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Sliding modes for anomaly observation in TCP

networks: from theory to practice.

Sandy Rahḿe, Yann Labit, Fŕed́eric Gouaisbaut and Thierry Floquet

Abstract

Anomaly detection has been an active open problem in the networks community since several

years. In this article we aim at detecting such abnormal signals by control theory techniques. Several

classes of sliding mode observers are proposed for a fluid flowmodel of TCP/IP network. Comparative

simulations via Network Simulator NS-2 show the enhancement brought by higher order sliding mode

observer. The efficiency of this latter observer opens the way towards observing traffics with real TCP

flows characteristics. To achieve this end, trace replay techniques for TCP traffic traces are presented.

Finally, experiments lead to successful anomaly estimation under real traffic conditions.

I. INTRODUCTION

Communication networks have greatly grown in complexity that is demanding a guaranteed

Quality of Service (QoS) more than ever. Networks QoS is highly sensitive to a wide variety of

disruptions, often designated as anomalies. Anomalies areoften related to physical or technical

problems such as power or file server failures, abrupt changes caused by legitimate traffic such

as network overload or flash crowds, and risky illegitimate behavior such asDenial of Service

attacks [1]. These attacks can be accomplished by the exploitation of TCP/IP flaws at one target,

flooding it with packets, and also can take a distributed configuration called Distributed Denial

of Service or DDoS attacks, hardening the identification of the attacking sources.

Anomaly detection has been the topic of a number of surveys and articles (see for example

[2] and references therein). Roughly speaking, anomaly detection can be classified into two
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different ways. Intrusion Detection Systems (IDS) are probably the most common ways for

detecting anomalies. An IDS monitors packets flowing in the network and compares them with

preconfigured and predetermined attack patterns known as signatures. Another type of detecting

systems is the Anomaly Detection Systems (ADS) which are concerned with general activities

that differ from normal network behavior. The main advantage of an ADS is that it does not

require prior knowledge of specific intrusion signatures [3]. Thus, instead of defining a large

number of known intrusions, it is enough to define a profile fora normal activity.

Contrary to previous work, we address the problem of anomalydetection by designing an

observer to estimate the anomaly that represents the unmeasurable disturbances in the TCP

network. Sliding mode techniques are often used to design robust nonlinear observers or control

laws because of their robustness against various kinds of uncertainties such as parameter per-

turbations, external disturbances and measurement errors. Moreover, they can be used unknown

input reconstruction that has found useful applications infault detection and isolation [4], [5].

Based on the TCP fluid flow model conceived in [6], we aim at developing sliding mode

observers for a TCP network. To the best of our knowledge, forobservation/detection purpose,

this framework has been barely adopted. In [7], a classical Luenberger observer coupled with an

extended state is designed for detecting Constant Bit Rate (CBR) anomalies. In this paper, first

order sliding mode observers were first studied for the detection problem. However, the high

frequency oscillations induced have to be smoothed by filtering techniques. Another relevant

method is the design of higher order sliding mode observer [8] whose performances show sig-

nificant improvements in terms of good tracking of the real anomaly shape and the instantaneous

detection of the anomaly variations. Successful simulations tested on the adopted model for TCP

dynamics [6], lead us to focus on observing anomalies under real traffic conditions. One practical

means consists of replaying real TCP traffic in a simulator sothat all traffic characteristics might

be taken into account via the Network Simulator NS-2 [9].

The article is organized as follows. Section II presents theTCP network topology and the

problem statement. In Section III, first and second order sliding mode observers are designed

for estimating anomalies in TCP networks. The performancesof the conceived observers are

evaluated via Matlab/Simulink and NS-2 in Section IV. In Section V, a procedure for replaying



TCP flows in NS-2 while preserving their real characteristics is introduced.

II. TCP MECHANISM AND MODELING

A. TCP fluid flow model

In this article, a congested router is considered where packets sent fromN homogeneous

sources flow through to reach their destinations (c.f. Figure 1). Mathematical modeling of TCP

RouterSources ...
...

Receivers...
...

dropped packets

Acknowledgements

bufferAQM

mark/drop some packets

or marked Acknowledgements

Fig. 1: TCP network topology.

networks has been widely studied in the literature [6], [10]. In [6], a fluid-flow model for the

TCP traffic is considered using specifically a stochastic differential equation analysis. Simulation

results on such a model demonstrated the accuracy in capturing the TCP dynamics. Our work will

be focused on a simplified version where the packets lost caused by timeout mechanism (TO)

is ignored. Therefore it is assumed that the losses occur in the network because of unavoidable

congestion conditions when the router cannot buffer the number of arriving packets. The average

dynamics of the TCP congestion window sizeW (t) and the queue lengthq(t) of the router buffer

are described by the following coupled equations:


















Ẇ (t) = 1
R(t)

− W (t)W (t−R(t))
2R(t−R(t))

p(t − R(t)),

q̇(t) = W (t)
R(t)

N − C + d(t),

R(t) = q(t)
C

+ Tp.

(1)

The differential equations expressed at packet level in theprevious model depend on the number

of TCP connectionsN , on the packets round trip timeR(t) [s], on the link capacityC [packets/s],

the propagation delayTp [s] and the dropping probabilityp(t) of a packet entering the buffer

queue. The anomaly flowing through the router is representedby d(t). This extra signal is added

to the queue length dynamics in order to represent any additional unknown traffic perturbing the



normal TCP network behavior.

An observer will be designed to first estimate the average TCPcongestion window sizeW (t),

and then reconstruct the anomaly based on the known queue length q(t) of the router. For the

observer design described afterwards, the anomalyd(t) and its first time derivative are supposed

to be bounded by upper bounddmax and ḋmax respectively.

Because of the complexity of the nonlinear system (1), a linearized fluid-flow system around the

equilibrium point is required as the following:






δẆ (t) = − N
R2

0
C

(δW (t) + δW (t − h(t))) − 1
R2

0
C

(δq(t) − δq(t − h(t))) −
R2

0
C2

2N2 δp(t − h(t)),

δq̇(t) = N
R0

δW (t) − 1
R0

δq(t) + d(t).
(2)

The equilibrium point is obtained from the system of equations:


























W 2
0 p0 = 2,

W0 = R0C
N

,

R0 = q0

C
+ Tp,

d0 = 0.

(3)

To maintain the stability of the whole TCP network, Active Queue Management (AQM) has

been proposed, to detect incipient congestion. While monitoring the instantaneous or average

queue size, dropping or marking packets mechanisms are determined. Many AQM mechanisms

have been developed after the Random Early Detection (RED) algorithm, such as stabilized-RED

(SRED), BLUE, REM, adaptive virtual queue (AVQ) and many others evaluated in [11]. PI, PID

[12], and static state feedback controllers [7], based on control theory, are developed for TCP

models (like in [6]) to achieve satisfactory control performance in terms of the queue length

dynamics, the packet loss rates or the link utilization.

III. SLIDING MODE OBSERVERS FOR MONITORINGTCP TRAFFIC

A. Principle of sliding modes

The sliding mode approach is a way to force the system to evolve after a finite time on a

suitable sliding manifold by the use of a discontinuous output injection signal. For the observation

prupose, the sliding manifold is usually given by the difference between the observer and the

system output. Unknown inputs, if any, can be explicitly reconstructed by analyzing the so-

called equivalent information (or output) injection [4], [13]. However, the main drawback is



the undesirable high-frequency oscillations, typically referred to as the chattering phenomenon,

caused by fast switching in the discontinuous control signal. Sliding modes were generalized

under the concept of higher order sliding modes conceived inorder to reduce the chattering

phenomenon while preserving the robustness properties. The sliding surface is thus defined by

the vanishing of a corresponding sliding surfaces and its successive time derivatives up to a

certain order, defining therth order sliding set:

Sr =
{

x ∈ R
n : s = ṡ = . . . = s(r−1) = 0

}

.

A control law leading to such a behavior is called arth order ideal sliding mode algorithm with

respect tos. Designs for either observation or control, with applications in mechanics, robotics

or electric machines, can be found in the literature [14], [15].

B. First order sliding observer

Before going through the design of the observer, the linearized system (2) must be reformulated

to ensure the efficiency of sliding modes. Once a subset of thesystem dynamics is known, thus

defined as output, the discontinuous injection signal is added to the latter so that the ability of the

system to attain and maintain sliding motion will be more efficient than taking into account the

complete system [16]. Therefore, the statex(t) and the outputy(t) in the reformulated system

(4) will refer respectively to the unknown congestion window size and the router queue length.






ẋ(t) = Mx(t) + Mdx(t − h) + Dy(t) + Ddy(t− h) + Edu(t − h),

ẏ(t) = Gx(t) + Hy(t) + d(t),
(4)

whereu(t) = δp(t) the input, and

M = Md = −
N

R2
0C

, D = −
1

R2
0C

, Dd =
1

R2
0C

, Ed = −
R0C

2

2N2
, G =

N

R0

, andH = −
1

R0

.

A sliding mode observer can be designed as follows:






˙̂x(t) = Mx̂(t) + Mdx̂(t − h) + Dy(t) + Ddy(t− h) + Edu(t − h),

˙̂y(t) = Gx̂(t) + Hy(t) + L(ŷ(t) − y(t)) + ν(t),
(5)

whereL is the linear gain of the observer andν(t) the discontinuous function of the form:

ν =







−ksign(ŷ(t) − y(t)), if ŷ(t) 6= y(t),

0 otherwise.
(6)



Given the estimation errorsex(t) = x̂(t) − x(t) and ey(t) = ŷ(t) − y(t), their dynamics with

respect to (4) are then governed by the equations:






ėx(t) = Mex(t) + Mdex(t − h),

ėy(t) = Gex(t) + Ley(t) + ν(t) − d(t).
(7)

In order to prove the stability of the sliding observer and the convergence of̂x towardsx, we

propose the following theorem:

Theorem 1 Given scalarsL < 0, py > 0 and an appropriate discontinuous functionν (6) such

that k > G|ex|max + dmax, the system(7) is asymptotically stable for all delayh > 0.

Proof: The asymptotic stability of the observer errors (7) is proved by studying each equation

separately. First, it is shown in [17] that sinceM = Md < 0, the stability of the origin ofex is

guaranteed independently of the delayh. This implies that the quantityG(Mex(t)+Mdex(t−h))

is ultimately bounded. For the output errorey, finite time stability conditions are established

involving a Lyapunov functionV (t) = ey(t)
T pyey(t). Stability conditions in the theorem ensure

that V̇ (t) < −β
√

V (t) with β > 0 leading to the convergence ofey in finite time.

When the convergence of the observation errors (7) is established, the anomalyd(t) can be

estimated from the output error. To bypass the chattering phenomenon problem, smoothing

techniques (like filters) based on the principle of equivalent control [18] can be used to re-

construct the anomaly traffic. In other words, when sliding motion occurs oney = 0, one has

d(t) = Gex(t) + νeq(t), where νeq(t) is the equivalent value on the sliding manifold of the

discontinuous actionν(t), that can be obtained applying low pass filtering. A first order low

pass filter combined with the first order sliding mode observer has been applied in simulation

(see [19]) but is not efficient enough for chattering reduction. A third order for the low-pass filter

was the lowest order able to reduce the chattering phenomenon without losing the real shapes

of the anomalous traffics. However, filtering techniques lead to drawbacks like the intuitive

regulation of the filter parameters as well as the delay in theanomaly reconstruction.

C. Super-twisting observer for detection purpose

For the detection purpose, a specific second order sliding mode algorithm called the super-

twisting algorithm is considered. This algorithm is developed to avoid the chattering phenomenon



[20]. The continuous control lawϑ consists of two terms:






ϑ(s) = ϑ1 − λ|s|ρsign(s),

ϑ̇1 = −αsign(s),
(8)

whereα > 0, λ > 0, 0 < ρ ≤ 1
2

and s is the sliding variable. Contrary to other second order

sliding mode algorithms, the main advantage of the super-twisting algorithm is that it does not

need the knowledge of the time derivative of the sliding variable. In this work, we fixρ = 1
2

which gives the faster convergence towardss = ṡ = 0 as shown in [20]. In order to apply this

algorithm on the TCP model (2), the following observer is designed:


















˙̂x(t) = Mx̂(t) + Mdx̂(t − h) + Dy(t) + Ddy(t − h) + Edu(t − h),

˙̂y(t) = Gx̂(t) + Hy(t) + z(t) − λ|ŷ(t) − y(t)|
1

2 sign(ŷ(t) − y(t)),

ż(t) = −αsign(ŷ(t) − y(t)).

(9)

Define the observation errors as:ex(t) = x̂− x(t), ey(t) = ŷ − y(t) andez(t) = z + Gex − d(t),

then using (4) and (9), the observation errors dynamics are given by:


















ėx(t) = Mex(t) + Mdex(t − h),

ėy(t) = Gex(t) + z(t) − λ|ey(t)|
1

2 sign(ey(t)) − d(t) = ez(t) − λ|ey(t)|
1

2 sign(ey(t)),

ėz(t) = G(Mex(t) + Mdex(t − h)) − ḋ(t) − αsign(ey(t)).

(10)

The stability conditions for the sliding mode observer (9) are shown in the following theorem.

Theorem 2 The origin of the system(10) is asymptotically stable if there exist a positive definite

matrixP =





p1 p3

p3 p2



 andW ∈ R
2×1 such that the following two Linear Matrices Inequalities

(LMIs) are verified:

1

2
ET

12P +
1

2
PE12 − CT W T − WC ± 2Π





p3
1
2
p2

1
2
p2 0



 < 0 (11)

whereΠ = supt (|G(Mex(t) + Mdex(t − h))|) + ḋmax, C = [1 0], and E12 =





0 1

0 0



.

The observer gain is obtained fromL =
[

λ
2

α
]T

= P−1W .

Proof: Similar to the case of the first sliding mode observer, asymptotic stability of ex

is guaranteed independently of the delayh. For the study of stability ofey and ez, let φ =



[

|ey|
1

2 sign(ey) ez

]T

be the new state vector. Finite time convergence ofφ towards is verified using

candidate Lyapunov functionV = φT Pφ, for a positive definite matrixP . Stability condition (11)

leads to a positive definite matrixQ such thatV̇ = −|φ1|
−1φT Qφ. This implies the convergence

of ey andez towards zero in finite time. Since lim
t−→∞

ex = 0, an estimate of the anomalyd(t) is

obtained fromez = z + Gex − d(t) = 0 without any filtering action.

IV. SIMULATIONS

The proposed observer (9) is tested via Simulink and the Network Simulator NS-2 [9]. In the

network topology,60 TCP sources are sending data to the destination through a router with a

link capacityC = 3750 packets/s which is equivalent to15 Mbits/s with a mean packet size of

500 bytes, andTp = 0.2s the propagation delay.

The observer (OBS) is implemented on the router level as wellas the AQM as shown in Figure

2.

1

Sources

Router

OBS
+

AQM

Receiver

Detection

Regulation

N

Anomaly traffics

Fig. 2: Network configuration.

A. Simulink

Using Simulink, the linearized time-delay model of the TCP network (2) is considered. As the

AQM, we have chosen the state feedback control Gain-K developed in [7] to regulate the queue

length to175 packets. Compared with the others AQM, Gain-K improves the performances of the

router by reducing the oscillations around the equilibriumpoint qref , thus reducing the amount

of dropped packets and improving the buffer utilization [7].

Periodic anomalies with rectangular and triangular shape series of different amplitudes are

considered. The triangular shape of these anomalies is justified in [21] where experimentations

were held on softwares generating anomalous traffic like the”Tribal Flood Network version
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Fig. 3: First and second order sliding mode observers for anomaly reconstruction.

2000” (TFN2k) [22].

The first order sliding mode observer (5) exhibits undesirable chattering phenomenon that is not

well reduced with first order low-pass filter as seen in Figure3. The third order for the low-pass

filter was the lowest order able to reduce the chattering phenomenon while detecting anomalies

without losing their real shapes. From the comparative graphs presented in Figure 3, we can

see that the third order filter reveals higher detection speed and smoother oscillations than the

first order filter for the proposed anomaly shapes, thus inducing lower amount of false positives

and false negatives. Whereas, the second order sliding modeobserver detects instantaneously

the anomaly with an ideal tracking of the real shape as seen inFigure 3. Therefore, the second

order sliding observer improves the reactivity of the detectors in network security systems face

to the anomaly.

B. Network Simulator NS-2

For the validation of the proposed methodology in NS-2,60 TCP sources are generating long

lived TCP flows (FTP connections) to a receiver through a congested router whereas anomalous

traffic is generated by3 sources attacking the router. Two anomaly shapes are introduced using

the User Datagram Protocol (UDP) in NS-2 within the interval50 − 100s: a Constant Bit Rate

(CBR) and a Triangular Bit Rate (TBR). The CBR generator is already implemented in NS-2,

but for TBR, we have added a traffic generator in NS-2 code.

On the router level, the buffer size is set to800 packets while different AQMs are implemented
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Fig. 4: Anomaly estimation with different AQM: RED and statefeedback Gain-K.

to regulate the queue length to the desired levelqref = 175 packets. RED [23] is a well-known

AQM used to randomize the packet drop by setting a marking probability with respect to the

average queue length of the router buffer. We chose also the state feedback Gain-K [7] based

on control theory.

The performances of each conveived observer are shown in Figure 4. In the following, a

comparative study is conducted on two phases: the reconstruction phase, then the detection

phase of the presence/absence of anomalies. During the reconstruction phase, the observation

characteristics of CBR and TBR anomalies are determined: the convergence time, then the

average errors between the estimated and the original, finally the standard deviations around these

errors. For the anomaly detection, the duration of persistence of false positives and negatives are

studied for the different observers associated with the AQM. We recall that after the appearance

of the real anomaly, false negatives are emitted during the time interval where the estimated

anomaly does not reach positive values. Respectively, after the disappearance of the anomaly,

false positives persist as long as the estimated anomaly is positive.

1) Anomaly reconstruction:In Table I, the second order observer shows a faster convergence

than the first order observers in the presence of CBR anomalies. However, the first order with



the first order filter shows the best tracking of the anomaly interms of more reduced observation

errors and standard deviations especially with the Gain-K.Indeed, in the presence of high

frequency oscillations, first order filtering is slow but precise.

For TBR anomalies, we can see from Table II that the second order sliding mode observer allows

convergence time average error standard deviation

[s] [packets/s] [packets/s]

order 1 order 1 order order 1 order 1 order order 1 order 1 order

filter 1 filter 3 2 filter 1 filter 3 2 filter 1 filter 3 2

RED 33.9 32.1 23.3 -193 -250.4 -146.7 62.5 213.7 179.8

Gain-K 36.2 18.1 6.02 46.82 254.5 118.9 24.1 129.2 189.1

TABLE I: Observation characteristics for CBR anomalies.

a faster convergence as well as a better observation of the varying anomaly’s rate than the first

order sliding mode observer with the AQM studied. Otherwise, the lowest standard deviations

are obtained with the first order observer with the first orderlow-pass filter. In conclusion, second

order observers are able to identify more precisely the original amplitudes of the anomaly studied.

convergence time average error standard deviation

[s] [packets/s] [packets/s]

order 1 order 1 order order 1 order 1 order order 1 order 1 order

filter 1 filter 3 2 filter 1 filter 3 2 filter 1 filter 3 2

RED 12.2 14.1 11.3 -634.4 -414.4 -236.3 108.4 263.1 356.7

Gain-K 6.1 3.8 4.1 -482.9 -371.6 -346.3 131.2 179.8 324.8

TABLE II: Observation characteristics for TBR anomalies.

2) Anomaly detection:In Figure 4, we can see that during the absence of anomalie, the

observers detect negative values. We considered−450 packets/s for the second order sliding

mode and−350 packets/s for the first order as thresholds from which the durations of false

negatives and positives are determined. In Table I and TableII, the second order observer allows

reducing false negative and positive alarms more than the first order with the presence of filters.

It should be noted that in the presence of the AQM RED, the persistence of the false negatives

induced by the second order observer reaches2.4s. This fact is due to the presence of oscillations



that delay the observation of an anomaly above the threshold.

order 1 order 1 order 2

filter 1 filter 3

RED 0.39 0.83 2.4

Gain-K 1.5 1.3 0.05

(a) False negatives.

order 1 order 1 order 2

filter 1 filter 3

RED 50.01 8.07 2.57

Gain-K 61.6 12.02 5.9

(b) False positives.

TABLE III: Persistence of false negative and positive alarms for CBR anomalies (in seconds).

order 1 order 1 order 2

filter 1 filter 3

RED 3.21 1.6 0.36

Gain-K 5.84 4.88 1.12

(a) False negatives.

order 1 order 1 order 2

filter 1 filter 3

RED 32.08 6.5 3.8

Gain-K 22.3 15.4 1.08

(b) False positives.

TABLE IV: Persistence of false negative and positive alarmsfor TBR anomalies (in seconds).

The efficacy of the second order sliding mode observer motivates towards testing its perfor-

mance on a real TCP traffic. The best means consists of replaying a traffic trace captured from

a real network by specific softwares. The advantage of this approach is to guarantee that all real

traffic properties will be represented while testing the observer. The following section details the

procedure required for flow replaying tools in NS-2.

V. REAL TCP TRAFFIC REPLAY

For experimental purposes, traffic traces are collected on the RENATER1 network. In LAAS-

CNRS2, a generic polymorphic platform for network emulation and experiments called ”Laas-

NetExp” [24] is set. From a specific machine, chosen to be the router in our network topology

as in Figure 2, flowing packets are captured via the network analyser ”Wireshark” [25]. While

capturing, anomalous packets have been sent from a machine in Mont-de-Marsan Institute of

Technology (about 200 kilometers away from Toulouse). The software used for generating real

attacks is TFN2k [22].

1RENATER is the French National Network for Education and Research.

2The Laboratory of Analysis and Architecture of Systems is a research unit associated with the University of Toulouse, France.



The Network Simulator NS-2 contains the necessary featuresto replay traces. In [26], an off-

line analysis is defined to be applied on measured traces. These techniques allow extracting then

categorizing flows into TCP, UDP and others, as well as determining non-trivial properties of

every transmitted flow present in our adopted model (1): the packets sizes, average packets round

trip time, packets loss rate and link capacities between thesources and the router.

The capture is analyzed and the properties of the data transmitted during the capture are

determined. For the TCP trafic,6 homogeneous flows were sent to their destinations through

a chosen router. The methodology in [26] is adopted for extracting the average characteristics

of the real TCP flows. The average TCP packet size is found to beequal to1 KByte, and the

average values for the link capacities and the RTT are determined for each flow. The anomalous

traffic sent from Mont-de-Marsan consists of several short then long sequences with a constant

bit rate equal to100Kbits/s. Each of the short attacks lasts7 seconds with5 seconds between

two consecutive ones and the long attacks last4 minutes with intervals varying between1 to 3

minutes between each couple of attacks.

The characteristics of the sources and of the router incoming links are defined for the simulation

topology presented in Figure 2. During the capture, the router is configured to regulate the

queue length using the mechanism of the Token Bucket Filter (TBF). TBF is a simple queueing

discipline that only passes packets arriving at a rate whichis not exceeding some administratively

set rate [27]. Its implementation consists of a buffer (bucket), constantly filled by some virtual

tokens, at a specific rate. Each arriving token collects one incoming data packet from the data

queue and is then deleted from the bucket. The router capacity is set to beC = 0.15 Mbits/s.

To validate the proposed observer (9) on real traffic characteristics, the equilibrium point of the

average network states is required. The values of the congestion window size and the queue

length at the equilibrium are specified by the mean value around whichW (t) andq(t) oscillate

respectively before the beginning of the attacks (W0 = 5.8 packets andq0 = 17.08 packets).

The graphs in Figure 5 show the traffic captured on the router which includes TCP traffic.

The anomaly is also present in the total traffic in such a way that a simple observation of the

traffic flow cannot identify it. After extracting TCP flows from the total traffic with their average

characteristics, the observer implemented on the router level can estimate the anomaly flowing



Fig. 5: Total traffic captured on the router level.
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Fig. 6: Estimation of traffic replay.

through its buffer. The second order sliding mode observer proposed is able to track the anomaly

seen in Figure 6.On the other hand, in Figure 6a, before the beginning of the attacks, the window

of congestion averageW (t) is correctly estimated, but in some time intervals during the long

attacks the estimation does not follow the real evolution. We can explain these perturbations by

experimental aspects coming up against the hypothesis of the TCP model (1).

• Because of the use of the Token Bucket Filter (TBF) based on the AQM ”Drop Tail” to

regulate the router queue length, the sources are frequently forced to reduce their conges-

tion windows towards zero. This phenomenon reflects the realperformance of TBF but

contradicts the fundamental hypothesis of the adopted TCP model which is the persistence

of packets emission during the congestion avoidance phase.

• The average TCP packet size sent during the long attacks is different from the average

size considered for the design of the observer. This real experimental fact perturbs the

equilibrium value of the congestion window, thus defectingthe anomaly reconstruction.

On the other hand, the instantaneous detection of the anomaly with good tracking of its real



profil represents the main advantage of the sliding mode control theory. This result reflects the

relevance of the sliding mode observer (9) on real traffic conditions with respect to the hypothesis

considered in the theoretical model.

VI. CONCLUSIONS AND FUTURE WORK

In this article we have studied the performances of sliding mode observers for anomalies

detection and reconstruction in TCP/IP networks. Based on Simulink and NS-2 simulation results,

the second order sliding mode observer reveals better performances compared to the first order

one, in terms of the instantaneous detection of the presence/vanishing of the anomaly and the fast

tracking of the real anomaly profile. Furthermore, the advantages of the second order sliding

mode observer are shown and validated on real experiments while estimating the congestion

window size, then reconstructing the shape of the anomalousflows.

Our work has been focused on a new approach of monitoring TCP network. Future work is

concerned with proposing a new architecture for helping TCPwith guaranteeing the QoS of the

router and the whole network topology subject to an anomaly.

REFERENCES

[1] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic anomalies,” inProceedings of the conference

on Applications, technologies, architectures, and protocols for computer communications, ser. SIGCOMM ’04, Portland,

Oregon, USA, 2004, pp. 219–230.

[2] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”ACM Computing Surveys (CSUR), vol. 41, pp.

1–58, July 2009.

[3] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and denial of service attacks: characterization and

implications for CDNs and web sites,” inProceedings of the 11th international conference on World Wide Web, ser.

WWW ’02, Honolulu, Hawaii, USA, 2002, pp. 293–304.

[4] C. Edwards, S. Spurgeon, and R. Patton, “Sliding mode observers for fault detection and isolation,”Automatica, vol. 36,

pp. 541–553, 2000.

[5] T. Floquet, J.-P. Barbot, W. Perruquetti, and M. Djemaı̈, “On the robust fault detection via a sliding mode disturbance

observer,”International Journal of Control, vol. 77, no. 7, pp. 622–629, 2004.

[6] V. Misra, W. Gong, and D. Towsley, “Fluid-based analysisof a network of AQM routers supporting TCP flows with an

application to RED,” inProceedings of the conference on Applications, Technologies, Architectures, and Protocols for

Computer Communication, ser. SIGCOMM ’00, Stockholm, Sweden, 2000, pp. 151–160.

[7] Y. Ariba, F. Gouaisbaut, and Y. Labit, “Feedback controlfor router management and TCP/IP network stability,”IEEE

Transactions on Network and Service Management, vol. 6, no. 4, pp. 255–266, December 2009.

[8] S. V. Emel’yanov, S. K. Korovin, and A. Levant, “High-order sliding modes in control systems,”Computational

Mathematics and Modeling, vol. 7, pp. 294–318, 2005.



[9] E. Altman and T. Jiménez, “Ns simulator for beginners,”Lecture notes, Dec. 2003, uRL: http://www-

sop.inria.fr/maestro/personnel/Eitan.Altman/COURS-NS.

[10] R. Srikant,The mathematics of internet congestion control. Boston: Birkhäuser, 2004.
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