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When the decreasing sequence fails⋆

Nicolas Halbwachs, Julien Henry

Vérimag⋆⋆, Grenoble University – France

Abstract. The classical method for program analysis by abstract in-
terpretation consists in computing a increasing sequence with widening,
which converges towards a correct solution, then computing a decreasing
sequence of correct solutions without widening. It is generally admit-
ted that, when the decreasing sequence reaches a fixpoint, it cannot be
improved further. As a consequence, all efforts for improving the pre-
cision of an analysis have been devoted to improving the limit of the
increasing sequence. In this paper, we propose a method to improve a
fixpoint after its computation. The method consists in projecting the
solution onto well-chosen components and to start again increasing and
decreasing sequences from the result of the projection.

1 Introduction

Program analysis by abstract interpretation [CC77] consists in computing an
upper approximation of the least fixpoint of an abstract semantic function in
a suitable abstract lattice of properties. When the abstract lattice is of infinite
depth, the standard approach [CC76,CC77] consists in computing an increasing
sequence whose convergence is forced using a widening operator ; then, from
the obtained limit of the increasing sequence, one can improve the solution by
computing a decreasing sequence, by iterating the function without widening.
The decreasing sequence may either stop at a fixpoint of the semantic function,
or be infinite, but since all its terms are correct solutions, one can stop the
computation after a fixed number of terms, or limit its length using a narrowing
operator .

Of course, the precision of the result depends both on the ability of the
widening operator to “guess” a precise limit of the increasing sequence, and
on the information gathered during the decreasing sequence. Intuitively, the
increasing sequence extrapolates the behaviour of the program from the first
steps of its execution, while the decreasing sequence gathers information about
the end of the execution of the program, its loops, or more generally, the way
the strongly connected components of its control flow graph are left.

While significant efforts have been devoted to improving the precision of the
limit of the increasing sequence (see §1.2 for a quick survey), little attention
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(a) A classical example where the decreasing sequence reaches the least fixpoint
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(b) A nested loop prevents the decreasing sequence to get precise results
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Fig. 1. Example 1 – nested loops

has been paid to the decreasing sequence. It is generally admitted that, when
the decreasing sequence reaches a fixpoint, it cannot be improved. However, it
appears that such a fixpoint can be far from the least fixpoint, so improving it
may have a significant influence. More specifically, we shall see in §1.1 that slight
modifications in a program may have a surprising influence on the amount of
information gathered during the decreasing sequence.

1.1 Motivating examples

Let’s illustrate the problem with two very simple examples:

Example 1 is a classical example of what can be obtained by interval analy-
sis [CC76]. Fig. 1.a shows the control-flow graph (CFG) of a very simple loop
incrementing a variable i from 0 to 100. The increasing sequence consists of 2



iterations; at iteration 2, the widening is applied, and the sequence converges.
Iteration 3 shows the descending sequence, which reaches a fixpoint in 1 step.
The results are the best possible: i ∈ [100, 100] at the end of the loop. Now, the
CFG shown in Fig.1.b is obtained from the preceding one by nesting a second
loop on another variable j within the first one. The increasing sequence converges
after 4 steps. Again, the descending sequence reaches a fixpoint in 1 step, but
now, the result for i is imprecise: i ∈ [100,∞] at the end. The reason is that the
nested loop neither modifies nor tests the variable i; so, as soon as its interval
has been widened to [0,∞], it will remain unchanged in the inside loop. Notice
that it is also the case if we select both loop heads as widening nodes (see Note 1
in §2 on the selection of widening nodes).

Example 2: Our second example illustrates a situation which occurs commonly
in reactive programs, cyclically sampling their environment. A first program
(Fig. 2.a) is just an infinite loop with a counter modulo 60. It is properly analysed
after 2 steps of increasing sequence and one descending step.
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(a) An infinite loop with a counter modulo 60
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(b) A loop counting the occurrences of “seconds”

Fig. 2. Example 2 – intermittent counting



Now, assume that we don’t want to count all loop iterations, but only when
some external event (e.g., a “second”) is detected. This is done by the program of
Fig. 2.b. As before, the increasing sequence converges after 2 steps, but now, the
limit is a fixpoint, so there is no decreasing sequence, and the upper bound of the
counter is missed. This second example can be simply explained as follows: let
(L,⊑,⊔,⊓,⊤,⊥) be the abstract lattice, and F be an abstract semantic function
from L to L. Let G = Id⊔F (i.e., λX.X ⊔F (X)). Then, it is easy to see that G
has the same least fixpoint as F , but G is extensive (i.e., ∀X ∈ L,X ⊑ G(X)).
As a consequence, any postfixpoint of F is a fixpoint of G. So, while the limit of
the increasing sequence with F may be a strict postfixpoint of F — which can be
improved by a decreasing sequence —, this limit will be a fixpoint of G, meaning
that there is no decreasing sequence with G. This is exactly what happens with
our example, where the dummy branch in the loop of Fig. 2.b adds an identity
term to the semantic function at the widening node.

1.2 Related works

Beside researches proposing new abstract domains, many existing works aim
at fighting the imprecision of analysis, considered to be essentially due to the
widening operation. Apart from proposals of systematic design of widening and
narrowing operators [CZ11], one can distinguish at least three big tracks: (1) de-
signing smart widening operators, generally dedicated to some specific domains;
(2) avoiding or minimising the use of widening, by focusing either on some classes
of programs or on some classes of abstract domains; (3) applying widening and
narrowing using smart strategies.

Smart widening. Several proposals concern smart widening operators, especially
for the polyhedra domain [CH78,BHRZ03]. Widening up to or with thresholds
[Hal93,HPR97,BCC+03,LCJG11] consists in choosing — generally from the con-
ditions appearing in the program — some tentative limits to the widening.
Widening with landmarks follows the same idea, but the selection of limits is
made dynamically. Widening with care set [WYGI07] makes use of a proof ob-
jective. Some of these proposals can properly deal with some of our examples,
mainly because they can reach a precise solution at the end of the increasing
sequence. However, they are not independent of the considered abstract domain.
Our method will work for any abstract domain, and is compatible with any
widening operation.

Avoiding widening. Other authors try to avoid the use of widening. Acceleration
techniques [BGP97,WB98,CJ98,BFLP03,GH06] are dedicated to some classes
of programs or loops, the effect of which can be exactly computed. Other ap-
proaches can be applied only with some kinds of domains — namely “weakly
relational domains” [Min04] or “templates” [SSM04,SSM05] — in which policy
iteration [SW04,CGG+05,GS07] allows least fixpoints to be precisely computed.
These methods generally solve our problem, but they are restricted either to
some class of programs or to some abstract domains.



Widening strategies. An obvious way of improving the precision of the widen-
ing is to delay its application [Hal93,BCC+03], i.e., applying it only after a
fixed number of exact steps or intermittently, or applying it after some loop
unrolling [Gou01,PGM03]. Some strategies adapt the application of the widen-
ing according to the discovery of new feasible paths [Hal93,HPR97,BCC+03] in
the program. In particular, [GR06,GR07] proposes a very clever strategy, called
lookahead widening, where a succession of increasing-decreasing sequences are
computed for more and more feasible paths of the program. Stratified analysis
[ML11] is a succession of analyses concerning more and more variables, accord-
ing to their dependencies. None of these strategies provides a general solution
to our problem.

Anyway, while some of these methods can work on some of our examples,
none of them specifically address the problem of improving the result of the
decreasing sequence. We don’t pretend our method is better than these works,
but that it is different and complementary.

1.3 Contribution and summary

In this paper, we propose a method starting from the result of the decreasing
sequence, and trying to improve it as follows: the solution will be projected on
some of its components, whose propagation is likely to provide a more precise
solution, according to some criteria. New increasing and decreasing sequences
will be started from the result of the projection, providing a new solution which
can be intersected with the previous one. The method is independent from the
abstract domain. We’ll show that it properly solves our running examples, and
that in some cases, it can gather non trivial information about the end of program
execution.

The paper is organised as follows: Section 2 introduce the necessary defini-
tions and notations; our method is presented in Section 3 and illustrated on an
example in Section 4; Section 5 proposes some ways for improving the perfor-
mances and Section 6 gives some experimental results.

2 Definitions and notations

Abstract lattice. As said before, we assume that the analysis makes use of an
abstract complete lattice (L,⊑,⊔,⊓,⊤,⊥). We assume this lattice to be of infi-
nite depth. The lattice operations are supposed to be available, together with a
widening operator ∇, and the interpretation of each program statement s as a
function (predicate transformer) fs : L 7→ L.

Control-flow graph. A control-flow graph (CFG) is a graph (N,E), where
– the finite set N = {ν1, ..., νk} is made of 3 types of nodes: the start nodes,

the junction nodes, and the statement nodes. With each statement node νi
is associated a function fi : L 7→ L.



– E ⊆ N×N is the set of edges. Start nodes have no incoming edge, statement
nodes have one incoming edge, junction nodes have several incoming edges.

Remark: for simplicity, each node has a single output. This means that the
classical “test nodes” (used in Figures 1 and 2) are split into pairs of statement
nodes, whose associated function returns an abstraction of the intersection of
its argument with the condition of the test (“then” part) or its negation (“else”
part). As an example, Fig. 3 shows the CFG of our example 1.b.
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ν1

ν2

ν3

ν4 ν5

ν6

ν7

ν8

ν9

ν10

ν11

Fig. 3. CFG of the example 1.b

Semantic equations. The analysis will associate with each node νi of the CFG
an abstract value Xi ∈ L, these abstract values being defined by a system of
recursive equations:

∀i = 1..k, Xi =







⊤ if νi is a start node
fi(Xj) if νi is a statement node and (νj , νi) ∈ E
⊔

(νj ,νi)∈E Xj if νi is a junction node

We’ll often write this system of equations as a vectorial fixpoint equation:
X = F (X) in the lattice Lk.

Increasing sequence. Since the lattice L is of infinite depth, the Kleene sequence
X0 = ⊥k,Xℓ+1 = F (Xℓ) may be infinite. The classical approach consists in
computing the increasing sequence Y 0 = ⊥k,Y ℓ+1 = Y ℓ∇F (Y ℓ); from the
properties of the widening operator, this sequence is guaranteed to converge
after a finite number of steps towards a limit Y

∇, which is a postfixpoint of
F , i.e., F (Y ∇) ⊑ Y

∇. Of course, the increasing sequence is computed in a
chaotic way (cf. Figures 1 and 2), by propagating changes along the paths of the
CFG, and since the widening operation loses information, it is only applied on
a selected set W of widening nodes intersecting each loop of the CFG.

Note 1 (on the selection of widening nodes). The set W of widening nodes must
be as small as possible, to minimise the number of applications of the widening



operator. Since finding a minimal cutting set W is an NP-complete problem, the
heuristic classically applied is the method of strongly connected subcomponents
(SCSC) proposed by Bourdoncle [Bou93]: the method recursively uses Tarjan’s
algorithm [Tar72] to find the strongly connected components (SCC) of a directed
graph, together with an entry node to each SCC. Entry nodes are the target
of back edges, so they are all junction nodes. Bourdoncle’s method consists in
adding all SCC entry nodes to W , then removing them from the graph and
recursively apply Tarjan’s algorithm to the rest of each SCC. The result is a
hierarchy of SCSC, each of which being cut by a junction node in W . An obvious
improvement of this method (which we did not find published anywhere) consists
in considering again the hierarchy of SCSC bottom-up, checking whether each
SCSC is disconnected by the cut-points of its children. For instance, on the
CFG of Fig. 3, a first application of Tarjan’s algorithm finds one non-trivial
SCC, c1 = {ν3, ν4, ν6, ν7, ν8, ν9, ν10, ν11}, with entry node ν3. Removing node
ν3 and applying again the algorithm provides the SCSC c2 = {ν7, ν8, ν9}, with
entry node ν7, whose removal disconnects the graph. So, Bourdoncle’s method
provides W = {ν3, ν7}. Now, since the cut-point ν7 of the leaf SCSC c2 also
disconnects the father SCSC c1, it’s enough to choose W = {ν7}, as done in
Fig. 3.

Decreasing sequence. The limit Y ∇ of the in-
creasing sequence is a post-fixpoint of F . If it
is a strict post-fixpoint (F (Y ∇) < Y ∇), it can
be improved by computing a decreasing sequence
Z0 = Y ∇, Zℓ+1 = F (Zℓ). This sequence can be
infinite, or reach a fixpoint of F . In practice, it
generally reaches a fixpoint after very few steps.
Anyway, since all of its terms are post-fixpoints
of F , hence correct approximations of the least
fixpoint, one can stop it after a fixed number of
steps, or force its convergence using a narrowing
operator. In the following, we’ll note Z∆ the last
term of the descending sequence, and we’ll gen-
erally assume that Z∆ is a fixpoint; however, the
results still hold if Z∆ is a strict post-fixpoint.

(Xℓ)

⊤

PostFix(F )

(Zℓ)

Y ∇

⊥

lfp(F )

Z∆

(Yℓ)

Fix(F )

The above figure classically illustrates the sequences in the abstract lattice:
(Xℓ) is the (generally infinite) Kleene’s sequence, (Yℓ) is the (finite) increasing
sequence, leading to the post-fixpoint Y ∇, and (Zℓ) is the decreasing sequence
of post-fixpoints providing a solution Z∆.

3 Improving a (post-)fixpoint solution

3.1 An intuition of the solution

Let’s look again at example 1.b (see Fig. 3). At the widening node ν7, during the
decreasing sequence, we have Z7 = Z6⊔Z9. At the end of the decreasing sequence,



we find Z∆
7 = (i ∈ [0,∞], j ∈ [0, 100]), while Z∆

6 = (i ∈ [0, 99], j ∈ [0, 0]) and
Z∆
9 = (i ∈ [0,∞], j ∈ [1, 100]). Obviously, i ∈ [0, 99], found in Z∆

6 , is a correct
invariant, which is lost in Z∆

7 because of the least upper bound with i ∈ [0,∞]
imprecisely found in Z∆

9 . Our idea is to start again a propagation of Z∆
6 after

resetting Z∆
9 to ⊥.

3.2 Generalised sequences

Restarting an iteration from an arbitrary point requires some changes in the
definition of the iteration sequences. We must ensure that a widened sequence
starting form an arbitrary point (not necessarily a pre-fixpoint) is increasing;
moreover, widening operators are generally designed under the assumption that
their first operand is smaller than the second one. We introduce the following
notations: Let F be a monotone function from L to L. Let X ∈ L. Then,
– we note F∇(X) the limit of the sequence Y0 = X, Yℓ+1 = Yℓ∇(X ⊔ F (Yℓ));
– we note F∇∆(X) the last term Z∆ of a descending sequence (Zℓ) starting

at Z0 = F∇(X)

Remarks:
– The second operand X ⊔ F (Yℓ) of the widening is always greater than the

first one, and the increasing sequence (Yℓ) is indeed increasing. Obviously,
F∇(X) is the classical approximation of the least fixpoint of the function
λX.(X ⊔ F (Y )), i.e., of the least fixpoint of F greater than X.

– Notice also that, withX = ⊥, these definitions of sequences and limits match
the classical ones recalled in §2.

– For any X, F∇∆(X) is a correct approximation of the least fixpoint of F ,
i.e., ∀X ∈ L, F∇∆(X) ⊒ lfp(F ).

– Neither F∇ nor F∇∆ is increasing. As a consequence, there can be some X

such that F∇∆(X) < F∇∆(⊥), i.e., such that the limit obtained from X is
more precise than the one computed by the classical iteration.

We address the problem of analysing an SCC of the graph, since the analysis
of a complex graph considers each SCC in turn. We consider first the case of an
SCC with only one widening node, before addressing the general case.

3.3 Case of a single widening node

We need some additional definitions:

Path transformers. Let νi, νj be two nodes. Let Pi,j denote the set of nodes
belonging to an elementary path in the CFG going from νi to νj . Intuitively
the path transformer from νi to νj is the function Fi,j : L 7→ L, which, from
an abstract value X associated with νi, provides the abstract value Fi,j(X)
corresponding to the propagation of X along the elementary paths from νi to
νj . We have:



Fi,j(X) =



























⊥ if Pi,j = ∅
X if νi = νj
fj(Fi,k(X)) if νj is a statement node and (νk, νj) ∈ E

⊔

(νk, νj) ∈ E
νk ∈ Pi,j

Fi,k(X) if νj is a junction node

Now, let us consider an SCC with only one widening node,
νi. νi is a junction node (from the way widening nodes
are selected). The abstract value at νi depends on those
at the preceding nodes in the SCC, and on abstract values
propagated from outside (start nodes and preceding SCCs),
which we note Y 0

i since it is the first value 6= ⊥ at node
νi during the increasing sequence. Let νj1 , . . . , νjm be the
source nodes of incoming back edges to νi.The semantic
equations considered during the descending sequence can
be subsumed as:

νi

Y 0
i

νj1 νjm

Zi = Y 0
i ⊔ Zj1 ⊔ . . . ⊔ Zjm , Zjℓ = Fi,jℓ(Zi), ℓ = 1..m

At the end of the sequence, we have Z∆
i ⊒ Y 0

i ⊔ Z∆
j1

⊔ . . . ⊔ Z∆
jm

(an equality if

Z
∆ is a fixpoint).

Projection according to improving components. The idea is to select a set S of
nodes, such that the propagation of terms {Z∆

jℓ
|νjℓ ∈ S} is likely to improve the

solution. More precisely, we define Z
∆ ⇓ S by

(

Z
∆ ⇓ S

)

k
=

{

Z∆
k if νk ∈ S

⊥ otherwise

The choice of S should make F∇∆(Z∆ ⇓ S) more precise or incomparable with
Z

∆, so that Z∆ ⊓ F∇∆(Z∆ ⇓ S) is an improved result.

For instance, and following the intuition of §3.1, in
our example 1.b (Fig. 3), we should choose S = {ν6}
and restart increasing and decreasing sequences from
Z

∆ ⇓ S, i.e., a vector U such that

Uk = (if k = 6 then ([0, 99], [0, 0])
else if k = 1 then ⊤ else ⊥)

With this choice, F∇∆(U) is the best possible re-
sult (the least fixpoint of F ), shown by the opposite
vector.

i j

ν3 [0,100]
ν7 [0,99] [0,100]
ν9 [0,99] [1,100]
ν11 [1,100] [100,100]
ν5 [100,100]



The opposite figure shows the new sequences:
the classical solution Z∆ is projected on
U = Z∆ ⇓ S (generally not a pre-fixpoint),
from which a new increasing sequence (Uℓ) and
a new decreasing sequence (Vℓ) provide a new
limit V ∆. The improved solution is the greatest
lower bound Z∆ ⊓ V ∆.

Choice of improving components. A component
Z∆
jℓ

is likely to improve the solution if it is

strictly smaller than Z∆
i . It may happen for two

reasons:
– either some “initial states” in Y 0

i have been
left on the paths from νi to νjℓ; this case is
not interesting since Y 0

i clearly consists of
states which won’t be shown to be unreach-
able. They will belong to any solution.

⊤

(Zℓ)

Y ∇

⊥

new

lfp(F )

solution

Z∆

U∇

(Uℓ)

(Yℓ)

(Vℓ)

V ∆

U = Z∆ ⇓ S

– or, during its propagation along these paths, Z∆
i has been “truncated” by

some condition; this is the interesting case which can add some information.

As a consequence, νjℓ will be selected in S if

Y 0
i ⊔ Z∆

jℓ
< Z∆

i (Criterion 1)

Moreover, it is useless to propagate again Y 0
i , which already provided the existing

result Z∆. So, νjℓ will be selected in S only if

Z∆
jℓ

6⊑ Y 0
i (Criterion 2)

Now, let’s consider our example 2.b. At convergence, no predecessor of the
widening node satisfy our criteria. However, the widening node is preceded by
a succession of two junction nodes, the first one being associated with an obvi-
ously interesting invariant: n ∈ [0, 60]. A simple change in the CFG taking into
account the associativity of junction, would bring this node in the predecessors
of the widening node. So, it can be useful to look for “improving nodes” further
upstream the widening node. We change our selection process as follows:

A node νj will be selected in S if

– it precedes a junction node (possibly νi) (C0)
– Y 0

i ⊔ Fj,i(Z
∆
j ) < Z∆

i (C1)

– Fj,i(Z
∆
j ) 6⊑ Y 0

i (C2)

The criterion (C0) above comes from the fact that, during the descending se-
quence, only junction nodes lose information. The other two criteria generalise
our preceding Criteria 1 and 2, by allowing the candidate node νj not to be an
immediate predecessor of νi. Note that, in our example 2.b, the selected node νj
is such that Fj,i = Id. However, our criteria allow also some statement nodes to
be on the path from νj to νi.



3.4 General case

The case of an SCC with several widening nodes is very similar. Only the defi-
nition of Pi,j needs to be modified: it denotes the set of nodes belonging to an
elementary path in the CFG going from i to j without going through a widening
node: only the extremities νi and/or νj can belong to W . Our criteria for select-
ing the improving nodes are essentially unchanged: a node νj will be selected in
S if

– it precedes a junction node (C0)
– there exists a widening node νi such that

• Y 0
i ⊔ Fj,i(Z

∆
j ) < Z∆

i (C1)

• Fj,i(Z
∆
j ) 6⊑ Y 0

i (C2)

and the definition of Z∆ ⇓ S is unchanged.

4 A more illustrative example

Our two running examples are properly analysed with the proposed
method. They would be also solved with a smart choice of “thresh-
olds” [Hal93,BCC+03,LCJG11] for limiting the widening during the increasing
sequence. Let us consider now another example to show that our method can dis-
cover constraints that don’t appear as conditions in the program. The example
is a rather ad-hoc modification of Example 1.b by variable change.

i := 0;
while i < 4 do {

j := 0;
while j < 4 do { i := i+ 1; j := j + 1;}
i := i− j + 1;

}

i := 0

i < 4? i ≥ 4?

j := 0

j ≥ 4? j < 4?

i := i− j + 1

j := j + 1

i := i+ 1

ν1

ν2

ν3

ν5ν4

ν6

ν7

ν8

ν10

ν9

ν11

j

i

Fig. 4. Example 3



Fig. 4 shows the corresponding CFG together with the set of variable states
traversed by the execution at ν7. Fig. 5 shows the abstract values at widening
node ν7, during a polyhedra analysis:
– at the end of the classical increasing sequence, we get (0 ≤ j ≤ i);
– the decreasing sequence reaches a fixpoint Z∆ in one step, giving (0 ≤j≤ i,

j ≤ 4);
– at node ν6, we have Z∆

6 = (0 ≤ i ≤ 3, j = 0), which satisfies all our criteria;
we start again from Z∆ ⇓ {ν6};

– after a new increasing sequence, we get (0 ≤ j ≤ i ≤ j + 3);
– the decreasing sequence converges in one step, giving the best possible poly-

hedral invariant (0 ≤ j ≤ i ≤ j + 3, j ≤ 4).
Notice that the constraint i ≤ j + 3 doesn’t appear in the program, so it could
not be chosen as a “threshold” for widening.

End of increasing sequence End of decreasing sequenceRestarting at
0 ≤ i ≤ 3, j = 0

End of increasing sequence End of decreasing sequence

0 ≤ j ≤ i ≤ j + 3 0 ≤ j ≤ i ≤ j + 3, j ≤ 4

0 ≤ j ≤ i 0 ≤ j ≤ i, j ≤ 4

j

i

j

i

j

i

j

i

j

i

Fig. 5. Analysis of Example 3

5 Some improvements

Of course, our method involves the computation of new iteration sequences,
which may look expensive. We propose here two simple improvements to limit
the cost of this computation.

The first one is obvious: since the result, in general, is the greatest lower
bound of the classical solution Z∆ and the new limit V ∆, one can intersect with
Z∆ each term of the new increasing sequence. In our Example 3, this would
force the convergence of the new increasing sequence directly on the fixpoint
(0 ≤ j ≤ i ≤ j + 3, j ≤ 4), without need of a decreasing sequence.

The second improvement is a compromise: it saves computation, but may
lose precision (although we did not find any example where it happens). The
selected components {Z∆

j | νj ∈ S} are intended to lead to improvements of



other components, but in general, they are not supposed to be improved by the
new iteration. With this idea in mind, we can limit the computation of the new
iteration to the part of the CFG which doesn’t influence only the components in
S. More precisely, a component at node νk must be computed again only if there
is a path from νk to a widening node which doesn’t intersect S. In our Example
3, this would limit the new iteration to the subgraph {ν7, ν9, ν11}, since any path
from {ν8, ν10, ν3, ν4} to the widening node ν7 goes through the selected node ν6.

6 Experimental results

Our technique has been implemented inside our prototype static analyser, called
Pagai, which computes numerical invariants in programs expressed in the LLVM
internal representation [LA04]. In this representation, a function is a graph of
basic blocks. The analyser takes as input such an LLVM file (that can be obtained
from a C, C++, Fortran program by llvm-gcc or clang), and outputs for each
basic block a numerical inductive invariant over the variables that are live at
the head of this block. We can choose among several abstract domains : convex
polyhedra, octagons, intervals, etc. through the Apron library [JM09]. Since
Pagai is an intra-procedural analyser, we can apply function inlining to obtain
more precise results. We can also apply some LLVM optimisation passes, such as
loop unrolling, or promoting memory variables to registers (mem2reg), in order
to increase precision.

In the current state of our implementation, we only choose as improving
components basic-blocks that are direct predecessors of a widening point, i.e.,
we don’t apply our criteria C0 and C1 in their full generality. We apply only
the first improvement proposed in §5: during the new increasing sequence, we
intersect our new result with Z∆ at each step.

We compared our technique with the classical abstract interpretation with
standard widening/narrowing, on a variety of benchmarks.

The benchmark from the Mälardalen WCET research group1 contains inter-
esting programs such as sorts, matrix transformations, fft, etc. These programs
have been instrumented with a variable that counts the number of instructions
being executed. These 98 functions have been analysed, using the polyhedra ab-
stract domain. For 69 functions, the results of the new method are the same as
the classical one, with a negligible time overhead (1.008 factor). For the other 29
functions, the new methods gives better results at 35% of widening points, with
a 1.76 overhead factor. So, on this benchmark, not only the results are better
for a significant subset of functions, but the new method costs almost nothing
when it doesn’t improve the results.

However, these encouraging experimental conclusions should not be overesti-
mated: on a benchmark made of various highly used GNU functions (e.g., a2ps,
gawk, gnuchess, gnugo, grep, gzip, lapack, make, sed and tar), the results are
improved only at 4.14% of the widening points, with an overhead factor of 1.56
even on non improved functions.

1 www.mrtc.mdh.se/projects/wcet/benchmarks.html



7 Conclusion

A claim of the present paper is that the information about the end of executions
can be as rich, complex and useful than the one derived from their beginning. To
permit a better gathering of this information, we presented a method to improve
the solution obtained by classical analysis: this solution is projected on some of
its components, and the result of the projection is used to start a new pair of
increasing and decreasing sequences.

The method is independent of the abstract lattice, it is compatible with any
smart widening operator and any iteration strategy.

Acknowledgement: We are indebted to Laure Gonnord and David Monniaux for
having put our attention on the problem — and specially on Examples 1 and 2
— and for helpful discussions.
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