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returns, Baldovin and Stella recently proposed a powerful and consistent way to build a model describing the time evolution of a nancial index. We rst make it fully explicit by using Student distributions instead of power law-truncated Lévy distributions and show that the analytic tractability of the model extends to the larger class of symmetric generalized hyperbolic distributions and provide a full computation of their multivariate characteristic functions; more generally, we show that the stochastic processes arising in this framework are representable as mixtures of Wiener processes. The basic Baldovin and Stella model, while mimicking well volatility relaxation phenomena such as the Omori law, fails to reproduce other stylized facts such as the leverage eect or some time reversal asymmetries. We discuss how to modify the dynamics of this process in order to reproduce real data more accurately.

How Scaling and Eciency Constrains Return Distribution

Finding a faithful stochastic model of price time series is still an open problem. Not only should it replicate in a unied way all the empirical statistical regularities, often called stylized facts, (cf e.g. [START_REF] Cont | Empirical properties of asset returns: stylized facts and statistical issues[END_REF][START_REF] Bouchaud | Theory of nancial risk and derivative pricing : from statistical physics to risk management[END_REF]), but it should also be easy to calibrate and analytically tractable, so as to facilitate its application to derivative pricing and nancial risk assessment. Up to now none of the proposed models has been able to meet all these requirements despite their variety. Attempts include ARCH family ( [START_REF] Bollerslev | ARCH Models[END_REF][START_REF] Tsay | Analysis of Financial Time Series[END_REF] and references therein), stochastic volatility ( [START_REF] Musiela | Martingale Methods in Financial Modelling[END_REF] and references therein), multifractal models ([69] and references therein), multi-timescale models ([1012]), Lévy processes ( [START_REF] Cont | Financial Modelling with Jump Processes[END_REF] and references therein), and self-similar processes ([14]).

Recently Baldovin and Stella (Ba-St thereafter) proposed a new way of addressing the question. We advise the reader to refer to the original papers [1517] for a full description of the model as we shall only give a brief account of its main underlying principles. Using their notation let S(t) be the value of the asset under consideration at time t, the logarithmic return over the interval [t, t+δt] is given by r t,δt = ln S(t + δt) -ln S(t); the elementary time unit is a day, i.e., t = 0, 1, . . . and δt = 1, 2, . . . days. In order to accommodate for non-stationary features, the distribution of r t,δt is denoted by P t,δt (r) which contains an explicit dependence on t. The most impressive achievement of Ba-St is to build the multivariate distribution P (n) 0,1 (r 0,1 , . . . , r n,1 ) of n consecutive daily returns starting from the univariate distribution of a single day provided that the following conditions hold:

1. No trivial arbitrage: the returns are linearly independent, i.e. E(r i,1 , r j,1 ) = 0 for i = j, with the standard condition E(r i,1 ) = 0.

Possibly anomalous scaling of the return distribution

with respect to the time interval δt, with exponent D: 1 P 0,δt (r) = 1 δt D P 0,1 r δt D .

3. Identical form of the unconditional distributions of the daily returns up to a possible dependence of the vari- 1 See Ref. [START_REF] Di Matteo | Multiscaling in nance[END_REF] for a recent review of anomalous scaling in nance.

ance on the time t, i.e. P t,1 (r) = 1 a t P 0,1 r a t .

As shown in the addendum of [START_REF] Baldovin | Scaling and eciency determine the irreversible evolution of a market[END_REF] these conditions admit the solution

f (n) 0,1 (k 1 , . . . , k n ) = g( a 2D 1 k 2 1 + • • • + a 2D n k 2 n ), (1) 
where f

(n) 0,1 is the characteristic function of P (n) 0,1 , g the characteristic function of P 0,1 , and

a 2D i = i 2D -(i -1) 2D .
In this way the full process is entirely determined by the choice of the scaling exponent D and the distribution P 0,1 .

Therefore the characteristic function of P t,δt (r) is

f t,T (k) = f (n) 0,1 (0, . . . , 0 t terms , k, . . . , k δt terms , 0, . . . , 0) = g(k (t + δt) 2D -t 2D ),
i.e.

P t,δt (r) = 1

(t + δt) 2D -t 2D P 0,1 r (t + δt) 2D -t 2D .
The functional form of g in Eq. ( 1) introduces a dependence between the unconditional marginal distributions of the daily returns by the means of a generalized multiplication ⊗ in the space of characteristic functions, i.e.,

f (n) 0,1 (k 1 , . . . , k n ) = g(a D 1 k 1 ) ⊗ g • • • ⊗ g g(a D n k n ),
with ⊗ g dened by

x ⊗ g y = g [g -1 (x)] 2 + [g -1 (y)] 2 . ( 2 
)
At rst sight this last equation may seem a trivial identity, but it does hide a powerful statement. Suppose indeed that instead of starting with the probability distribution g, one takes a general distribution with nite variance σ 2 = 2 and characteristic function p1 , then it is shown in [START_REF] Baldovin | Central limit theorem for anomalous scaling due to correlations[END_REF] that

lim N →∞ p1 k √ N ⊗ g • • • ⊗ g p1 k √ N N terms = g(k). (3) 
This means that in this framework the return distribution at large scales is independent of the distribution of the returns at microscopic scales: it is completely determined by the correlation introduced by the multiplication ⊗ g , with xed point g. Note that if g is the characteristic function of the Gaussian distribution, then ⊗ g reduces to the standard multiplication and one recovers the standard Central Theorem Limit.

As the volatility of the model shrinks in an inexorable way, Baldovin and Stella propose to restart the whole shrinking process after a critical time τ c long enough for the volatility autocorrelation to fall to the noise level. In this way one recovers a sort of stationary time series when their length is much greater than τ c . In this case one expects that the empirical distribution of the return Pδt (r) over a time horizon δt ≪ τ c , evaluated with a sliding window satises

Pδt (r) = 1 τ c τc-1 t=0 P t,δt (r). (4) 
In the original papers no market mechanism is proposed for modeling the restart of the process; it is simply stated that the length of dierent runs and the starting points of the processes could be stochastic variables. In their simulations the length of the processes was xed to τ = 500, which corresponds to slightly more than two years of daily data. The current approach to restarts is less rigid. [START_REF] Andreoli | Scaling and multiscaling in nancial indexes: a simple model[END_REF] propose to have Poisonnian restarts, which decouples more clearly the dynamics into endegeneous and exogeneous parts and allows for easier calibration.

A Fully Explicit Theory with Student

Distributions

In [START_REF] Baldovin | Scaling and eciency determine the irreversible evolution of a market[END_REF] a power law truncated Lévy distribution is chosen to describe the returns

g(k) = exp -Bk 2 1 + C α k 2-α .
(5)

In [START_REF] Sokolov | Fractional diusion equation for a power-law-truncated Lévy process[END_REF] it is shown that this expression is indeed the characteristic function of a probability density with power law tails whose exponent is exponent 5 -α. However, this choice is problematic in two respects: its inverse Fourier cannot be computed explicitly, which prevents a fully explicit theory. In addition, for Eq. ( 1) to be consistent,

g( k 2 1 + • • • + k 2 n
) must be the characteristic function of a multivariate probability density for all n. In [START_REF] Baldovin | Scaling and eciency determine the irreversible evolution of a market[END_REF] only numerical checks are performed to verify this property. But as discussed for example in [START_REF] Bouchaud | Theory of nancial risk and derivative pricing : from statistical physics to risk management[END_REF] both truncated Lévy and Student distributions yield acceptable ts of the returns on medium and small time scales. In the present context, the Student distribution, sometimes referred to as q-Gaussian in the case of non-integer degrees of freedom, is a better choice; it provides analytic tractability while tting equally well real stock market prices (see also [START_REF] Osorio | Distributions of highfrequency stock market observables[END_REF]). The t of the daily returns of the S&P 500 index in the period with a Student distribution is reported in Fig. 1 2 .

g 1 (x) = Γ ( ν 2 + 1 2 ) π 1/2 λΓ ( ν 2 ) 1 (1 + x 2 λ 2 ) ν 2 + 1
The characteristic function of the Student density is

g(k) = 2 1-ν 2 Γ ( ν 2 ) k ν 2 K ν 2 (k), (6) 
where K α is the modied Bessel function of third kind. As demonstrated in the appendix, the inverse Fourier trans-

form of g( k 2 1 + • • • + k 2 n )
for any integer n is simply the multivariate Student distribution (see also [START_REF] Vignat | Scale invariance and related properties of q-Gaussian systems[END_REF]). The general form of this distribution can be written as

g (ν) n (x, Λ) = Γ ( ν 2 + n 2 ) π n/2 (det Λ) 1/2 Γ ( ν 2 ) 1 (1 + x t Λ -1 x) ν 2 + n 2 , ( 7 
)
where ν > 1 is the exponent of the power law of the tails, P(r > R) ∝ 1/R ν and Λ is a positive denite symmetric matrix governing the variance-covariance matrix

E(x i , x j ) = Λij ν-2 , which does exist provided that ν > 2.
2 All the graphics and numerical calculations have been per- formed with [START_REF] Development | R: A Language and Environment for Statistical Computing[END_REF].

In passing, the same properties are shared by multivariate symmetric generalized hyperbolic distributions introduced in nance by [START_REF] Eberlein | Hyperbolic distributions innance[END_REF] (see also [START_REF] Bingham | Modelling asset returns with hyperbolic distributions[END_REF]). The general case is obtained by an ane change of variable, but for the sake of brevity let us restrict to

f (x) = α n 2 (2π) n 2 K ν 2 (α) 1 (1 + r 2 ) ν 4 + n 4 K ν 2 + n 2 (α 1 + r 2 )
for x ∈ R n and r the usual euclidean norm of x. Student distributions are recovered in the limit α → 0 + . As shown in the appendix, its characteristic function is given for any n by

fn (k) = K ν 2 ( √ α 2 + k 2 ) K ν 2 (α) (α 2 + k 2 ) ν 4 α ν 2 with k = n i=1 k 2 i .
In the following we restrict the discussion to the Student distributions. Hence we assume that the distribution of the return is given by Eq. ( 7) with characteristic function given by Eq. ( 6), where Λ is a diagonal matrix

k = √ k t Λk = λ k 2 0 + (2 2D -1)k 2 1 + • • • + (n 2D -(n -1) 2D )k 2 n-1
and λ 2 governs the variance of the returns on the time scale chosen as a reference. Thanks to the fact that the diagonal elements of Λ form a telescoping series the process is indeed consistent for any number of discrete steps.

Moreover it can be generalized to the continuous time by setting, in the same consistent way, P(r 0,∆t0 , r t1,∆t1 , . . . , r tn-1,∆tn-1 ) = g (ν) n (r 0,∆t0 , r t1,∆t1 , . . . , r tn-1,∆tn-1 , Λ)

= diag(t 2D 1 , t 2D 2 -t 2D 1 , . . . , t 2D n -t 2D n-1 )),
where t j = j-1 i=0 ∆t i , j ≥ 1 and now

Λ = diag(t 2D 1 , t 2D 2 - t 2D 1 , . . . , t 2D n -t 2D n-1
). The existence of the continuum process is then guaranteed by the Kolmogorov extension theorem. Starting from this expression a wider class of processes can be generated by suitable transformations of the time, i.e., by substituting the function t i → t 2D i for any monotonically increasing continuous function t i → T (t i ).

The process followed by the price x(t) = ln S(t) is a Student process too, with same exponent ν and non diagonal

matrix Λ ij = (-1) i+j T (t min(i,j) ).
The Student setting makes easier to interpret the correlations induced by the pointwise non-standard product of (2) in the characteristic function space. If we consider two variables x 1 and x 2 distributed according to g 1 (x), the joint probability function will be g 2 (x 1 , x 2 ). The variables

X i = G(x i ) = ´xi -∞ dx g 1 (x)
are distributed uniformly on the interval [0, 1]; by denition, the copula function c(X 1 , X 2 ) (cf. e.g. [START_REF] Nelsen | An introduction to copulas[END_REF] for a general theory) is

c(X 1 , X 2 ) = g 2 (G -1 (X 1 ), G -1 (X 2 )) dx 1 dX 1 dx 2 dX 2 = g 2 (G -1 (X 1 ), G -1 (X 2 )) g(G -1 (X 1 )) g(G -1 (X 2 )) .
In our case c is none other than the Student copula function, generally applied in nance for describing the correlation among asset prices ( [START_REF] Cherubini | Copula methods in nance[END_REF][START_REF] Malevergne | Extreme Financial Risks[END_REF]). A picture of this copula density with ν = 3 and Λ the identity matrix is given in Fig. 2. Although Student and generalized hyperbolic distributions are usually adopted for modeling returns of several assets over the same time intervals, the framework proposed by Baldovin and Stella allow them to model the returns of a single asset over dierent time intervals. According to the Ba-St framework we have to look for functions φ : R → C, such that gn : R n → C with

gn (k 1 , k 2 , . . . , k n ) = φ(k 2 1 + k 2 2 + • • • + k 2 n )
is the characteristic function of a probability distribution for any n. Then from Eq. ( 8) we obtain a unique stochastic process with a well-dened continuous limit.

Ba-St processes can be fully characterized if one regards their nite dimensional marginals as instances of multivariate normal variance mixtures U = σN , where σ is an univariate random variable with positive values, σ 2 having cumulative distribution G, and N is an n-dimensional normal random variable independent from σ. Leaving aside trivial ane changes of variables, we can assume that the covariance matrix of N is the identity matrix. By rst conditioning its evaluation on the value of σ, and then computing its mean over σ, it is immediate to see that

the characteristic function gU n (k 1 , k 2 , . . . , k n ) of U is gU n (k 1 , k 2 , . . . , k n ) = φ σ 2 1 2 (k 2 1 + k 2 2 + • • • + k 2 n ) ,
where

φ σ 2 (s) is the Laplace transform associated to G φ σ 2 (s) = ˆ∞ 0 dx e -sx dG(x).
As this construction is independent from n, an admissible

choice for φ is φ(s) = φ σ 2 ( s 2 )
, where φ σ 2 is the Laplace transform associated to any random variable σ 2 with positive values.

The crucial point is that by Schoenberg's theorem in [START_REF] Schoenberg | Positive denite functions on spheres[END_REF] (see also the self-contained discussion about normal variance mixtures in [START_REF] Bingham | Semi-parametric modelling in nance: theoretical foundations[END_REF]) this family exhausts all the possible choices, i.e. φ(k In passing we note that the choice of Ba-St in their original papers for the distribution ( 5) is indeed admissible, as in [START_REF] Sokolov | Fractional diusion equation for a power-law-truncated Lévy process[END_REF] it is shown that

2 1 + k 2 2 + • • • + k 2 n ) is
φ S (s) = exp -Bs 1 + C α s 1-α/2
is completely monotone, hence a Laplace transform by the virtue of Bernstein's theorem. Now it is immediate to see that all the stochastic processes X σ t (ω) that can arise in the Ba-St framework admit the following representation on a suitably chosen ltered probability space (Ω, F, P), over which a positive random variable σ(ω) and a Wiener process W t (ω) independent from σ are dened:

X σ t (ω) = σ(ω)W t 2D (ω) . (8) 
We only have to show that the nite dimensional marginal laws of X σ t (ω) are the same as those arising from [START_REF] Eisler | Multifractal model of asset returns with leverage eect[END_REF]. Indeed if we rst evaluate the expectations over W , conditional on σ, we will obtain a Gaussian multivariate distri-bution

P(X t1 , X t2 , . . . , X tn | σ) = 1 (2πσ 2 ) n 2 exp - 1 2σ 2 X 2 t1 t 2D 1 + (X t2 -X t1 ) 2 t 2D 2 -t 2D 1 + • • • + (X tn -X tn-1 ) 2 t 2D n -t 2D n-1 ;
the eventual average over σ will then lead to the same multivariate normal variance mixtures as in [START_REF] Eisler | Multifractal model of asset returns with leverage eect[END_REF], with the appropriate covariance matrix (just note that ∆t i = t i+1 -t i , and r i,∆ti = X ti+1 -X ti ). In particular, the processes introduced in Sec. 2 correspond to an inverse Gamma distribution of σ 2 in the Student case, and a Generalized Inverse Gaussian distribution in the hyperbolic case.

The stochastic dierential equation obeyed by ( 8) is

dX σ t (ω) = σ(ω)t D-1 2 dW t ,
This equation shows that the volatility of the processes admissible in the Ba-St framework has a deterministic time dynamic, and that its source of randomness is just ascribable to its initial value.

Eventually we can conclude that a stochastic process is compatible with the Ba-St framework if and only if it is a variance mixture of Wiener processes whose variance is distributed according an arbitrary positive law, with a deterministic power law time change. This explains why using use this framework to model real price returns, one inevitably has to assume that the real price dynamics is composed by sequences of dierent realizations, as done by Ba-St. This is necessary not only because otherwise the model would predict a persistent and deterministic volatility decay for D < 1/2, but also because σ is xed in each realization. The limitations of this kind of models in describing real returns will be made more manifest in the following section, but now we already know their mathematical foundations.

The asset prices can be modeled in an obvious arbitrage free way

S(t, ω) = S 0 exp rt + σ(ω)W t 2D (ω) - 1 2 σ 2 (ω)t 2D ,
with r the xed default free interest rate, and where we left the dependence on ω explicit in order to emphasise the fact that σ is a random variable. The pricing of options is then the same as in the Black-Scholes model, with an additional average over σ(ω). For instance the price C(T, K) of a call option with maturity T and strike K is

C(T, K) = S 0 E σ (N (d 1 )) -e -rT KE σ (N (d 2 )) ,
with as usual N is the normal cumulative distribution,

d 1 = ln S0 K + rt + 1 2 σ 2 t 2D σt D , d 2 = ln S0 K + rt -1 2 σ 2 t 2D σt D ,
and the additional expectation E σ has to be evaluated according to the distribution of σ.

Applicability of this Framework to Real

Markets

The axiomatic nature of the derivation of Baldovin and

Stella is elegant and powerful: its ability to build mathematically multivariate price return distributions from a univariate distribution using only a few reasonable assumptions is impressive. Nevertheless, as stated in the introduction, a model of price dynamics must meet many requirements in order to be both relevant and useful. In this section, we examine its dynamics thoroughly.

Volatility dynamics

In Fig. 3.a we report the results of three simulations of the return process, each one of 500 steps and with parameters ν = 3.2 and D = 0.20. In each run the volatility decays ineluctably, as explained in the previous section. Indeed by xing the time interval δt i = 1, we see from Eq. ( 8)

that the unconditional volatility of the r t,1 returns is proportional to (t + 1) 2D -t 2D , i.e., to t D-1/2 for t ≫ 1:

the unconditional volatility decreases if D < 1/2 and in- The conditional volatility can be easily computed: the distribution of the return r n,1 conditioned to the previous return realizations r 0,1 , . . . , r n-1,1 is again a Student distribution with exponent ν′ = ν + n and conditional variance

creases if D > 1/2,
[(n + 1) 2D -n 2D ] 1 + n-1 i=0 r 2 i,1 (i + 1) 2D -i 2D .
From this expression it is clear that volatility spikes in a given realisation of the process tend to be persistent (see Fig. 3.a); this is the main reason why uctuation patterns dier much from one run to an other. This can be also understood by appealing to the characterization of this kind of processes we did in Sec. 3: each single run is just a realization of a Wiener process, whose variance is chosen at the beginning according to an Inverse Gamma distribu-

tion RΓ ( ν 2 , λ
2 ), and that decays in time according to the deterministic law t D-1 2 .

Decreasing volatility and restarts

The Although this dynamics may seem quite peculiar, such restarts are found at market crashes, like the recent one of October 2008, which are followed by periods of algebraically decaying volatility. This leads to an analogous of the Omori law for earthquakes, as reported in [START_REF] Lillo | Power-law relaxation in a complex system: Omori law after a nancial market crash[END_REF] and [START_REF] Weber | Relation between volatility correlations in nancial markets and Omori processes occurring on all scales[END_REF]. The Ba-St model, by construction, is able to reproduce this eect in a faithfully way. In Fig. 4 the cumulative number of times the absolute value of the returns N (t) exceeds a given thresholds is depicted, for a single simulation of the process and three dierent value of the threshold. The t with the prediction of the Omori law Crashes are good restart candidates: they provide clearly dened events that synchronize all the traders' actions. In that view, they provide an other indirect way to measure the distribution of timescales of traders, which are thought to be power-law distributed ( [START_REF] Lillo | Limit order placement as an utility maximization problem and the origin of power law distribution of limit order prices[END_REF]).

N (t) = K(t + t 0 ) α -Kt α 0 is evident.
Another example of algebraically decreasing volatility was recently reported by [START_REF] Mccauley | Martingales, the ecient market hypothesis, and spurious stylized facts[END_REF] in foreign exchange markets in which trading is performed around the clock. Understandably, when a given market zone (Asia, Europe, America) opens, an increase of activity is seen, and vice- At any rate, restarts are a simple way to keep the dynamics alive. In real markets however, there is no reason to assume that D is time independent. For instance, Ref.

[35] measures a quantity related to D as a function of time and nds a non-trivial time dependence, particularly in times of crisis. The Baldovin and Stella model is able to reproduce the apparent multifractal characteristics of the real returns, i.e. the shape of ζ(q) where |r δt | q = δt ζ(q) . The expectation is evaluated according the distribution (4), i.e. taking the mean over independent runs of the process. Hence the expectation of the qth moment in this model is

|r| q Pδt = |r| q P t=0,δt=1 τ c τc-1 t=0 [(t + δt) 2D -t 2D ] q/2 (9)
(see the addendum to [START_REF] Baldovin | Scaling and eciency determine the irreversible evolution of a market[END_REF]). The exponents ζ(q) are evaluated as the slopes of the linear tting of ln( |r| q Pδt ) with respect to ln(δt). Hence in our case they are determined by the expression ln τc-1 t=0 [(t + δt) 2D -t 2D ] q/2 , and depend only on D and τ c . In Fig. 5.a is depicted the tting of the S&P 500 exponents with the model [START_REF] Borland | The Dynamics of Financial Markets Mandelbrot's multifractal cascades, and beyond[END_REF]. The best t is obtained with D = 0.212 and τ c = 5376. Unfortunately a value of τ c that large is dicult to justify, as in the case of S&P 500 we have only 14956 daily returns, i.e. less than three runs of a process with such a length. The other t is obtained by rst xing τ c = 500, as in [START_REF] Baldovin | Scaling and eciency determine the irreversible evolution of a market[END_REF] and yields

D = 0.220.
The statistical signicance of this approach seems anyway questionable. In ponents evaluated from the simulated data have a really large variance.

The problem is that if the tail exponent ν = 3.22, from an analytic perspective the moments with q > 3.22 are innite, hence, should not be taken into account in the multifractal analysis (for an analytic treatment of multifractal analysis see [3638]). The situation is somehow dierent in the case of multifractal models of asset returns ( [START_REF] Bacry | Multifractal random walk[END_REF][START_REF] Mandelbrot | A multifractal model of asset returns[END_REF]),

where the theoretical prediction of the tail exponents of the return distribution is relatively high (see the review of [START_REF] Borland | The Dynamics of Financial Markets Mandelbrot's multifractal cascades, and beyond[END_REF]), and the moments usually empirically measured do exist even from the analytic point of view. For attempts to reconcile the theoretical predictions of the multifractal models with real data see [START_REF] Bacry | Are asset return tail estimations related to volatility long-range correlations?[END_REF] and [START_REF] Muzy | Extreme values and fat tails of multifractal uctuations[END_REF].

It is worth remembering that the anomalous scaling of the empirical return moments does not imply that the return series has to be described by a multifractal model, as already pointed out some time ago in [START_REF] Bouchaud | Elements for a theory of nancial risks[END_REF] and [START_REF] Bouchaud | Apparent multifractality in nancial time series[END_REF]:

the long memory of the volatility is responsible at least in part for the deviation from trivial scaling. A more detailed analysis of real data reported in [START_REF] Jiang | Multifractality in stock indexes: Fact or ction?[END_REF] seems indeed to exclude evident multifractal properties of the price series.

Missing Features

Since in this model the volatility is constant in each realization and bound to decrease unless a restart occurs, it is quite clear that it does not contain all the richness of nancial market price dynamics. Restarting the whole process is not entirely satisfactory, as in reality the increase of volatility is not always due to an external shock.

Volatility does often gradually build up through a feedback loop that is absent from the Ba-St mechanism. Thus, large events and crashes can also have a endogenous cause, e.g. due to the inuence of traders that base their decisions on previous prices or volatility, such as technical analysts or hedgers. A quantitative description of this kind of phenomena is attempted for instance in [START_REF] Sornette | Critical market crashes[END_REF][START_REF] Sornette | Volatility ngerprints of large shocks: Endogeneous versus exogeneous[END_REF], by appealing to discrete scale invariance (see also the viewpoint expressed in [START_REF] Chang | A bayesian analysis of logperiodic precursors to nancial crashes[END_REF] and references therein). This kind of eect is completely missing from the original Ba-St mechanism.

Volatility build-ups can be simulated with D > 1/2, getting at constant D the equivalent of the inverse Omori law for earthquakes [START_REF] Helmstetter | Mainshocks are aftershocks of conditional foreshocks: How do foreshock statistical properties emerge from aftershock laws[END_REF]. This kind of dynamics has been reported to happen prior to some nancial market crashes [START_REF] Sornette | Volatility ngerprints of large shocks: Endogeneous versus exogeneous[END_REF]. At a smaller time scale, foreign exchange intraday volatility patterns have a systematically increasing part whose t to a possibly arbitrary power-law, as performed in [START_REF] Mccauley | Martingales, the ecient market hypothesis, and spurious stylized facts[END_REF] (η = 0.22), corresponds indeed to choosing D = 0.56. To our knowledge, volatility build-ups either do not follow a particular and systematic law, or perhaps have not yet been the objects of a thorough study.

Because of the symmetric nature of all the distributions derived above, all the odd moments are zero, hence, the skewness of real prices cannot be reproduced. This shows up well in Fig. 3 of [START_REF] Baldovin | Role of scaling in the statistical modeling of nance[END_REF]. Another consequence is that it is impossible to replicate the leverage eect, i.e.

the negative correlation between past returns and future volatility, carefully analyzed in [START_REF] Bouchaud | Leverage eect in nancial markets: The retarded volatility model[END_REF].

In any case, the decrease of the uctuations in the Ba-St process is a deterministic outcome of the anomalous scaling law t D with D < 1/2, and results in a strong temporal asymmetry of the corresponding time series. But quite remarkably it misses the time-reversal asymmetry reported in [START_REF] Lynch | Market heterogeneities and the causal structure of volatility[END_REF] and [START_REF] Zumbach | Time reversal invariance in nance[END_REF]. Indeed real nancial time series are not symmetric under time reversal with respect to even-order moments. For instance, there is no leverage eect in foreign exchange rates, and their time series are not as skewed as indices, but they do have a time arrow.

One of the indicators proposed in [START_REF] Lynch | Market heterogeneities and the causal structure of volatility[END_REF] is the correlation between historical volatility σ (h) δt h (t) and realized volatility

σ (r)
δtr (t). The historical volatility series σ (h) δt h (t) represents the volatility computed using the data in the past interval [t -δt h , t], and σ (r) δtr (t) represents the volatility computed using the data in the future interval [t, t + δt r ]; the correlation between the two series is then analyzed as a function of both δt r and δt h . Real nancial time series present an asymmetric graph with respect the change δt h ↔ δt s , with a strong indication that historical volatility at a given time scale δt h is more likely correlated to realized volatility with time scale δt r < δt h , with peaks of correlation at time scales related to human activities. The asymmetry characteristic is absent in the Baldovin and Stella model, as showed in Fig. 6.

Without random restarts, the strong correlation between returns guarantees the slow decay of the volatility but induces some side eects. The distribution of the returns in the model is essentially the same with identical power law exponent for the tails. This happens independently of the time interval δt over which the returns are evaluated, as long as δt ≪ τ c , with τ c of the order of hundreds days. Hence the weekly returns are distributed as the daily returns, while in real data the tail exponent begins to increase in a remarkable way already at the intraday level ([52]). The strong correlation also slows down the convergence to the Gaussian distribution of the returns when measured on larger time scale. Even if the kurtosis is not dened analytically in principle, it is possible to measure the empirical kurtosis of the returns of a simulated time series and compare with the kurtosis of real data. In Fig. 7 we show the kurtosis of the return distribution among simulations and daily return of the S&P 500 index; the kurtosis has been computed for the returns over dierent interval δt, and the simulated processes had the same length (30 runs of 500 steps) of the real series.

Possible Improvements

The main limitations of the model originally proposed by Baldovin and Stella are poor volatility dynamics, lack of skewness, some unwanted symmetry with respect to time, and slow convergence to a Gaussian. In addition to random restarts, we think it worthwhile considering other modications.

The volatility dynamics can be improved by introducing an appropriate dynamics for the exponent D, i.e. introducing a dynamic D(t) controlling the diusive process.

This is equivalent to starting with a model with constant volatility, i.e. with Λ proportional to the identity matrix, and then introducing an appropriate evolution for the time t. This technique is employed for instance in the Multifractal Random Walk model ( [START_REF] Bacry | Multifractal random walk[END_REF]), where the time evolution is driven by a multifractal process, or when the time evolution is modeled by an increasing Lévy process (see e.g. [START_REF] Cont | Financial Modelling with Jump Processes[END_REF]). In this last case we would obtain a mixing of Wiener processes driven by a subordinator.

The lack of skewness is a common problem of stochastic volatility models: one usually writes the return at time t as r t,δt = ǫ(t)σ(t), where ǫ(t) is sign of the return and σ(t) its amplitude, a symmetric setting if the distribution of ǫ(t) is even. One remedy found for instance in [START_REF] Eisler | Multifractal model of asset returns with leverage eect[END_REF] is to bias the sign probabilities while enforcing a zero expectation; more precisely,

P ǫ = ± 1/ √ 2 1/2 ± ǫ = 1/2 ± ǫ.
Another possibility for introducing skewness is that of considering normal mean-variance mixtures, instead of simply normal variance ones. For instance, this would have implied the use of the multivariate skewed Student distribution in the model described in Sec. 2.

The decay of the tail exponent of the return distribution, represented in Fig. 7, could be implemented by introducing two dierent Student distributions: a univariate with exponent ν r for modeling the daily returns, and a multivariate one with a much larger exponent ν c for modeling the correlations among them. By taking into account the generalized central limit theorem expressed in Eq. ( 3), the distribution of returns at intermediate time scales will interpolate between the two exponents, yielding the desired feature.

The Zumbach mugshot is one of the most dicult stylized facts to reproduce. To our knowledge the best results in that respect was achieved in [START_REF] Borland | On a multi-timescale statistical feedback model for volatility uctuations[END_REF], where a specic realization of a quadratic GARCH model is introduced, motivated by the dierent activity levels of traders with dierent investment time horizons, which take into account the return over a large spectrum of time scales. More specically Borland and Bouchaud use

σ 2 i = σ 2 0 1 + ∞ δt=1 g ∆t r 2 
i,δt σ 2 0 τ δt , with τ xing the time scale, r t,δT = ln S(t + δT ) -ln S(t), g δt measuring the impact on the volatility by traders with time horizon δt, and chosen by the authors g δt = g/(δt) α .

This expression is rewritten also in the form

σ 2 i = σ 2 0 + j<i,k<i M(i, j, k) r j r k τ , with M(i, j, k) = ∞ ∆t=max(i-j,i-k) g δt δt .
In the present framework this would correspond to use a highly non-trivial matrix Λ, introducing linear correlation among returns at any time lag. This means that the Ba-St process would no longer be a model of returns, but of stochastic volatility.

Discussion and Conclusions

When employed with self-decomposable distributions like the Student or the Generalized Hyperbolic as introduced in Sec. 2, the resulting description of the process return is dierent than that of other models in the literature. First our Student process is not stationary, hence dierent from the class of Student processes discussed in [START_REF] Heyde | Student processes[END_REF], where the main focus is on stationary ones. The processes (8) are also dierent from the one studied in [START_REF] Borland | Option pricing formulas based on a nongaussian stock price model[END_REF]: the latter too are continuous and based on the Student distributions, but dened by the stochastic dierential equation

dX t = t D-1 2 2Dc 0 ν -1 1 + X 2 t c 0 t 2D dW ;
apart from the striking dierence with Eq. ( 8), in [START_REF] Vellekoop | On option pricing models in the presence of heavy tails[END_REF] it is shown that not all the marginal distribution laws of X t are of Student type.

Instead in [START_REF] Eberlein | Hyperbolic distributions innance[END_REF] the Generalized Hyperbolic laws are adopted for describing the returns at a xed time scale;

these laws are then extended to the other time scales using the standard Lévy process construction: in this case the distributions at the other time scales are no more of Generalized Hyperbolic type.

The Baldovin and Stella model is also intrinsically simpler than the ones described in [START_REF] Barndor-Nielsen | Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in nancial economics[END_REF], where the volatility has a dynamic modeled by Ornstein-Uhlenbeck type processes,

dσ 2 t = -λσ 2 t dt + dL t
driven by an arbitrary Lévy process L t . In this case, according to the choice of L t , any self-decomposable distribution (like the Generalized Inverse Gaussian, or any of its special cases, like the Inverse Gamma) can arise as the distribution of σ 2 t for any t. But this simplication comes at a high price: while in Barndor-Nielsen σ is truly dynamic, it is xed in Ba-St for any single process realization.

In addition, the models analyzed in [START_REF] Carr | Selfdecomposability and option pricing[END_REF] are of a different type, even if there are some analogies in the underlying principles. In [START_REF] Carr | Selfdecomposability and option pricing[END_REF] indeed an anomalous scaling is introduced by considering self-similar processes, and in that framework any self-decomposable distribution can employed for modeling returns, but once again only at a xed time scale, as in the standard case of Lévy processes. The main dierence is that in [START_REF] Carr | Selfdecomposability and option pricing[END_REF] the returns at dierent times are assumed to be totally independent, but not identically distributed: instead Baldovin and Stella assume that the returns are only linearly independent, but now with identical distributions at all the time scales, up to a simple rescaling.

In conclusion, despite its current inability to reproduce all the needed stylized facts, the new framework proposed by Baldovin and Stella introduces a new mechanism for modeling returns, based on a few reasonable rst principles. We therefore think that, once suitably modied for instance along the lines proposed above, the Ba-St framework can provide a new tool for building models of nancial price dynamics from reasonable assumptions.

Appendix: Some Useful Facts About Student and Symmetric Generalized Hyperbolic Distributions

Characteristic function of Student distributions

The standard form of univariate Student distribution is

g 1 (x) = Γ ( ν 2 + 1 2 ) π 1/2 Γ ( ν 2 ) 1 (1 + x 2 ) ν 2 + 1 2 ,
while the multivariate one is 

g n (x) = Γ ( ν 2 + n 2 ) π n/2 Γ ( ν 2 ) 1 (1 + r 2 )
g1 (k 1 ) = ˆ+∞ -∞ dx 1 e ik1x1 g 1 (x 1 ) = 2Γ ( ν 2 + 1 2 ) π 1/2 Γ ( ν 2 ) k ν ˆ+∞ 0 dx (k 2 + x 2 ) -ν 2 -1 2 cos(x) = 2 1-ν 2 Γ ( ν 2 ) k ν 2 K ν 2 (k),
with k = |k 1 |, K α the modied Bessel function of third kind, and the employ of identity 7.12.( 27) of [START_REF] Erdélyi | Higher Transcendental Functions[END_REF] K ν (z) = (2z) ν π 1/2 Γ (ν + 1 2 ) ˆ∞ 0 dt (t 2 + z 2 ) -ν-1/2 cos(t)

ℜ(ν) > - 1 2 , | arg(z) |< π 2 .
For an alternative derivation we refer to [START_REF] Hurst | The characteristic function of the Student tdistribution[END_REF] and to the discussion in [START_REF] Heyde | Student processes[END_REF]. An alternative expression is found in [START_REF] Dreier | A note on the characteristic function of the t-distribution[END_REF].

For general n we obtain again the same expression. i , d n-2 Ω the surface element of the sphere S n-2 , φ the angle between k and x and the employ of identities 7.12.( 9)

Γ (ν + 1 2 )J ν (z) = 1 π 1/2 ( z 2
) ν ˆπ 0 dφ e iz cos φ (sin φ) 2ν ℜ(ν) > -1 2

, [START_REF] Zumbach | Measuring shock in nancial markets[END_REF] and 7.14.( 51) of [START_REF] Erdélyi | Higher Transcendental Functions[END_REF],

ˆ∞ 0 dt J µ (bt)(t 2 +z 2 ) -ν t µ+1 = ( b 2 ) ν-1 z 1+µ-ν Γ (ν) K ν-µ-1 (bz) ℜ(2ν - 1 2 
) > ℜ(µ) > -1, ℜ(z) > 0.

Eventually one nds

gn (k) = g1 k 2 1 + • • • + k 2 2 .
With the linear change of variables x → C -1 x, setting Λ -1 = (C T ) -1 C -1 , i.e. Λ = CC T , one obtains the following generalizations: [START_REF] Zumbach | Volatility processes and volatility forecast with long memory[END_REF] with characteristic function

g n (x) = Γ ( ν 2 + n 2 ) π n/2 (det Λ) 1/2 Γ ( ν 2 ) 1 (1 + x t Λ -1 x) ν 2 + n 2 ,
gn (k) = 2 1-ν 2 Γ ( ν 2 ) (k t Λk) ν 4 K ν 2 ((k t Λk) 1/2 ).
In the univariate case Λ is substituted by the scalar λ 2 and the previous expressions reduce to

g 1 (x) = Γ ( ν 2 + 1 2 ) π 1/2 λΓ ( ν 2 ) 1 (1 + x 2 λ 2 ) ν 2 + 1 2 (12) 
and

g1 (k) = 2 1-ν 2 Γ ( ν 2 ) (λk) ν 2 K ν 2 (λk).

Moments of Student distributions

Due to the symmetry under reection all the odd moments vanish. For the second moments we have, provided that of the sphere S n-2 , φ the angle between k and x, using identity ( 10)

fn (k) = K ν 2 ( √ α 2 + k 2 ) K ν 2 (α) (α 2 + k 2 ) ν 4 α ν 2
.

Hence the eventual result fn (k) = f1 (k).
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 1 Fig. 1: Centered distribution of the 14956 daily returns of the S&P 500 index (January, 3th 1950 -June, 11th 2009), and the corresponding tting with Student (ν = 3.21, λ = 0.0109) and Gaussian distribution (σ = 0.0095).

Fig. 2 :

 2 Fig. 2: Student copula density with ν = 3 and trivial correlation matrix.

  in both cases according to a power law.This appears quite clearly inFig. 3.b, where we have computed the mean volatility decay, measured as the absolute values of the return, over 10000 process simulations. The parameters of the distributions have been chosen close to those representing real returns (see below).

  very rst model introduced by Ba-St has constant volatility, which corresponds to Λ being a multiple of the identity matrix. This unfortunate feature is the main reason behind the introduction of weights, whose eect is akin to an algebraic stretching of the time, or, as put forward by Ba-St, to a time renormalization. This in turn causes a deterministic algebraic decrease of the expectation of the volatility, as explained above and depicted in Fig. 3.b; hence the need for restarts, each attributed to an external cause.

  Three simulations, each 500 steps long.

  Decay of the volatility: average over 10000 simulation, each 500 steps long. The dashed line represents the analytic prediction.

Fig. 3 :

 3 Fig. 3: Process simulation with ν = 3.2, D = 0.20, and λ = 0.107.

  versa. Specically, this work ts the decrease of activity corresponding to the afternoon trading session in the USA with a power-law and nds an algebraic decay with exponent η = 0.35; this is exactly the same behavior as the one of Ba-St model between two restarts, with D = 1 -2η = 0.3. No explanation of why the trading activity should result in this specic type of decay has been put forward in our knowledge. In this case the starting time of the volatility decay corresponds to the maximum of activity of US markets.

  with τ c = 5376, D = 0.21245 Fit with τ c = 500, D = 0.21969 (a) Fitting of the empirical exponents of real data.

  Theoretical prediction compared to 5 simulations done with the same parameters.

Fig. 5 :

 5 Fig. 5: Scaling exponents: S&P 500 data and simulations compared with theoretical prediction. All the simulations have been done with the same parameters: 30 runs of 500 steps, with ν = 3.2, D = 0.220

Fig. 5 . 25 Fig. 4 :

 5254 Fig. 4: Omori law for a single run of the process, with D = 0.20, ν = 0.32. N (t) is the cumulative number the absolute value of the return exceeds a given thresholds. Three dierent values of the threshold l have been chosen, measured with respect to the standard deviation σ of the data. The dashed lines represents the t with the Omori law N (t) = K(t + t 0 ) α -Kt α 0 .

Fig. 6 :

 6 Fig. 6: Correlation between historical and realized volatility of the simulated process, over dierent time interval δt. The analyzed time series was composed by 1000 runs of the basic process, each one with 200 steps, and parameter ν = 3.22, D = 0.20.

Fig. 7 :

 7 Fig. 7: Comparison of the kurtosis of the returns evaluated over a time interval δt. Each one of the three simulations are composed by 30 runs, 500 steps long, in order to have a length comparable with that of the S&P 500 returns. The parameters are ν = 3.2, D = 0.20, λ = 0.1.

x 2 i

 2 and P(r > R) ∝ 1/R v . Using some standard relationships involving Bessel functions one can compute analytically the corresponding characteristic function:

Indeed gn (k) = ˆRn d n x e ik•x g n (

  sin n-2 (φ)e ikr cos φ (1 + r 2 ) -ν n/2 (1 + r 2 ) -ν 2 -n 2 J n/2-1 (kr)

The moments of order 2n exist provided that ν > 2n ; as happens for Gaussian distributions, they can be expressed in term of the second moments,

In the univariate case these formulas reduce to

The kurtosis is then κ = 3 ν-2 ν-4 , provided that ν > 4.

Simulation of multivariate Student distributions

The simulation is a standard application of the technique used in the case of rotational invariance. From

with r ≥ 0, we see that the density of the angular variables is uniform, while setting y = r 2 1+r 2 , with 1 > y ≥ 0 and r = y/(1 -y), the density of y is given by 

The more general case [START_REF] Zumbach | Volatility processes and volatility forecast with long memory[END_REF] is simulated using the same algorithm and then returning Cx, where Λ -1 = (C T ) -1 C -1 , i.e. Λ = CC T .

Characteristic function of symmetric generalized hyperbolic distributions

We start from the expression

i ; the general case is obtained simply with an ane transformation x → µ + δRx, with µ ∈ R n , δ ≥ 0 a scale parameter, and R an orthogonal transformation in R n . The central expression we need is an integral of the Sonine-Gegenbauer type, cf. identity 7.14. [START_REF] Sornette | Volatility ngerprints of large shocks: Endogeneous versus exogeneous[END_REF] of [START_REF] Erdélyi | Higher Transcendental Functions[END_REF]:

.

For alternative derivations in the univariate case see [START_REF] Hurst | The characteristic function of the Student tdistribution[END_REF] and the references therein.

In our setting the computation is exactly the same for general n, with k = n i=1 k 2 i , d n-2 Ω the surface element