )
(kt

Λk)
ν
4 K ν

2
((kt

Λk)1/2).

In the univariate case Λ is substituted by the scalar

λ2 and the previous expressions reduce to

g1(x) =
Γ ( ν2 + 1

2 )

π1/2λΓ ( ν2 )

1

(1 + x2

λ2 )
ν
2
+ 1

2

(12)

and

g̃1(k) =
21−

ν
2

Γ ( ν2 )
(λk)

ν
2 K ν

2
(λk).

Moments of Student distributions

Due to the symmetry under re�ection all the odd moments

vanish. For the second moments we have, provided that
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ν > 2,

E(xi, xj) =
Λij

ν − 2
.

The moments of order 2n exist provided that ν > 2n ; as

happens for Gaussian distributions, they can be expressed

in term of the second moments,

E(xj1 , xj2 , . . . , xj2n) =

Γ ( ν2 − n)

2nΓ ( ν2 )

∏

all the pairings

Λji1 ji2
· · ·Λji2n−1

ji2n
.

In the univariate case these formulas reduce to E(x2) =

λ2

ν−2 and

E(x2n) =
(2n− 1)!!Γ ( ν2 − n)

2nΓ ( ν2 )
λ2n.

The kurtosis is then κ = 3ν−2
ν−4 , provided that ν > 4.

Simulation of multivariate Student distributions

The simulation is a standard application of the technique

used in the case of rotational invariance. From

gn(x)d
n
x =

Γ ( ν2 + n
2 )

πn/2Γ ( ν2 )
rn−1(1 + r2)

1
1−q dn−1Ωdr,

with r ≥ 0, we see that the density of the angular variables

is uniform, while setting y = r2

1+r2 , with 1 > y ≥ 0 and

r =
√

y/(1− y), the density of y is given by

1

B(n2 ,
ν
2 )

y
n
2
−1(1− y)

ν
2
−1dy,

i.e. by the beta distribution with parameters n
2 and ν

2 .

Eventually we can simulate the multivariate n dimensional

distribution by

1. Simulating y according to Bx(
n
2 ,

ν
2 ) and setting r =

√
y

1−y .

2. Simulating n i.i.d. Gaussian variables ui and settings

n = (u1, . . . , un)/
√

u2
1 + · · ·+ u2

n.

3. Returning xn.

The more general case (11) is simulated using the same al-

gorithm and then returningCx, whereΛ−1 = (CT )−1
C

−1,

i.e. Λ = CC
T .

Characteristic function of symmetric generalized hyper-

bolic distributions

We start from the expression

fn(x) =
α

n
2

(2π)
n
2 K ν

2
(α)

K ν
2
+n

2
(α

√
1 + r2)

(1 + r2)
ν
4
+n

4

,

with r =
√∑n

i=1 x
2
i ; the general case is obtained simply

with an a�ne transformation x → µ+ δRx, with µ ∈ R
n,

δ ≥ 0 a scale parameter, and R an orthogonal transforma-

tion in R
n. The central expression we need is an integral of

the Sonine-Gegenbauer type, cf. identity 7.14.(46) of [57]:

ˆ

∞

0

dt Jµ(bt)Kν(a
√

t2 + z2)(t2 + z2)−
ν
2 tµ+1

= bµa−νzµ−ν+1(a2 + b2)
ν
2
−

µ
2
−

1
2Kν−µ−1(z

√

a2 + b2)

ℜ(µ) > −1, ℜ(z) > 0.

For n = 1, considering that J
−

1
2
(x) =

√
2
πx cos(x), we

obtain

f̃1(k1) =
K ν

2
(
√

α2 + k21)

K ν
2
(α)

(α2 + k21)
ν
4

α
ν
2

.

For alternative derivations in the univariate case see [58]

and the references therein.

In our setting the computation is exactly the same for

general n, with k =
√∑n

i=1 k
2
i , d

n−2Ω the surface element
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of the sphere Sn−2, φ the angle between k and x, using

identity (10)

f̃n(k) =
K ν

2
(
√
α2 + k2)

K ν
2
(α)

(α2 + k2)
ν
4

α
ν
2

.

Hence the eventual result f̃n(k) = f̃1(k).
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