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Abstract : We consider here different models of dissipative Korteweg-de Vries (KdV) equations on the
torus. Using a proper wave function Γ, we compare numerically the long time behavior effects of the
damping models and we propose a hierarchy between these models. We also introduce a method based
on the solution of an inverse problem to rebuild a posteriori the damping operator using only samples of
the solution.

1 Introduction

The modeling and the underlying mathematical analysis of gravity waves is still a challenging topic
despite intensive works and progress that have been done, especially during the last decade, see, e.g. [22]
for the derivation of the models. The long time behavior of dissipative asymptotic models remains an
important issue: capturing damping rates in several norms, measuring regularization effect or pointing
out complex asymptotic dynamics (existence of attractors, Hopf bifurcations etc) to name but a few are
important points for the understanding of natural phenomena. For many models, several of these
questions are still open and the numerical simulation is a way to capture some properties and to select
pertinent models.

Damped Korteweg-de Vries equations (KdV) appear in different physical situations and they can be
expressed in a large generality on the torus T = T(0, L) as

ut + L(u) + uxxx + uux = 0, x ∈ T, t > 0, (1)

where L is a linear operator, defined on a Hilbert space V , subspace of L2 and satisfying

∫ L

0
L(v)vdx ≥ 0, (2)

for all function v ∈ V , regular enough, in such a way the L2-norm of the solution is decreasing in time as

1

2

d|u|2L2

dt
+

∫ L

0
L(v)vdx = 0. (3)

1. The second author is supported by the program ”appui à l’émergence” of the Région Picardie
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The definition of L depends on the physical situations: in [23], Ott and Sudan have proposed a damped
KdV equation as a model of Landau damping for ion acoustic wave, the (linear) damping being
nonlocal, and in [24] they have presented different models of damping taking L(u) = |D|αu, where
|D| =

√
−∆; in [5] Dias and Dutykh have considered the operators

L(u) = −νuxx +

√
ν

2

∫ t

0

ut(s)√
t − s

ds, (4)

L(u) = −νuxx −
√

ν

2

∫ t

0

ux(s)√
t − s

ds, (5)

respectively, to model natural damping of water waves, mathematical analysis and simulations can be
found also in [2, 4, 10]; in [3, 26] it has been proposed a general model of weak damping for spatial
nonlocal frequency by frequency damping,

L(u) =
∑

k∈Z

γkûke
2iπkx

L . (6)

Generally, we do not have damping rate estimates so it is difficult to make a hierarchy between these
models without using numerical simulations. We are here interested in comparing the long time effect of
these different type of damping and for that purpose, we follow [3] using the norm ratio function

Γ(t;u) =

√
< L(u), u >

|u| ,

that allows to compare the damping in L2 norm; here |.| and < ., . > denote respectively the L2-norm
and the associated scalar product. A consequence of relation is that the L2 decay depends on L, in fact
an application of a Gronwall lemma gives

|u(t)|2 = e
−2

∫ t

0
Γ2(s)ds

|u(0)|2. (7)

so that Γ characterizes the damping in L2.

A interesting inverse problem is the following: starting from samples of u at discrete times tm that can
be measured (u represents the vertical elevation of the wave with respect to the horizontal position), is
it possible to rebuild a given type of damping operator whose the effect on large time interval fits with
Γ2(t) ?

The present work addresses to these two questions and we propose some numerical techniques that allow
in the one hand, to compare the effect of different damping models on large time interval and, on the
other hand, starting from samples of the solution, to recover numerically an approximation of the
operator L.

The article is organized as follows: in Section 2 we recall some damping properties of the different
models and we introduce the tools that we will use for making the hierarchy. After that, in Section 3,
we present the numerical schemes in space and in time. Then, in Section 4, we first compare numerically
the long time behavior of the damping and we display a time signal analysis of Γ(t). After that, we
propose to rebuild in some cases and a posteriori the damping operator by fitting proper parameters
with the solution of a constraint least square problem.
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2 Damping properties

2.1 The different models

We here recall some characteristics and properties of the damping we will consider for the application.

2.1.1 Weakly damped KdV equations

Consider the situation in which the damping operator can be described by Fourier series as

L(u) =
∑

k∈ZZ

γkûke
2iπkx

L ,

where γk ≥ 0 are the damping weights and ûk denotes the k-th Fourier coefficient of u ; the assumption
of positivity of γk implies that

< L(u), u >=
∑

k∈ZZ

γkû
2
k ≥ 0,

insuring the decreasing in time of the L2-norm of the solution. The choice γk =
∣∣∣2πk

L

∣∣∣
α

, α > 0

corresponds to Lγ(u) = |D|αu, where |D| =
√
−∆. More generally, when lim

k→+∞
γk = +∞, (e.g. γk = k2

for a parabolic damping [11]), the equation is regularizing at finite time. When γk is constant, say
L(u) = γu, the damping is said to be ”weak” and is not regularizing at finite time but, as proved by
Ghidaglia [12, 13] and Goubet [14, 15], it allows the equation to have a finite dimensional attractor
which is in a more regular space than the initial data: this is the asymptotic regularization property. In
all these situations γk ≥ γ > 0 is bounded from below and the damping in L2-norm is done at least at
an exponential rate, we have indeed, after integration by parts and use of Gronwall’s lemma,

‖u‖L2 ≤ e−γt‖u0‖L2 .

In [3], the limit case, ( lim
k→+∞

γk = 0) has been considered, and it was pointed out numerically also

asymptotic regularization properties but the damping rate is not uniform: it depends on both the
sequence γ and of the Fourier coefficients of the initial data, see [3].

2.1.2 Nonlocal damping in time

The nonlocal damping in time

L(u)(x, t) = −νuxx −
√

ν√
π

∫ t

0

ut(s)√
t − s

ds.

was considered by Dias and Dutykh in [5]. The associated Damped KdV equation

ut + uxxx + uux − νuxx −
√

ν√
π

∫ t

0

ut(s)√
t − s

ds = 0 (8)

models one way water waves in a fluid layer of finite depth under the influence of viscous effects.
A model of the same kind is studied in [1, 5], say

ut + uxxx + uux − νuxx −
√

ν√
π

∫ t

0

ux(s)√
t − s

ds = 0 (9)

but it will not considered in the present work. A mathematical analysis is presented in [4] a numerical
study is realized in [10].
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2.1.3 Localized damping in space

It corresponds to
L(u)(x, t) = χ[a,b]u,

where 0 < a < b < L. This situation have been considered in the context of the stabilization of KdV
equations, when the domain is the torus T [20] or the half line IR+ and L = χ[a0,+∞[ with a0 > 0, [25]. A
exponential decay in time was established in proper Sobolev norms. We will recover numerically on T

this exponential rate of convergence (after a transient time) and compare it to the other damping
models, see Section 4.

2.2 Comparison of the damping

As stated in the introduction, we would like to compare numerically these damping models for long time
intervals and to display a time signal analysis. This is a first step to be considered for making a
hierarchy. To this end, we follow [3] and introduce the function Γ(t)

Γ(u)(t) =

√
< L(u), u >

< u, u >
, (10)

that we will note Γ(t) for simplicity. In the general case, we can prove that |u|L2 → 0 as t → +∞ but
without deriving explicit bounds for the damping rate:

Proposition 1. Assume that
– L : V ⊂ L2 → L2 is linear continuous
– < L(u), u >≥ 0
– < L(u), u >= 0 =⇒ u = 0
then lim

t→+∞
|u|L2 = 0.

Proof. By taking the scalar product in L2 of the equation with u, we obtain after an integration by parts

1

2

d|u|2
dt

+ < L(u), u >= 0, (11)

making the function t 7→ |u| decreasing in time. Assuming that u is smooth enough and arguing that
|u| ≥ 0 we deduce that |u| converges towards a limit ℓ as t goes to ∞. This implies that < L(u), u >→ 0
as t goes to +∞, hence that u → 0 a.e.

The function Γ(t) is related to the L2 norm of the solution: we recall the simple Gronwall lemma from [3]

Proposition 2. Let u(x, t) be a regular solution of equation (1). We assume that G(u, t) is C1 in t.
Then we have the relation

|u(t)|2L2 = e−
R

t

0
Γ2(s)ds|u0|2L2 .

In particular, lim
t→+∞

|u|L2 = 0 iff t 7→ G(t) 6∈ L2
t (0,+∞).

Of course, the damping rate in L2 depends on the operator L, so it appears that the function Γ(t) is an
appropriate tool for comparing two damping in long time intervals.
For these reasons, we propose in section 4 to provide a time signal analysis using a proper orthogonal
polynomial basis associated to a weighted L2 scalar product.

Let us consider u and v respectively (regular) solutions of the damped KdV equations

ut + L1(u) + uxxx + uux = 0, x ∈ T, t > 0,
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and
vt + L2(v) + vxxx + vvx = 0, x ∈ T, t > 0.

We let w = u1 − u2. We can write

wt + wxxx + L1(w) + (L1 − L2)(v) + wwx + wvx + vwx = 0.

Then, taking the L2- scalar product of these terms with w, we obtain after the usual simplifications,

1

2

d|w|2
dt

+ < L1(w), w > +
1

2

∫ L

0
w2vxdx+ < (L1 − L2)(v), w >= 0.

The comparison of two solutions generated by two different damped KdV models needs to make
additional assumption. It is however possible to make a comparison in the case of weak damping, i.e.
when L is defined as

L(u) = Lγ(u) =
∑

k∈ZZ

γkûke
2iπkx

L .

We have the following result:

Proposition 3. Consider L1 and and L2, two weak damping operators defined by

L1 = γId and L2(u) =
∑

k∈ZZ

γkûke
2iπkx

L .

We denote by u (resp. v) the solution of the damped KdV equation with L1 (resp. L2) as damping
operator. Assume that
– γk > 0, γk = γ, |k| ≤ N, γk ≤ γ, |k| ≥ N

– ∃β > 0/γ − 1
2 |vx|∞ ≥ β > 0, ∀t > 0

Then

|w(t)|2 ≤ e−βt|w(0)|2 + γN+1
1 − e−βt

β2 |v(0)|2

where w = u − v.

Proof. We have directly
1

2

d|w|2
dt

+ β|w|2+ < (L1 − L2)(v), w >= 0.

Now

| < (L1 − L2)(v), w > | ≤ 1

2β
‖L1 − L2‖2 +

β

2
|w|2,

here ‖L1 − L2‖ denotes the norm of the linear operator L1 − L2 from L2 to L2. We have for any z ∈ L2

|(L1 − L2)(z)|2 =
+∞∑

k=N+1

γk|ẑk|2 ≤ γN+1|z|2.

Finally,
d|w|2

dt
+ β|w|2 ≤ γN+1

β
|v|2 ≤ γN+1

β
|v(0)|2,

hence the result by using an integration in time.
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3 Numerical Schemes

3.1 Discretization in space

The Damped KdV equation is studied here on the torus, it is then natural to use pseudo-spectral
Fourier collocation techniques for the discretization in space; this produces a high accurate
discretization and moreover it allows to take advantage of FFT and to make the computations more
faster. We shall follow this approach for all the damping we consider except for the local space damping
L(u) = χ[a,b]u. Indeed, since this term is spatially localized, it is very badly localized in frequencies, so
the Fourier approach can not be efficient. A way to overcome this drawback while having a high level of
accuracy, that can be compared with the spectral one, is to implement finite difference compact schemes
[21]. In two words, these schemes consist in approaching a linear operator (differentiation, interpolation)
by a rational (instead of polynomial-like) finite differences scheme: let U = (U1, · · · , Un)T be a vector
whose the components are the approximations of a regular function u at (regularly spaced) grid points
xi = ih, i = 1, · · · , n. The classical finite difference schemes consists in computing T u = f at xi with the
matrix-vector product

F = TU,

where T is the discretization matrix of T n, a derivation or an interpolation operator. The relation
f(xi) = (TU)i is then satisfied up to a certain order of accuracy. The compact schemes consist in
approaching T u as

PF = QU,

in such a way the relation f(xi) = (P−1QU)i is satisfied at the most possible higher order. The matrix
P represents the implicit part of the scheme while Q is the explicit part. We reconsider here the
compact schemes introduced by Lele [21]. These schemes are defined with a compact stencil: the
implicit part consists of a banded matrix, easy to invert, and thanks to the implicit part, the
discretization scheme uses only few points near the boundaries, when the non-periodic case is

considered, see [21]. To approach ∂u
∂x

(xi) we consider the relations

u′(xi) + α(u′(xi+1) + u′(xi−1)) + β (u′(xi+2) + u′(xi−2)) =

a
u(xi+1) − u(xi−1)

2h
+ b

u(xi+2) − u(xi−2)

4h
+ c

u(xi+3) − u(xi−3)

8h
. (12)

Here h is the spatial step size. Coefficients α, β a, b et c are computed in such a way (12) to be satisfied
at a given order.

– Order 10 (error in h10) : c = 1/75, β = 1/20, b = 101/150, α = 1/2, a = 17/12.
– Ordre 8 (error in h8) : β = 1/36, b = 25/54, α = 4/9, a = 40/27, c = 0.
– Order 6 (error in h6) : b = 1/9, α = 1/3, a = 14/9, c = 0, β = 0.
– Order 4 (error in h4) : b = c = β = 0, α = 1/4, a = 3/2.
– Order 2 (error in h2) :a = 1, b = c = α = β = 0.
We use the periodic boundary conditions to close the system. In the same way we define the compact
scheme for the third derivative in space as

u(3)(xi) + α(u(3)(xi+1) + u(3)(xi−1)) + β(u(3)(xi+2) + u(3)(xi−2)) =

a
−2 · u(xi+1) + 2 · u(xi−1) + u(xi+2) − u(xi−2)

2h3

+b
−2 · u(xi+2) + 2 · u(xi−2) + u(xi+4) − u(xi−4)

16h3

+ c
−2 · u(xi+3) + 2 · u(xi−3) + u(xi+6) − u(xi−6)

54h3 . (13)
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– Order 6 (error in h6) : b = 1/9, α = 1/3, a = 14/9, c = 0, β = 0.
– Order 4 (error in h4) : b = c = β = 0, α = 1/4, a = 3/2.
– Order 2 (error in h2) :a = 1, b = c = α = β = 0.

3.2 Time discretization schemes

3.2.1 Crank Nicolson schemes

Let D be the differential operator associated to the first derivative in space. The classical
Crank-Nicolson scheme writes as

u(n+1) − u(n)

∆t
+ Lγ

(
u(n+1) + u(n)

2

)
+ D3

(
u(n+1) + u(n)

2

)
+

1

4
D
(
(u(n+1))2 + (u(n))2

)
= f, (14)

We will use it for the simulations with non time depending damping. In practice it will be implemented
using at each time step a Picard fixed point method, other numerical schemes are presented an studied
in [3].

3.2.2 Generalized Gear schemes

The Gear scheme is a popular second order semi implicit scheme to solve evolution problems such as
parabolic ones, see e.g. [16] and the reference therein for the solution of incompressible Navier-Stokes
equations ; it addresses to the approximation of the first derivative in time. Dubois et al proposed to
adapt it to the numerical computation of fractional derivative, particularly the ”half-time” derivative.

Here, we aim at approaching the nonlocal operator G
1/2
t u(t) =

1√
π

∫ t

0

ut(s)√
t − s

ds. In [8], the authors

propose the following scheme

(G
1/2
t u)n =

√
3

2∆t
·

+∞∑

j=0

gj+1u
n−j =

√
3

2∆t
·

n∑

j=0

gn+1−ju
j,

where gj are the Gear coefficients computed in [7]. Taking the Fourier series of each term we have

a0
d

dt
ûk +

√
ν · G1/2

t ûk +

[
a1 · i ·

(
2πk

L

)
− a2 · i ·

(
2πk

L

)3

+ a4 ·
(

2πk

L

)2
]

︸ ︷︷ ︸
LT

·ûk + a3 · i ·
(

2πk

L

)

︸ ︷︷ ︸
NLT

· û
2
k

2
= 0.

We now set C =
2πk

L
, LT = C ·

(
a1 · i − a2 · i · C2 + a4 · C

)
and NLT = a3 · i · C.

Here a0, a1, a2, a3, a4 and ν are given real numbers. The system to be solved is then:





a0

d

dt
ûk +

√
ν · G1/2

t ûk + LT · ûk + NLT · û2
k

2
= 0,

ûk(x, 0) = ûk(0).

We will set for the sequel U(x, t) = u(x, t) − u0(x), so





a0

d

dt
Ûk +

√
ν · G1/2

t Ûk + LT ·
(
Ûk + û0

)
+ NLT ·

̂(U + u0)
2
k

2
= 0,

Ûk(x, 0) = 0.
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For simplicity, we consider the following explicit scheme





a0

Ûn+1
k − Ûn

k

∆t
+

√
ν · G1/2

t Ûn+1
k + LT ·

(
Ûn+1

k + û0

)
+ NLT ·

̂(Un+1)2k

2
= 0,

Ûk(x, 0) = 0.

We have
√

ν · G1/2
t

(
Ûn+1

k

)
=

√
ν ·
√

3

2∆t
·

n+1∑

j=0

gn+1−jU
j =

√
ν ·
√

3

2∆t
·



g0Û
n+1
k +

n∑

j=0

gn+1−jU
j



.

Therefore, we obtain






Ûn+1
k =



−
√

3ν∆t

2
·

n∑

j=0

gn+1−jU
j + a0 · Ûn

k − ∆t ·



LT · û0 + NLT ·
̂(Un+1)2k

2







 /M1,

Ûk(x, 0) = 0.

where M1 = a0 + ∆t · LT +

√
3ν∆t

2
· g0.

Remark 4. The Gear scheme proposed here can be generalized to the approximation of general
fractional derivatives of order α expanding formally the αth power of the operator scheme expressed with
translation operators [10, 18, 19]. We have indeed

G =
1

∆t

(
3

2
I − 2δ− +

1

2
(δ−)2

)

where δ− is the time backward translation operator : δ−un = un−1. Hence

(Gαu)n =

(
3

2∆t

)α +∞∑

j=0

j∑

ℓ=0

(
4

3

)j (41

4

)ℓ

Aα
j+1B

j
ℓ+1u

n−j−ℓ.

The coefficients Aα
j+1 and Bj

ℓ+1 being computed recursively by the formula

Aα
j+1 =

j − α − 1

j
Aα

j and Bk
ℓ+1 =

ℓ − j − 1

ℓ
Bj

ℓ

starting from Aα
1 = 1 and Bj

1 = 1. We recover the scheme proposed by Dubois for α = 1
2 reordering the

sum as

(Gαu)n =

(
3

2∆t

)α +∞∑

j=0

gα
j+1u

n−j.

4 Numerical results

The numerical results we present here are obtained using Matlab. We will have use of the following
notations for the initial data:

u0(x) = S1 = 3 c sech

(√
c

2
(x − pL)

)2

, with c = 1, p = 0.4 is the soliton,

u0(x) = S2 = χ[a,b] corresponds to the crennel,

u0(x) = S3 = sin

(
2πx

L

)
is the sine data.
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4.1 The different damping

4.1.1 Lγ damping

In Figure 1, we display (on the left) the time evolution of the L2-norm of the solution when considering
various weak damping operators, the corresponding Γ function is also represented (on the right). The

initial data are the same in all cases is soliton-like, say u0(x) = 3 sech
(
x − 0.4L

2

)2
+ c with c chosen

such as u0 is zero mean. We observe that, of course, the weaker is the damping the slowest the L2 norm
of the solution converges towards 0.
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Figure 1: Comparison of L2-norm of the solution for different damping on [0, L] with L = 20 (left) and
of Γ2(t) (right).

4.1.2 Local damping in space L = χ[a,b]

We now represent the evolution of the solution when considering different damping operators localized
in space, say of the form L = χ[a,b] with [a, b] ⊂ [0, L]. We consider the following situations:
L = χ[0,L/4], L = χ[0,L/2], L = χ[0,3L/2], L = χ[0,L].
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10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
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2) for Damping χ

[a,b]
 model with sixth order finite difference scheme with sine initial data

lo
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t

 

 
[a,b]=[0,L/4]
[a,b]=[0,L/2]
[a,b]=[0,L/1.5]
[a,b]=[0,L]

Figure 2: Norm L2 for the damping χ[a,b] using a sixth order compact scheme.

We report in Figure 2, the time evolution of the L2 norm, we note that the damping rate is larger with
large values of b − a. After a transient time, we see that the L2 decreases linearly in log. scale, so the
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damping is exponential. Similar results are obtained with different initial data. In Figure 3 we compare
the time evolution of the L2 norm of the solution when considering L = χ[0,L/2] and various initial data.
After a transient time, we note that the rate are the same for each case.
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Figure 3: Norm |u|L2 for the damping χ[0,L/2] using a sixth order compact scheme for initial data: S1,
S2 = χ[0.5·L,0.7·L] et S3.

Finally, in Figure 4, we have represented the time evolution of Γ2(t) for different initial data. We
observe that, after a transient time, Γ2(t) converge quickly to a constant: this means that the damping
rate for large times is the same for all initial data.
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Figure 4: Γ2(t) for the damping χ[0,L/2] using a sixth order compact scheme for initial data: S1, S2 =
χ[0.5·L,0.7·L] et S3.
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4.1.3 Nonlocal integral damping

We display hereafter the solution at different times, varying µ and ν. The numerical results agree with
whose in [4] (Figure 5).
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Figure 5: T = 10, N = 2499, 0 < x < 500, a0 = 1, a1 = 1, a2 = 1, a3 = 6, a4 = µ.

4.2 Comparison of the damping rates for the different models

In Figures 6 and 7, we compare the long time effect of the different damping using the function Γ(t).
This approach allows to point out a hierarchy between these different damping models. To this end, we
consider the damping operator in its largest generality:

L(u) = µLγ(u) +
√

ν

∫ t

0

ut√
t − s

ds + ωχ[a,b]u (15)

The case ν = ω = 0, allows to recover the weak damping when γk is bounded and the parabolic damping
when γk = k2, a comparison have been made in Figure 1; when ν = µ = 0, the nonlocal spatial damping
considered for the stabilization is obtained; finally, when ω = µ = 0, ν 6= 0, L is the nonlocal damping in
time.

To compare the damping effect in L2 norm of these operators, we distinguish two groups of them
– L(u) = Lγ(u) or L(u) = χ[a,b]u

As seen above, the damping in L2-norm is exponential in time, after eventually a transient time. For
making the comparison coherent, we have scaled the models Lγ(u) in such a way the coefficient

associated to the frequency k = 1, γ1 is equal to 1, that is µ =

(
L

2π

)2

; we take ω = 1 since

asymptotically, the local spatial damping is to be compare asymptotically with Lγ=1 = χ[0,L].

11



– L(u) = −µuxx +
√

ν

∫ t

0

ut√
t − s

ds. Here we have to take into account of the competition between

−µuxx and
√

ν

∫ t

0

ut√
t − s

ds acording to the values of µ and ν.

Overall, we can range the operators in the following way, by decreasing damping rate

1. L(u) = ν

∫ t

0

ut√
t − s

ds

2. L(u) = −µ∂2
xu

3. L(u) = γu

4. L(u) = γuχ[a,b]

5. L(u) = Lγ(u) =
∑

k∈Z

γkûke
2ikπx

L , with γk = 1
1 + |k|

In Figure 6, we observe a hierarchy between the operators of dissipation through the damping they
produce in long time interval, we can distinguish 2 groups, from the most to the less dissipative: first
the laplacian-like and the weak operators Lγ with γ bounded, then the damping of type χ[a,b].
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Figure 6: Comparison of the time evolution of L2-norm (left) and of Γ2(t) (right) for the damping operators
Lγ and χ[a,b] on [0, L] with L = 20.

Similar results are obtained starting from different initial data.

In Figure 7, we observe that the damping provided by the nonlocal operator is stronger than that
produced by the negative laplacian.
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Figure 7: Comparison of the time evolution of L2-norm (left) and of Γ2(t) (right) for the damping operators

L(u) = −µuxx +
√

ν

∫ t

0

ut√
t − s

ds for different ν and µ with L = 500.

4.3 Time signal analysis and damping modeling

4.3.1 Time signal analysis

As pointed out in section 2, Γ(t) does not belong in L2
t (0,+∞). However, it is possible in some cases to

find a weight ω such that G ∈ L2
ω(0,+∞) = {v/

∫ +∞
0 v2ωdx < +∞}. In such a case a time signal

analysis can be displayed in the orthogonal polynomial basis associated to the scalar product in L2
ω; for

example, if G(t) is at most at polynomial growth, then it belongs in L2
ω with ω = e−t so that the time

analysis can be done with Laguerre polynomials. This behavior in time was observed for the various
damping models, see above.

To display a time signal analysis, we proceed as follows: formally the time signal Γ2(t), is decomposed
into the Polynomial Laguerre basis as

Γ2(t) =

+∞∑

k=0

gkLk(t),

where Lk is the k-th Laguerre polynomial, defined as the orthogonal sequence with respect to the scalar

product < f, g >=

∫ +∞

0
fge−tdt with L0 = 1. We have then

gk =

∫ +∞

0
Γ2(t)Lk(t)e

−tdt

∫ +∞

0
L2

k(t)e
−tdt

.

Of course, such integral terms can not be computed numerically and they are approached by using
Laguerre rule associated to Gauss formula, see [27]. To post-treat sampled values of Γ2(t)
(ti,Γ

2(ti)), i = 1, · · · , n produced by a numerical solver of Damped KdV equation, we first fit the
discrete time ti to Gauss points of the Laguerre rule formula, ξj, j = 0, · · · ,m, with m << n, the weight
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are noted wj; then we use as data (ξj,Γ
2(ξj) to make signal time analysis and synthesis:

gn
k =

m∑

j=0

Γ2(ξj)Lk(ξj)wj

m∑

j=0

L2
k(ξj)wj

,

so that

Πn(Γ2)(t) =

m∑

k=0

gn
k Lk(t),

is the interpolation polynomial of Γ2 at the points ξj, j = 0, · · · ,m.
We display hereafter in Figures (8) and (9) the time signal analysis and synthesis of Γ2(t) for the
damping operators considered above.

0 10 20 30 40 50 60
10

−3

10
−2

10
−1

10
0

10
1

t

L
o

g
(
Γ

2
(
t)

)

Reconstruction Γ2(t) for different damping models

 

 

γ
k
=1

γ
k
=1/k

γ
k
=1/k2

γ
k
=k2

χ
[0.2L,0.8L]

χ
[0.4L,0.6L]

0 2 4 6 8 10 12 14 16 18
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

t

L
k
(
Γ

2
(
t)

)

Comparison Laguerre power spectra of Γ2(t) for different damping models

 

 

γ
k
=1

γ
k
=1/k

γ
k
=1/k2

γ
k
=k2

χ
[0.2L,0.8L]

χ
[0.4L,0.6L]

Figure 8: Comparison of the power spectrum of Γ2(t) for the damping operators Lγ and χ[a,b] on [0, L]
with L = 20 (left), reconstruction of the signal (right)

4.3.2 Reconstruction of the damping operator with sample data

We now describe a way to build a posteriori the damping operator L in the cases of a local damping in
space, i.e. when L = χ[a,b], and of a weak damping.
The key is the knowledge of numerical values of u at discrete times tm, m = 1, · · ·M ; these values can
be computed by a numerical code or measured experimentally. Indeed, with theses data we are able to
compute approximate values of Γ2(tm): by integrating the differential equation

1

2

d|u|2
dt

+ Γ2(t)|u|2 = 0,

between tm and tm+1 with, e.g., the semi-implicit scheme

|u(tm+1)|2 − |u(tm)|2
∆t

+ Γ2(tm+1)
1

2
(|u(tm+1)|2 + |u(tm)|2),
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ds for different ν and µ with L = 500 (left), reconstruction of the signal (right)

and we get

Γ2(tm+1) ≃
|u(tm)|2 − |u(tm+1)|2

∆t(|u(tm+1)|2 + |u(tm)|2) .

We first consider the case of the local damping in space L = χ[a,b]. Let xi be the (regularly spaced) grid
points and ℓi the vector defined by

ℓi =

{
1 if xi ∈ [a, b],
0 otherwise.

The computed values of Γ2(tm) at discrete times tm are the numbers

Γ2(tm) =

N∑

i=1

ℓiu
2
i h

N∑

i=1

u2
i h

,

hence, we look to positive real numbers γi solution of the constraint least square problem

Inf
γi≥0

M∑

m=0




N∑

i=1

γi(u
m
i )2

∑N
i=1(u

m
i )2

− Γ2(tm)




2

.

This minimization problem will be solved numerically using the Matlabr function fmincon.

In the case of the weak damping operator L(u) =
∑

k∈ZZ

γkûke
2iπkx

L we proceed as follows: given the

15



samples Γ(tm),m = 0, · · · ,M we can write

Γ2(t) =

∑

k∈ZZ

γk|ûk(t)|2

∑

k∈ZZ

|ûk(t)|2
.

We want to find the coefficients γk that fit these relations. Of course we’ll look to a finite number of
them, so that satisfying at the least square sense the relation

M∑

m=0




∑

|k|≤N

γk|
ûk(tm)|2∑

|k|≤N |ûk(tm)|2 − Γ2(tm)




2

with the constraints
γk > 0.

In summary the sequence γk solves the problem

Inf
γk≥0

M∑

m=0




∑

|k|≤N

γk
|ûk(tm)|2∑

|k|≤N |ûk(tm)|2 − Γ2(tm)



. (16)

We also solve this problem using the Matlab’s function fmincon.

The results we give hereafter concern two situations
– Linear KdV equation

ut + L(u) + uxxx = 0.

Here the frequencies are not melted by a nonlinear term, and the damping is active independently
frequency by frequency.

– the nonlinear KdV
ut + L(u) + uxxx + uux = 0.

Here the nonlinear term melts the frequencies
In both the cases we have

1

2

d|u|2
dt

+ < L(u), u >= 0.

4.3.3 Linear KdV

We start from a soliton-like data u(x, 0) = 2c1sech(
√

c1(x− p1L))2 with c1 = 0.16, p1 = 0.5; here L = 20,
N = 27 and ∆t = 0.01. The original operator is Lγ with γk = γ = 2.7.
In Figure 10, we observe that the operator is rebuild in a relatively satisfactory way.

Now, we take the same data as before, but here γk = 1
(1 + |k|)2 .

We observe in Figure 11 that the reconstruction is correct only for the low frequencies. This is due to
the ill-conditioning of the problem.

4.3.4 Nonlinear KdV

First we give numerical results concerning the reconstruction of the local damping in space
L = χ[0.4L,0.6L].
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Figure 10: Γ2(t) (left), comparison of the original and the rebuilt coefficients γk (right)
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Figure 12: Γ2(t) (left), comparison of the original and the rebuilt coefficients L = χ[0.4L,0.6L] (right)

In Figure 12, the result obtained is encouraging: the reconstruction of L is rather satisfactory. Figure 13
represents the reconstruction of a weak damping operator.
We point out that this numerical recovering of the damping operator is a first step and improvement
will be considered in further works. The technique we used for rebuilding the damping operator is the
same in the two situations we have considered. However, if the results are encouraging when considering
the local damping in space, it is not the case for the weak damping operator.
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Figure 13: Γ2(t) (left), comparison of the original and the rebuilt coefficients γk (right)

Indeed, the matrix Am,k =
|ûk(tm)|2∑

|j|≤N |ûj(tm)|2 is ill-conditioned so, for instance, regularization techniques

should be considered together with the minimization solver. In a larger way, the reconstruction of L
should be done using recent techniques for the solution of inverse problems, see, e.g., [17].

5 Concluding remarks

The function Γ(t) seems to be an interesting way to compare the large time effect of various damping
models for KdV equations and more widely for damped conservative equations of type

ut + L(u) + F (u) = 0 (17)

with < F (u), u >= 0.
The knowledge of samplings of the solution can be exploited in a encouraging way to rebuild a
parametrized damping operator. Of course, this last approach as presented here is only a first step and
improvements should be obtained using techniques coming from inverse problem area such as those
presented recently in [17], particularly for coupling regularization techniques with the solution of
ill-conditioned constrained quadratic minimization problems. This is addressed to further developments.
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