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Abstract

We study K-theoretical aspects of the braid groups B, (S?) on n strings of the 2-sphere,
which by results of the second two authors, are known to satisfy the Farrell-Jones fibered
isomorphism conjecture [[M]. In light of this, in order to determine the algebraic K-theory
of the group ring Z[B,(S?)], one should first compute that of its virtually cyclic subgroups,
which have been classified recently by D. L. Gongalves and the first author [GG6]. In this
paper, we first calculate the Whitehead and K_1-groups of the group rings of many of the
finite subgroups (dicyclic and binary polyhedral) of B,(S?). Some new phenomena occur,

1



such as the appearance of torsion for the K_i-groups. We then go on to study the case
n = 4 in detail, which is the smallest value of n for which B, (S?) is infinite. We show that
By(S?) is an amalgamated product of two finite groups, from which we are able to determine
a universal space on which the family of virtually cyclic subgroups of B4(S?) acts suitably.
We also calculate the algebraic K-theory of the infinite virtually cyclic subgroups of B4(S?),
including the Nil groups of the quaternion group of order 8. This enables us to determine
completely the Whitehead group and the lower algebraic K-theory of Z[B4(S?)].

1 Introduction

Given a group G, the fibred isomorphism conjecture of F. T. Farrell and L. E. Jones
asserts that the algebraic K-theory of its integral group ring Z[G| may be computed
from the knowledge of the algebraic K-theory groups of its virtually cyclic subgroups
(see [FJ1] or the Appendix at the end of this paper for the statement of this conjec-
ture). This conjecture has been verified for a number of classes of groups, such as dis-
crete cocompact subgroups of virtually connected Lie groups [FJ1], finitely-generated
Fuchsian groups [BJP], Bianchi groups [BFJP], pure braid groups of aspherical sur-
taces [AFR], braid groups of aspherical surfaces [FR] and for some classes of mapping
class groups [BJL]. In [LO3], Lafont and Ortiz presented explicit computations of the
lower algebraic K-theory of hyperbolic 3-simplex reflection groups, and then together
with Magurn, for that of certain reflection groups [LMO]. Similar calculations were
performed for virtually free groups in [JLMP].

Let n € N, let M be a surface, and let B,,(M) (resp. P,(M)) denote the n-string braid
group (resp. n-string pure braid group) of M [Bi, Han]. The braid groups of the 2-sphere
S? were first studied by Zariski, and then later by Fadell and Van Buskirk during the
1960’s [Z, FVB]. If M either is the 2-sphere S? or the projective plane RP?, its braid
groups are excluded from consideration by [AFR, FR], the principal reason being that
they possess torsion [FVB, VB]. The second two authors of this paper proved that
the Farrell-Jones isomorphism conjecture holds also for the braid groups of these two
surfaces, which using the method prescribed by the conjecture, enabled them to carry
out complete computations of the Whitehead groups and lower algebraic K-groups for
P,(S?) and P,(RP?) [JM]. One necessary ingredient in this process is the knowledge of
the virtually cyclic subgroups of P,,(M). For n > 4, P,(S?) has only one non-trivial finite
subgroup, that is generated by the ‘full twist’ braid, which is central and of order 2, and
from this, it is straightforward to see that P,,(S?) has very few isomorphism classes of
virtually cyclic subgroups. The classification of the isomorphism classes of the virtually
cyclic subgroups of P,(RP?), which was established in [GG5] and used subsequently
in [JM] to compute the K-theory groups of Z|P,(RP?)], is rather more involved.

Our aim in this paper is to implement similar K-theoretical computations for the
group ring Z[B,,(S?)]. In order to do so, one must determine initially the virtually cyclic
subgroups (finite, and then infinite) of B, (S?), and then compute the K-groups of these
subgroups. If n < 3 then B,(S?) is finite, and so we shall assume in much of this paper
that n > 4. The torsion of B,,(S?) was determined in [GVB], and its finite order elements
were classified in [M]. It was shown by D. L. Gongalves in collaboration with the first
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author that up to isomorphism, the finite subgroups of B, (S?) are cyclic, dicyclic or
binary polyhedral (see [GG3] or Section 2). As for the corresponding pure braid groups,
one must then determine the infinite virtually cyclic subgroups of B,,(S?) with the aid
of the characterisation due to Epstein and Wall of infinite virtually cyclic groups [JL, E,
WaC1]. This was achieved recently, up to isomorphism and with a few exceptions if n
is a small even number [GG6]. A taste of the results is given in Theorem 4 when 7 is
odd and in Theorem 28 when n = 4.

In the ensuing quest to compute the lower algebraic K-theory of Z[B,(S?)], we en-
countered a number of difficulties, among them:

(a) the family of virtually cyclic subgroups of B,(S?) is relatively large, and depends
on 1, contrasting sharply with the case of the pure braid groups analysed in [JM].

(b) the lower algebraic K-theory of even the finite subgroups of B, (S?) is poorly under-
stood, and the investigation of the K-groups of dicyclic and binary polyhedral groups
presents additional technical obstacles compared to that of the dihedral and polyhedral
groups that appear in [LO3, LMO] for example.

(c) in order to apply the method of calculation suggested by the fibred isomorphism
conjecture, one needs not only to compute the various Nil groups, but also to discover
a suitable universal space for the family of virtually cyclic subgroups of B,,(S?). In spite
of the rich topological and geometric structures of the braid groups and their associated
configuration spaces, this space has thus far proved to be elusive for n > 5.

Sections 3-5 are devoted to the second point, that of the computation of the lower
K-theory groups corresponding to the finite subgroups of B,(S?). In Sections 3 and 5,
we calculate the Whitehead and the K_;-groups respectively of the integral group rings
of many of the finite subgroups of B,(S?). To our knowledge, these sections contain a
number of original results, as well as some new phenomena, such as the existence of
torsion for some K_1-groups, that did not appear in previous work [JLMP, LO3, LMO].
This necessitates alternative techniques, notably the application of results of Yamada to
determine local Schur indices [Y1, Y2]. We believe that the methods that we use to cal-
culate these K-groups for dicyclic groups of certain orders may be extended to dicyclic
groups of other orders. In Section 4, we recall briefly the work of Swan pertaining to
the calculation of the Izo-groups of the group rings of the binary polyhedral groups, and
of the dicyclic groups of order 4m for m < 11 [Sw]. For the dicyclic groups, the situ-
ation is complicated, and little seems to be known about the Ko-groups corresponding
to dicyclic groups of higher order.

In Section 6, we describe the ingredients for the corresponding computations in the
case of infinite virtually cyclic subgroups. In Section 7, we use the results of the pre-
vious sections to develop a specific example, namely B4(S?). This group has several
striking properties, one being that it contains a finite normal subgroup isomorphic to
the quaternion group of order 8, this being a consequence of [GG4, Theorem 1.3(3)],
and another that it is itself isomorphic to an amalgamated product of the generalised
quaternion group of order 16 and the binary tetrahedral group, the amalgamation be-
ing along this normal subgroup (see Proposition 27). These properties aid greatly, not
just in the computation of the K-groups of the virtually cyclic subgroups of B4(S?) and



of the corresponding Nil groups, but also to exhibit an appropriate universal space re-
ferred to in (c) above. We study the case of B4(S?) in detail and show how the algebraic
and geometric features of this group interact, which allows us to construct its White-
head group and lower K-groups. Our computations show that both Wh(B4(S?)) and
Ko(Z[B4(S?)]) are infinitely-generated Abelian groups. Indeed, each of these groups
contains (infinite) direct sums of infinitely-generated Abelian 2-groups. In contrast, we
shall see that K_1(Z[B4(S?)]) = Z @ Z,. The existence of torsion here is once more a new
development compared with the families of groups considered in [JLMP, LO3, LMO].
We sum up these results as follows:

Theorem 1. The group By(S?) has the following Whitehead and lower algebraic K-groups:

Wh(B4(S?)) ~ Z@Nil,,
Ro(Z[Bu(S?)]) = Zo ®Nily, and
K_1(Z[B4(S)]) = 2o ® Z,

where fori = 0,1,
Nil; = D[2(Z2)” ®2W],
Q0
2(Zy)* denotes a direct sum of two copies of a countably-infinite number of copies of Zy, and
W is an infinitely-generated Abelian group of exponent 2 or 4.

For n > 5, we cannot expect the group B, (S?) to enjoy properties similar to those of
B4(S?). Furthermore, we have not been able as yet to determine an appropriate model
for the universal space for the family of virtually cyclic subgroups of B, (S?). There are
some candidates suggested by the theory of Brunnian braids, but the corresponding
subgroups are of large index, and do not seem to be terribly useful from a practical
viewpoint. On the positive side, for small odd values of #, the family of virtually cyclic
subgroups is relatively small, and our techniques enable us to determine the corres-
ponding K-groups. In [G]JM], we shall give some partial computations for other values
of n, and outline the missing ingredients required to calculate the Whitehead and lower
algebraic K-groups of their integral group rings. If we are able to find an appropriate
universal space, we hope to be able to determine the K-groups of B,,(S?) for other values
of n.
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2 Classification of the virtually cyclic subgroups of B, (S?)

If G is a group that satisfies the Farrell-Jones fibred isomorphism conjecture, the lower
algebraic K-theory of the group ring Z[G| may be calculated in principle if one knows
the lower algebraic K-theory of the group rings of the virtually cyclic subgroups of G
(see the Appendix). Recall that a group is said to be virtually cyclic if it possesses a
cyclic subgroup of finite index. Clearly any finite group is virtually cyclic. By results of
Epstein and Wall [E, WaC1], an infinite group is virtually cyclic if and only if it has two
ends. This allows us to show that any infinite virtually cyclic group G is isomorphic
either to F x Z or to Gy *kr Gy, where F is a finite normal subgroup of G, and in the
second case, F is of index 2 in both G; and G,. Consequently, in order to determine the
virtually cyclic subgroups of G, one must first discover its finite subgroups. Let G =
B,(S?), and if m > 2, let Dicy,, denote the dicyclic group of order 4m, with presentation:

Dicyy, = <x,y ‘xm =y% yxy = x_1>. (1)

If m is a power of 2 then we shall also say that Dicy, is a generalised quaternion group,
and denote it by Qu,. If n < 3, B,(S?) is finite: By (S?) is trivial; By(S?) is isomorphic to
Zy; B3(S?) is isomorphic to Dicyp, and its subgroups may be obtained easily. So in most
of what follows, we shall assume that 1 > 4, in which case B,,(S?) is infinite. The finite
subgroups of B, (S?) were classified up to isomorphism in [GG3]:

Theorem 2 ([GG3, Theorem 1.3]). Let n > 4. The maximal finite subgroups of B,(S?) are
isomorphic to one of the following groups:

(@) Zpp—1yifn =5,

(b) Dicyy,,

(¢) Dicyypyifn=50rn=7,

(d) the binary tetrahedral group, denoted by T*, if n = 4 (mod 6),

(e) the binary octahedral group, denoted by O*, if n = 0,2 (mod 6),

(f) the binary icosahedral group, denoted by 1*, if n = 0,2,12,20 (mod 30).

More information on T*, O* and I*, to which we refer collectively as the binary poly-
hedral groups, may be found in [AM, CoH, CM, Wo]. It is well known that the proper
subgroups of the dicyclic and the binary polyhedral groups are cyclic, dicyclic or binary
polyhedral. We recall from [GG3, page 759 and Proposition 1.5] that the finite sub-
groups of B,(S?) are periodic of period 1,2 or 4, and that for each finite subgroup
of B,(S?) there is a single conjugacy class, with the exception of Z, and Dicy, for n
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even and where r divides n/2 or (n — 2)/2, for which there are two conjugacy classes.
Consequently, any such subgroup H of B,(S?) satisfies the following three conditions
(see [AM] or [T, page 20]):

(a) the p?-condition: for any prime divisor p of |H| (|H| denotes the order of H), H
contains no subgroup isomorphic to Z;, x Zj.

(b) the 2p-condition: for any prime divisor p of |H|, any subgroup of H of order 2p is
cyclic.

(c) the Milnor condition: if H has an element of order 2, this element is unique (and so
is central in H).

Remarks 3.

(i) The p?-condition implies that the Sylow p-subgroups of H are either cyclic or gen-
eralised quaternion, the latter case occurring only if p = 2.

(i) If G is a dicyclic or binary polyhedral group, the centre Z(G) is generated by the
unique element of order 2.

The second step in the process is to classify the infinite virtually cyclic subgroups
of B,(S?). Up to isomorphism, and with a finite number of exceptions, this has been
achieved recently in [GG6]. The statement of the main result of [GG6] is somewhat long
to explain here, but to give a flavour of the results, we state the classification when 7 is
odd, in which case the classification is complete for all values of n. We shall also recall
the case n = 4 in Theorem 28.

Theorem 4 ([GG6, Theorem 7]). Let n > 3 be odd. Then up to isomorphism, the virtually
cyclic subgroups of B, (S?) are as follows.
(a) The finite virtually cyclic subgroups of B, (S?) are:
(1) Dicy,,, where m > 3 divides n or n — 2.
(ii) Zm, where m € N divides 2n, 2(n — 1) or 2(n — 2).
(b) If in addition n > 5, then the following groups are the isomorphism classes of the infinite
virtually cyclic subgroups of B,,(S?).
(1) (a) Zy xg Z, where 6(1) € {Id, —1Id}, m is a strict divisor of 2(n — i), for i € {0,2}, and
m#n—i
(b) Zy, x Z, where m is a strict divisor of 2(n — 1).
(c) Dicyy X7, where m = 3 is a strict divisor of n — i for i € {0, 2}.
(1) (a) Zag *7,, Laq, where q divides (n —1)/2.
(b) Dicy, * 7y, Dicyy, where q > 2 is a strict divisor of n — i, and i € {0, 2}.
We start by discussing the lower algebraic K-theory of the group rings of many of
the finite groups appearing in Theorem 2.

3 Whitehead groups of the finite subgroups of B,(S?)

If G is a finite group, recall that the Whitehead group Wh(G) of G is a finitely-generated
Abelian group, and so may be written in the form:

Wh(G) = Z" @ SK4(Z[G]), ()
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where SK;(Z[G]) is isomorphic to the torsion subgroup of Wh(G) [WaC2]. The group
SK;(Z|G]) may thus be written as the direct sum of its g-torsion groups:

SK1(Z[G]) = @ SK1(Z[G])(p),
q

where g runs over the prime divisors of |SK;(Z[G])|. If p is a prime divisor of |G|, let
Sy(G) denote the p-Sylow subgroup of G. Using [U], we see that SK;(Z[G]) is trivial
for any finite subgroup G of By (S?):

Proposition 5. Let n € N, and let G be a finite subgroup of B, (S?). Then SKy(Z[G]) is trivial.

Proof. As we mentioned above, any finite subgroup G of B,(S?) is cyclic, dicyclic or
binary polyhedral. If G is cyclic, dicyclic of order 8m, m € N, or binary polyhedral
the result follows from [U, Theorem A, parts (1), (3), (5), (6) and (7)]. The only other
possibility is where G is dicyclic of order 4m, where m is odd. In this case, the Sylow
p-subgroups of G are cyclic, and from [T, page 20], G admits a presentation of the Type I
groups of [U, Appendix]. The result then follows from [U, Theorem A, part (2)]. O

Remark 6. Proposition 5 may also be proved by applying [O, Theorem 14.2(i) and Ex-
ample 14.4].

Consequently, if G is a finite subgroup of B,,(S?) then Wh(G) is a free Abelian group
by equation (2), and it remains to calculate its rank. This is achieved in the following
proposition.

Proposition 7. Let n € N, and let G be a finite subgroup of B, (S?). Then Wh(G) = Z', where:

(%] +1—6(m) ifG=Zy meN
m+1—06(2m) if G = Dicgy, m =2

r=+<0 ifG=T*
1 ifG~0O*
2 ifG =T

\

and 6(q) denotes the number of divisors of g € N.

Before proving Proposition 7, we introduce some notation and state and prove Lem-
mas 8 and 9. If G is a finite group, let r; denote the number of conjugacy classes of
unordered pairs {g,¢ !} in G (where ¢ € G), and let r; be the number of conjugacy
classes of cyclic subgroups of G. For each divisor d of |G|, let r1(d) be the number of
conjugacy classes of unordered pairs {g,¢~'} in G, where g runs over the elements of
G of order d, and let r(d) be the number of conjugacy classes of cyclic subgroups of G
of order d. If g, ¢’ are elements of G of the same order d such that {g, g1} is conjugate
to {¢’,¢'"1} then there exists i € G such that either hgh™! = ¢’ or hgh™ = ¢'~1, so

h{gyh™t =(g) ={g71), and thus r1(d) > r,(d).
Lemma 8. Let G be a finite group. Then r1(d) = ro(d) forall d € {1,2,3,4, 6}.
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Proof of Lemma 8. 1f d € {1,2} and if g € G is of order d then the pair {g, ¢!} reduces to
{g} and then clearly 1 (d) = r2(d). So assume that d € {3,4, 6}. From above, it suffices to
show that r(d) < rp(d). Note that if ¢ € G is of order d then the elements of (¢) of order
d are precisely ¢ and g~!. If ¢’ € G is also of order d and (g) and {g’) are conjugate then
g is conjugate to ¢’ or ¢!, so {g,¢ 7!} is conjugate to {g’,¢’"'}, which completes the
proof of the lemma. O

Recall that O is generated by the elements X, P, Q and R, subject to the following
relations [Wo, page 198]:

{ X3=1,P2=Q*=R% PQP 1 =Q 1, XxPXx ! = Q, XQX ! = PQ, )

RXR!'=X"1', RPR"'=QP, RQR ' = Q..

It follows that O* contains T* as an index 2 subgroup generated by X, P and Q that
are subject to the relevant relations given by the first line of (3), where the subgroup
(P, Q) is isomorphic to Qg, and X is of order 3 and acts by conjugation on (P, Q) by
permuting P, Q and PQ cyclically, so that T* =~ Qg x Zs. Further, O*\ T* is comprised
of 12 elements each of order 4 and 8. We recall also that |I*| = 120, that I* has one
element each of order 1 and 2, thirty elements of order 4, twenty elements each of
order 3 and 6, and twenty-four elements each of order 5 and 10, and that I* contains
subgroups isomorphic to T*.

The following lemma gathers some properties of O* and I* that we shall use at
various points in the paper, notably in the proofs of Propositions 7 and 23.

Lemma 9.

(a) Let G be a dicyclic or binary polyhedral group, and let § € G be an element of order greater
than or equal to 3. Then the centraliser of g in G is cyclic.
(b) In the group O*:

(i) there are two conjugacy classes of elements of order 8, r1(8) = 2 and r,(8) = 1.
(ii) there are two conjugacy classes of elements of order 4, and r1(4) = r»(4) = 2.

(c) In the group T*:

(i) there are two conjugacy classes of elements of order 5, r1(5) = 2 and r»(5) = 1.
(ii) there are two conjugacy classes of elements of order 10, r1(10) = 2 and r»(10) = 1.

Proof.

(a) Let Cg(g) denote the centraliser of g in G. Then ¢ € Z(C(g)), so |Z(Cs(g))| = 3.
The subgroups of G are cyclic, dicyclic or binary polyhedral (see [GG6, Proposition 85]
for the binary polyhedral case). Then Z(Cg(g)) is cyclic because the centre of a dicyclic
or binary polyhedral group is isomorphic to Z, by Remarks 3(ii).

(b) (i) Consider the action of O* by conjugation on the set W of the twelve elements of
O™ of order 8. If g € W, Cyx(g) contains (g), and since O is of order 48 but contains
no element of order 16, it follows from part (a) that |Cy«(g)| = 8 for all g € W, whence
Co*(g) = (g). The orbit-stabiliser theorem implies that the conjugacy class of g contains
6 elements, and hence O possesses exactly two conjugacy classes of elements of order
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8. Let H be a Sylow 2-subgroup of O* that contains §. Then |H| = 16, and since
H cannot be cyclic, we see from Remarks 3(i) that H =~ Qj¢4. Further, ¢ generates the
unique cyclic subgroup of order 8 of H, and the presentation of Q¢ given by (1) implies
that ygy—! = ¢~ ! for all y € H\{g). In particular, ¢ and ¢~ ! are conjugate in O* for all
g € W, from which we deduce that r1(8) = 2. Each of the three Sylow 2-subgroups of
O™ contains exactly one of the three cyclic subgroups of order 8. The fact that the Sylow
2-subgroups are pairwise conjugate implies that the cyclic subgroups of order 8 are too,
and hence r(8) = 1.

(ii) Consider the presentation of O* given by equation (3). The group O* possesses two
types of elements of order 4: those belonging to the subgroup (P, Q), which in turn is
a subgroup of (P, Q, X) of O*, and those belonging to O*\ (P, Q, X). The structure of
the group (P, Q, X) =~ T* implies that the elements of order 4 of (P, Q) are pairwise
conjugate. Since (P, Q) is the unique subgroup of (P, Q, X) isomorphic to Qg that is
normal in OF, it follows that (P, Q) < OF, and the six elements of order 4 lying in
(P, Q) form one conjugacy class of elements of order 4 in O*. So let U denote the set
of the twelve elements of O*\ (P, Q, X) of order 4, and consider the action of O* on
U by conjugation. The stabiliser of an element g € U for this action is Cq«(g), which
is cyclic by part (a). Further, Co«(g) contains (g), so must be of order 4,8,12 or 16.
Since O* has no cyclic subgroup of order 12 or 16, it follows that |Co+(g)| € {4,8]}.
Suppose that there exists g € U for which Cy+(g) =~ Zs. Then there exists h € O*
of order 8 such that Cyx(g) = (h), and up to replacing h by h~!, we may suppose
that ¢ = h?. But (P,Q, X) is normal in O* and of index 2, so h? € (P,Q, X), which
contradicts the fact that g ¢ (P, Q, X). We thus conclude that |C+(g)| = 4 forall g € U,
whence Cy+(g) = (g). By the orbit-stabiliser theorem, the conjugacy class of any such
g contains all twelve elements of U, from we deduce that O* possesses exactly two
conjugacy classes of elements of order 4, and that r»(4) = 2. The equality r1(4) = r2(4)
follows from Lemma 8.

(c) (i) Since I* has twenty-four elements of order 5, it possesses six cyclic subgroups
of order 5. Since these subgroups are the Sylow 5-subgroups of I*, they are pairwise
conjugate, and rp(5) = 1. Let ¢ € I* be an element of order 5. If z denotes the unique
central element z of I* of order 2, the centraliser Cy+(g) of ¢ contains the cyclic subgroup
{gz) of order 10. By part (a), C;«(g) is cyclic, and since I* possesses no element of order
greater than 10, it follows that Cj+(g) = (gz). By applying the orbit-stabiliser theorem to
the action by conjugation of I* on the set of elements of I* of order 5, it follows that the
conjugacy class of g contains twelve elements, so I* possesses two conjugacy classes C;
and C; of elements of order 5. Since the subgroups of order 5 are pairwise conjugate,
each such subgroup contributes two elements to each of C; and Cp. Thus if g € I*
is of order 5, it is conjugate to exactly one other element & of (¢). Note that h # g>
(resp. h # g¢~2) for otherwise ¢ would be conjugate to g2 (resp. ¢~2), then ¢ would be
conjugate to g~ ! (resp. to ¢), and the conjugacy class of ¢ would contain at least three
elements of (g), which is not possible. Hence g is conjugate to ¢~! for every element
¢ € I* of order 5, but is not conjugate to ¢ or to ¢~2. This proves that the conjugacy
class of {g, ¢!} is equal to that of g, and so 1 (5) = 2.

(ii) The subgroups of I* of order 10 are obtained by adjoining z to the subgroups of
order 5. The statements then follow from part (i). O
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We now prove Proposition 7.

Proof of Proposition 7. Let G be isomorphic to a finite subgroup of B,,(S?). We recall once
more that G is cyclic, dicyclic or binary polyhedral. By [KL, page 39], the rank r of G is
equal to r; —r, and so

r= > (r(d) —rad)). 4)

4|6
We treat the possibilities for G separately.

(1) G = Zpy, where m € N. Since G is Abelian, ry is just the number of unordered
pairs {g, ¢} in G, where g runs over the elements of G, and r; is the number of cyclic
subgroups of G. Since ¢ = ¢~! if and only if |(g)| € {1,2}, we have that r; = "+ + 1 if
mis odd, and r; = mT’z +2if miseven. Sor| = [%J + 1. Since the subgroups of Z,, are
in bijection with the divisors of m, we have r, = §(m),sor =1 —ry = | %] +1—6(m)
as required.

(b) G = Dicyy,, where m > 2. Let G = (x) [ [{x)y be given by equation (1). Since the
elements of (x)y are of order 4, it follows from Lemma 8 and equation (4) that they do
not contribute to r. So we just need to consider the contributions of the elements of (x)
to 1 and rp. Using equation (1), the conjugacy classes of the elements of (x) in G are
{xi, x*"}, where 0 < i < n. Since (x) is of order 2m, as in the cyclic case, its elements
contribute m + 1 to the r;-term, and §(2m) to the rp-term, and thus r = m + 1 — 6(2m).
(c) G = T*. Let G have the presentation given by the first line of (3). Since T* =~ Qg x Z3,
where the action of X permutes cyclically the elements P,Q and PQ of (P,Q), T* is
comprised of elements of order 1,2,3,4 and 6. The fact that r = 0 then follows directly
from Lemma 8 and equation (4).

(d) G = O". Recall that G has elements of order 1,2,3,4,6 and 8. Again by Lemma 8
and equation (4), the contributions to r; and r, from the elements of order 1,2, 3,4 and
6 cancel pairwise, and since r1(8) —r2(8) = 1 by Lemma 9(b)(i), r = 1 by equation (4),
whence Wh(O*) =~ Z.

(e) G = I*. Then G has elements of order 1,2,3,4,5,6 and 10. Once more, by Lemma 8
and equation (4), the contributions to r of the elements of order 1,2,3,4 and 6 cancel
pairwise, sor = (r1(5) —r2(5)) + (r1(10) — r2(10)) = 2 by Lemma 9(c), whence Wh(I*) =~
72. O

4 Ko(Z[G)]) for the finite subgroups of B, (S?)

Let G be a finite group. The calculation of Ko(Z[G)) is a difficult problem, even when
the order of G is small. It is known that Ko(Z[G]) is isomorphic to the ideal class group
CI(Z[G]) of Z[G] [CR2, Section 49.11]. If G is Abelian then Ko(Z[G]) is trivial if and
only if G is either cyclic of order n, n € {1,2,...,11,13,14,17,19}, or is isomorphic
to Zy @ Zy [CR2, Corollary 50.17]. If G is non Abelian and Ko(Z[G]) = 1 then G is
isomorphic to one of Dihyg, g > 3, A4, S4 or As, Dihy, being the dihedral group of order
2g [EH].
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The following theorem summarises the results of [Sw] concerning some of the non-
Abelian finite subgroups of B, (S?).

Theorem 10 ([Sw, Theorems III and IV, Corollary 10.12]).
Zy ifme{2,3,4,57,8,11}

(a) Ko(Z|Dicyy)) = { 7% ifm=9
Z5 ifme {6,10}.

(b) Ko(Z[T*]) = Zy, Ko(Z[O*]) = 73 and Ko(Z[1*]) = Z3.

5 K_1(Z|G]) for the finite subgroups of B, (S?)

Let G be a finite subgroup of B, (S?). In order to determine K_1(Z[G]), we shall use the
following special case of a result of Carter. First we recall that a simple Artinian ring A
is isomorphic to M, (D) for some positive integer n and some skew field D. Further,
D is finite dimensional over its centre E, the dimension being a square [D : E|, and the
Schur index of A is equal to /[D : E] [CR1, Section 27].

Theorem 11 ([Ca, Theorem 1]). Let G be a finite group of order q. Then

K1 (Z[G]) = Z" ®Z5, )
where r is given by
r=1-rg+ Z (er—r]pp), (6)
plIG|

rq (resp. rq,, rw,) denotes the number of isomorphism classes of irreducible Q- (resp. Qp, Zy)
representations of G, and s is equal to the number of simple components of Q|G| that have even
Schur index m but have odd local Schur indices my at every finite prime of the centre which
divides q.

So to calculate K_1(Z[G]), we must determine the quantities 7 for the various fields
appearing in equation (6), as well as the number s. For the finite subgroups G of B,(S?),
we divide this calculation into two parts. In Section 5.1, we determine the torsion of
K_1(Z|G]). In Section 5.2, we determine the rank of K_;(Z[G]). Equation (5) will then
yield K_1(Z|G]).

5.1 Torsion of K_1(Z[G]) for the finite subgroups of B, (S?)

Let G be a finite subgroup of B,;(S?), and let s be as defined in equation (5). As remarked
in [Ca, page 1928], a consequence of Theorem 11 is that K_1(Z[G]) is torsion free if G
is Abelian. In particular, if G is cyclic then s = 0. If G is non cyclic, then as we shall
see, K_1(Z|G]) may have torsion. Although equation (5) clearly allows for this possib-
ility, this appears to be a new phenomenon, and contrasts with the calculations given
in [LO3, LMO] for example. We thus require new techniques to calculate the torsion
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of K_1(Z[G]). If G is dicyclic then we make use of results due to Yamada concerning
the computation of the (local) Schur indices of the simple components of Q[G] [Y2]. If
G is binary polyhedral then one may apply induction/restriction techniques and the
Mackey formula.

Assume first that G =~ Dicy,, is dicyclic, where m > 3 is odd. If m is an odd prime
then we determine K_;(Z[Dicsy,]). In principle, our method should apply to any odd
value of m, not just for prime values. If m is odd, the Wedderburn decomposition over
Q of the algebra Q[Dicy,,| is given in [CR1, Example 7.40]:

Q[Dicyy,] = Q[Dihyy,] @ Qi) @ ( P H2d0>

d0|m, d0>1

;@2@< ® M2(@(§d+§;1))>@@<i>@< @D szo>, )

d|m, d>2 do‘m, d0>1
where {,; is a primitive d root of unity, and
Hy = E;®Esi @ Egj ® Egk (8)

is the quaternion skew field with centre E; = Q (Cd + C;). In particular, if m = pu is

prime then
Q[Dicy, ] = Q*@® M, (Ey) © Qi) @ Hyy. )

Note that the number of components in equation (9) is equal to the number of con-
jugacy classes of cyclic subgroups of Dicy,, and that the components are in one-to-one
correspondence with the irreducible Q-representations of Dicy,. The first four com-
ponents of equation (9) are matrix rings over fields, and so their Schur index is equal
to one. By equation (5), the torsion of K_1(Z[Dicy,]) is then either trivial or equal to Z
depending on the Schur and local Schur indices of the remaining component H,. We
now determine precisely this torsion.

Proposition 12. Let p be an odd prime, and let G = Dicyy,. Then the torsion of K_1(Z|G]) is
trivial if y = 3 mod 4, and is equal to Z, if y = 1 mod 4.

Proof. With the notation of [Y2, Proposition 4], we havem = 2y, r =2u—1,s =2, h = u
and u is the order of 2y — 1 mod ™ 2u,sou = s = 2. From [Y2, Example 3, Section 6],

there are representations of Q[Dicy,] of the form Llli g, where 0 < o <2 —1. Using [Y2,
( )

Proposition 5], U’y gives rise to an irreducible representation of Q[D1C4y] and the last
part of [Y2, Example 3, Section 6] implies that its Schur index is equal to two. Since
the Schur index of each of the first four components of equation (9) is equal to one, it

follows that the simple component Hy,, of Q[Dicyy, | corresponds to u{zg .
We now apply [Y2, Proposition 9] to ngg . Within our framework, the enveloping

algebra envg (Uﬁ} ) with respect to Q is isomorphic to the simple component Hy,,, and
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the centre Ej, of Hy, is isomorphic to Q ()(f&), )(fo) being the character of Uﬁ; [Y1,

Introduction]. With the notation of [Y2, Proposition 9], we have d; = sed (1) — dz(Zy 1 = 2u and
U] = —gcd%gy = 2. Let p be a finite prime of the centre E, of Hp, that divides 4u. We

consider two cases.

(a) If p does not divide 2y then the local Schur index A, is equal to 1 by [Y2, Proposi-
tion 9(I)].

(b) Suppose that p divides 2u. Since y is odd, p divides p, where p € {2, u}. We distin-
guish these two possibilities, the notation being that of [Y2, Proposition 9].

(i) Suppose that p divides 2. Thenwe have p =2,b =z =1,a = 1 and ¢t is the order of
2y —1mod™ p,so ' = 2. Thus ey, = 1, and hence ¢, = Ay = 1.

(ii) Suppose that p divides . Then p = u, b = 0,z = 2,2 = 1, 2u —1mod* 2) =

(pmod 2y = {1}, f=f =t =1,g=p,e,=2,¢, = ged (2,4t — 1) = 2 and

2 {1 if 4 =1mod 4
Ap=—— 3 = ifu=
ged <2IﬂT> 2 if y =3mod 4

by [Y2, Proposition 9(I)]. Thus if 4 = 1 mod 4, the simple component Hy, of Q[G]
whose Schur index is equal to two satisfies the property that its local Schur indices at
every finite prime of the centre are odd. Hence the integer s of equation (5) is equal to
one, so the torsion of K_;(Z[G]) is Zy. If p = 3 mod 4 then A, = 2 for any finite prime
p that divides y, so s = 0, and hence K_1(Z[G]) is torsion free. O

As another example, we calculate the torsion of K_1(Z[Dicyy,|) in the case where m
is a power of 2 (so Dicy,, is a generalised quaternion group).

Proposition 13. The torsion of K_1(Z|Qyx]) is trivial if k = 3, and is equal to Zy if k > 4
Proof. Let k > 3. Then Dicyr = Q. From [CR1, Example 7.40, case 1],

Q[ 9] = Q[Dihyk—2] @ Hopr1, (10)

where H,i1 is the quaternion skew field defined by equation (8). Using [CR1, Ex-
ample 7.39], each simple component of Q[Dih,: .| is a matrix ring over a field, and so
its Schur index is equal to one. As in the proof of Proposition 12, one may show that
the Schur index of the remaining simple component H 1 of equation (10) is equal to

two, and that this component corresponds to the irreducible representation Ul(o) To
study the local Schur indice A, of each finite prime p dividing the centre Ey_; of the
simple component H,.—1, we again apply [Y1, Proposition 9]. With the same notation,
wehavem = 2k r =21 1 4y = s =2, h =282, 4, =2landv; = 2. Ifp
does not divide 2¥~! then A, = 1 by [Y1, Proposition 9(I)]. So suppose that p divides
2k=1. With the notation of [Y1, Proposition 9(II)], b = z = 1 and p = 2. If k = 3 then
we are in the exceptional case of [Y1, Proposition 9(II)], so A, = 2. Thus there exists
a finite prime of the centre E,x—1 of Hy1 dividing 2k with even local Schur index, and
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it follows from Theorem 11 that the torsion of K_1(Z[Qs]) is trivial. Assume then that
k>4 Sof = ]7= t' =1ande, = q = 2, thus ¢, = Ay = 1. Then the simple component
Hyx—1 of Q[Q,x] whose Schur index is equal to two satisfies the property that its local
Schur indices at every finite prime of the centre dividing 2* are odd. Hence the integer
s of equation (5) is equal to one, and thus the torsion of K_1(Z[Q]) is equal to Z, as
required. O

Now let G be a binary polyhedral group. We recall that a group is said to be 2-
hyperelementary if it is a semi-direct product of a cyclic normal subgroup of odd order
and a 2-group. Since G is not itself 2-hyperelementary, induction/restriction techniques
may be used to calculate the torsion of K_;(Z[G]).

Proposition 14. The torsion of K_1(Z[G]) is trivial if G =~ T*, and is equal to Z if G =~ O*
or G =1I*.

Proof. Let G be abinary polyhedral group. Applying [Ca, Theorem 3(iii) and page 1936],
we have the composition

® K_1(Z[H]) = K_1(Z[G]) < @K_1(Z[H])), (1)

where ind and res are the usual induction and restriction maps that are surjective and
injective respectively, and H runs over the conjugacy classes of the 2-hyperelementary
subgroups of G [Ca, Theorem 3(iii) and page 1936]. Restricting to the corresponding
torsion subgroups, we see that the torsion of K_1(Z[G]) injects into that of ® K_1 (Z[H]).
The non-trivial 2-hyperelementary subgroups of T* are Z,, Z3, Z4, Z¢ and Qg, those of
O* are Zy, Z3, 7.4, Z¢, 78, Dic1p, Qs and Q1g, and those of I* are Zy, Zy4, Z¢, 710, Qs, Dic12
and Dicyg (see [Sw, Lemma 14.3] and [GG6, Proposition 85]). If m € N, the group algebra
Q[Zm] splits [CR1, Example 7.38], so the torsion of K_1(Z|Z,]) is trivial [Ca, page 1928].
Further, by Propositions 12 and 13, the torsion of K_1(Z[Qg]) and of K_;(Z[Dicj,]) is
also trivial, and setting L = Q14 (resp. L = Dicyy) if G = O* (resp. G = I*), the torsion
of K_1(Z[L]) is Z. The injectivity of res in equation (11) implies that the torsion of
K_1(Z|T*]) is trivial, which gives the result in this case.

So let G = O" or I¥, and let L be as defined above. Now G possesses a single
conjugacy class of subgroups isomorphic to L [Sw, Lemma 14.3], and since L is the only
subgroup of G for which the torsion of K_1(Z[L]) is non trivial, we need only consider
the restriction of equation (11) to the factor H = L:

K_1(Z[L]]) ™ K 4 (Z[G]) < K_1(Z[L)). (12)

It thus suffices to show that the restriction of (12) to the corresponding torsion sub-
groups is the identity. Now K_1(-) is a Mackey functor [O, Theorem 11.2], so we may
apply Mackey’s formula that describes the composition (12) as the sum of the maps

K_y(Z[LY]) ™ K_1(Z[x; 'Ly o L]) =5 K 4(Z[L]), (13)
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where G = [ [ Lx;L is a double coset decomposition of G, and the map c,, is induced
by the homomorphism xi_lel- N L — L defined by y — xiyxi_l [O, Section 11a]. Let
Ng(L) denote the normaliser of L in G. If x; ¢ Ng(L) then the torsion of K_1 (Z[xi_lei N
L)) is trivial, and the corresponding map (13) contributes zero to the restriction of (12)
to the torsion subgroups. If on the other hand, x; € Ng(L), the corresponding map (13)
is an isomorphism. Now L < Ng(L) < G, and since L is not normal in G and G
has no proper subgroup that strictly contains L [GG6, Proposition 85], it follows that
Ng(L) = L. So there is only one double coset representative x; that belongs to Ng(L),
and for this x;, it follows that the restriction of (12) to the torsion subgroups is equal
to the restriction of the isomorphism (13) to the torsion subgroups. Since the torsion of
K_1(Z|L)) is Zy, the same conclusion holds for K_;(Z|G]). O

Remarks 15.

(a) The induction/restriction arguments in the proof of Proposition 14 were inspired
by those given in [Sw, Paragraph 14] for the Izo—groups.

(b) Let G = O" or I*. We sketch an alternative proof of the fact that K_;(Z[G]) has
non-trivial torsion that uses [Sw, Proposition 4.11], the details of which will appear
in [GJM]. The embedding of G in the Hamilton quaternions H [CoH, Chapter 7] induces
an algebra homomorphism ¢¢: Q[G] — H. By [Sw, Proposition 4.11 and its proof],
YP;(Z|G]) is a maximal order I'; that is completely described in [Sw, page 79], from
which one may prove that Im(¢¢) is equal to H;, where d = 8 (resp. d = 5) if G = O*
(resp. G = I*), in other words, H; appears as a factor in the Wedderburn decomposition
of Q[G]. On the other hand, from equation (10) (resp. equation (9)), we know that Hj
also appears in the Wedderburn decomposition of Q[Q;4] (resp. Q[Dicy]), and from
the proof of Proposition 13 (resp. Proposition 12), that it contributes a Z,-term to the
torsion of K_1(Z[Q1¢]) (resp. K_1(Z[Dicy))). It follows then from [Ca, Theorem 1] that
K_1(Z[G]) has non-trivial torsion.

(c) Using the GAP package Wedderga [BKOOR], one may obtain the complete Wedder-
burn decomposition for the binary polyhedral groups:

Q[T*] =~ Q@ Q({3) ® M3(Q) ® Hy & H(Q(3)) (14)
Q[O*] = 2Q @ M»(Q) ®2M;3(Q) @ Hg® My(H), and (15)
Q[I*] =~ Q& M4(Q) & Hs & My (H) @ M5(Q) @ M3(H(Q)) ®M3(Q(V5)),  (16)

where H is the quaternion algebra (—1,—3)/Q. Somewhat surprisingly, we were not
able to find these decompositions in the literature.

5.2 The rank of K_{(Z[G]) for the finite subgroups of B, (S?)

Let G be a finite subgroup of B,,(S?). To calculate the rank of K_1(Z[G]), we shall apply
equation (6). In each case, we will thus need to calculate the number rr of distinct
irreducible F[G]-modules, where F is equal respectively to Q, Q, and F,,. Before doing
so, we recall the requisite theory (see [CR1, pages 492 and 508] or [O, pages 25-26]).
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Let F be a field of characteristic p > 0, where p is prime. If p > 0, let G be a finite
group of exponent m. Define

. m ifp=0

"= {m/ p? if p > 0, where a is the largest power of p that divides m.
Let F({;) be a field extension of F by a primitive m" root of unity, which we de-
note by ;. Then F({;) is a Galois extension of F, whose Galois group, denoted by
Gal(F(C;)/F), is given by:

Gal(F(¢;)/F)={¢: F(Cm) — F(l;)| ¢ is an automorphism and ¢(z) = z forall z € F}.

Each automorphism ¢ € Gal(F({;)/F) is uniquely determined by its action on {;, and
is given by 0(Z;) = %, where t is an integer that is uniquely defined modulo /7. Hence
t corresponds to an element of the multiplicative group of units Z7,, and there is an
injective group homomorphism:

{4): Gal(F(gs)/F) — Z,

o—1,

defined by ¢(0) = t. We now recall the definition of F-conjugacy class.

(a) If f, g are elements of G, we say that they are F-conjugate if there exists t € Im(¢)
and a € G such that ff = aga~!. The F-conjugacy relation is an equivalence relation on
G, and the F-equivalence class of f in G will be denoted by [f].

(b) Let

G, ={ge G | ged(p,0(g)) =1},
be the set of p-reqular elements of G, where 0(g) denotes the order of ¢ € G. An F-
conjugacy class of G is said to be p-regular if it is contained in G),.
If f € G then we denote its usual conjugacy class by [f].

Remarks 16.
(a) It follows from the definition that

fle= J [ (17)
telm(¢p)

in other words, an F-conjugacy class is a union of normal conjugacy classes. In partic-
ular, [f]r o [f]. Further, the number of F-conjugacy classes of elements of order n is
bounded above by the number of usual conjugacy classes of elements of order n.

(b) If F = Q then ¢ is an isomorphism [O, Theorem 1.5], and f, g € G are F-conjugate if
and only if (f) and (g) are conjugate subgroups of G.
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By the Witt-Berman Theorem, we have:

Theorem 17 ([CR1, Theorems 21.5 and 21.25]). Let G be a finite group, and let F be a field
of characteristic p > 0, where p is prime if p > 0.

(a) If p = O then rr is equal to the number of F-conjugacy classes in G.

(b) If p > 0 then rr is equal to the number of p-reqular F-conjugacy classes in G.

We also need the following results concerning the structure of the Galois groups.

Theorem 18 ([Se]). Suppose that n is odd or divisible by 4. Then Q,(l,)/Q, is a Galois
extension of Qy, and its Galois group G is as follows.

(a) If p does not divide n then G is cyclic, and there exists an element o € G, the Frobenius
element of the extension satisfying o(C,) = Cl, that generates G. Further, the order of o is the
order of p considered as an element of Z.

(b) If n = p™, m = 1, then G is of order p™ ' (p — 1), and we have a group isomorphism
G = Zyn. Hence G is cyclic if p is odd or if p = m = 2, and is isomorphic to the direct product
L (generated by the class of —1) and Z,m—» (generated by the class of 5) if p = 2 and m > 3.
(c) Suppose that n = p"ny, where ny > 2 and p does not divide ny. Let {1 be a primitive
n1'" root of unity, and let p be a primitive p™*" root of unity. Then G ~ Gal(Qp(21)/Qp) x
Gal(Qp(0)/Qy).

Theorem 19 ([CoD]). Let k denote the order of p considered as an element of Z;,. Then
Gal(F(Cn)/Fp) is isomorphic to Zy.

We suppose in what follows that G is dicyclic of order 4m. We first apply the above
results in order to determine the rank of K_;(Z[G]) where m is an odd prime. We then
go on to to study the case where m is a power of 2.

Theorem 20. Let m be an odd prime, and let A be the number of Qa-conjugacy classes (or
equivalently Fo-conjugacy classes) of the elements of Dicay, of order m. Then

A ; —

K_1(Z[Dicgy]) = {;A@ZZ g _ }mod 4

if m = 3 mod 4.
Proof. Let G = Dicy,, be given by the presentation (1). By Proposition 12 and equa-
tion (5), it suffices to show that the rank of K_;(Z[Dicyy,]) is equal to A. The group
G has one element each (e and x™ respectively) of order 1 and 2, (m — 1) elements of
order 2m, of the form x%, iodd, 1 < i < 2m—1,and i # m, (m — 1) elements of or-
der m, of the form x', i even, 2 < i < 2m — 2, and 2m elements of order 4, of the
form y, xy,...,x*"1y. The elements of order 1 and 2 each form a single (usual) con-
jugacy class, those of order 4 form 2 conjugacy classes, {x'y | 0 <i <2m —2,ieven}
and {x'y | 1 <i<2m—1,iodd}, while those of order m and 2m form (m — 1) con-
jugacy classes of the form {xi, x‘i} fori =1,...,m— 1. Since rg is equal to the number
of simple components in the Wedderburn decomposition of Q[Dicyy,], it follows from
equation (9) that rg = 5. This may also be obtained by observing that the subgroups of
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Dicyy, of order 4 are its Sylow 2-subgroups, and so Dicy,, possesses a single conjugacy
class of subgroups of order 4.

We must thus calculate rg, and rg, for p € {2, m}. Since there is a unique conjugacy
class of elements of order 1 and 2, these elements contribute 1 to each of 1Q, and ",
except in the case of rf,, where the element 2 is not 2-regular, so contributes zero. We
thus focus on the elements of order 4, m and 2m.

* Qp-conjugacy classes of the order 4 elements: by Theorem 18(b), the monomorphism
¢: Gal(Q2(C4)/Q2) — Zj is an isomorphism and Im(¢) = {1,3}. By equation (17),
[vlg, = ] v [¥®] = [v] u [x™y] as y® = y>.y = x™y, and so there is a single Q,-class of
order 4 elements because m is odd.

* (Q2-conjugacy classes of the elements of order m and 2m: by hypothesis, the number
of Q2-conjugacy classes of the elements of order m is equal to A. Theorem 18(c) implies
that the number of (Q;-conjugacy classes of the elements of order 2m is also equal to A.

We conclude that rg, = 2A +3.

* Qy-conjugacy classes of the order 4 elements: by Theorem 18(a), we have a mono-
morphism ¢: Gal(Q,(04)/Qn) — Zj, Gal(Qy,(C4)/Qm) is cyclic, and its order is equal
to that of m considered as an element of Zj;. If m = 3 mod 4 then ¢ is an isomorphism
and Im(¢) = {1,3}. By equation (17), [ylg, = [v] U [¥%] = [y] v [¥"y] as v = y%.y =
x™y, and so there is a single QQ;-class of order 4 elements since m is odd. If m = 1 mod 4
then Gal(Qy(C4)/Qm) is trivial and Im(¢p) = {1}. In this case, the Q,,-conjugacy classes
coincide with the usual conjugacy classes, so there are two Q;,-conjugacy classes of
elements of order 4.
* Q-conjugacy classes of the elements of order m: by Theorem 18(b), the monomorph-
ism ¢: Gal(Qu(lm)/Qm) — Z;, is an isomorphism and Im(¢) = {1,...,m —1}. By
m—1
equation (17), [xz]Qm = U [x%], so there is a single Q,,-class of order 1 elements.
i=1
* Qy-conjugacy classes of the elements of order 2m: by Theorem 18(c), we have the
monomorphism ¢: Gal(Q(G2m)/Qm) — Z3,,, where

Gal(Qumn(Gam)/Qm) = Gal(Qun(Zm)/Qm) x Gal(Qun(22)/Qum) = Gal(Qu(Zm)/Qm) = Ziy—1,

by the previous calculation and the fact that Gal(Q,,((2)/Qy,) is trivial by Theorem 18(a).
So ¢ is an isomorphism, and as in the previous case, we conclude that there is a single
Q-class of order 2m elements.

It thus follows that rg, = 6if m =1 mod 4, and rg,, = 5if m = 3 mod 4.

e 2-regular Fy-conjugacy classes: we have G, = {e,x2,x%,...,x?"~2} which splits as

the disjoint union of (m + 1)/2 (usual) conjugacy classes in Dicy,,, comprised of {e},
and {x2i, xz(’”_i)} fori = 1,...,(m—1)/2. We thus need to study the F-conjugacy
classes of the elements of order m. By Theorem 19, we have ¢: Gal(F2(Cw)/F2) — Z;,,

where Gal(F2()/F2) is cyclic, of order that of 2 considered as an element of Z,, and

Im(¢) = 2).
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We return for a moment to the (Q>-conjugacy classes of the elements of order m. Re-

placing ¢ by ¢, to distinguish it from the monomorphism ¢ of the previous paragraph,
by Theorem 18(a), we have ¢1: Gal(Q2({m)/Q2) — Z;,, and Gal(Q2({m)/Q2) is cyclic,
of order that of 2 considered as an element of Z},. Thus Im(¢;) = (2) also. In particular,
the Fy-conjugacy class of an element of Dicy,, of order m is equal to its Q-conjugacy
class, and thus the number of Fp-conjugacy classes of elements of order m is equal to A.
We deduce that rp, = A + 1.
* m-regular F,,-conjugacy classes: we have G;, = {e, x™,y, xy, xzy, ceey xzm_Zy, xzm_ly},
in which the four (usual) conjugacy classes in Dicy,, are {e}, {x"}, {y, xMy, ..., xzm_zy}
and {xy, x%y,...,x*""1y}. We thus need to study the F,,-conjugacy classes of the lat-
ter two classes, which are those of the elements of order 4. By Theorem 19, we have
the monomorphism ¢: Gal(F;({4)/Fm) — Zj, and Gal(F,(C4)/F) is cyclic, of order
that of m considered as an element of Z}. As in the case of the Q;;-conjugacy classes of
the order 4 elements, if m = 3 mod 4, there is a single [F;;,-class of order 4 elements,
while if m = 1 mod 4, the IF;;,-conjugacy classes coincide with the usual conjugacy
classes, and so there are two [F;;,-conjugacy classes of order 4 elements. Hence ry, = 4
if m=1mod 4 and rf,, = 3 if m =3 mod 4.

So by equation (6), the rank r of K_1(Z[Zy, x_1 Z4]) is given by:

r=1-rg+ (rq, —r,) + (rQ, —F,,)
_J1-5+2A+3)-(A+1)+(6—-4) ifm=1mod4

| 1-54+@2A+3)—(A+1)+(5—-3) if m=3mod 4

= A ]

If m is an odd prime, the proof of Theorem 20 indicates that the number A of Q-
conjugacy classes of the elements of Dicy,, of order m is related to the order of the
subgroup (2) in Z;,. The question of when 2 generates Z;, is open and constitutes a
special case of Artin’s primitive root conjecture. The following proposition shows that
it is also interesting for us to know whether —1 € (2), and enables us to determine the
rank of K_1(Z[Dicyyy,]) solely in terms of [(2)].

Proposition 21. Let m and A be defined as in the statement of Theorem 20. Then

P {(m—l)/|<2>\ if—1€(2)
(m—1)/2K2)[ if ~1¢(2).

Examples.

(a) Suppose that m is a Fermat number, of the form 2% + 1, where s € N. Then [(2)| =
25*1 and —1 € (2), so the rank of K_;(Z[Dicy,]) is equal to A = 22 ~5~1. For example, if
m = 257 then A = 16 and K_1(Z[Dic; op8]) = Z» ® Z'°.

(b) Suppose that m is a Mersenne prime, of the form 27 — 1, where p is prime. Then

|(2)| = pand —1 ¢ (2), so the rank of K_1(Z[Dicy,]) is equal to A = 2;—;2 = 2#’—;71_ For
example, if m = 127 then A = 9 and K_1(Z[Dicspg]) = Z°, and if m = 8191 then A = 315

and K,1 (Z[Dngz 728]) = 2315.
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Proof of Proposition 21. Using equation (1), the elements of Dicy,, of order m are of the
form x?,1 <i<m—1,and [x*] = {x¥,x~%}, in particular, they form (m — 1)/2 distinct
(usual) conjugacy classes in Dicy,,. Let 1 <i < m — 1. Since m is prime, there exist A, y €
Z such that Ai + ym = 1. One may check easily that the maps [x?]g, — [x%]g, and
[x*]q, — [x%]g,, defined respectively by y — v and z — z*, are mutual inverses,
and hence [x*]g, has the same number of elements as [x?]q,. Thus the number of Q-
conjugacy classes of the elements of order m, which is equal to A, is just (m — 1) divided
by the cardinal of [x?]g,. Theorem 18(a) and equation (17) imply that:

[Plo,= |J 1= {#¥| ie @} o {x?|ie@} = {+¥]|ie@}u{s*

te(2)

ie—<2>}.

Now —(2) is the (2)-coset of —1 in Z, so {x* | i € (2)} and {x* | i € —(2)} have the
same cardinal |(2)|, and are either equal or disjoint. Since —1 € —(2), they are equal
if and only if —1 € (2). This being the case, the cardinal of [x?]q, is equal to [(2)|, and
A= (m—1)/[(2)]. If =1 ¢ (2), the two cosets (2) and — (2) are disjoint, thus the cardinal
of [x%]g, is equal to 2 [(2)|, and A = (m — 1)/2 |(2)| as required. O

The methods used above allow us in theory to calculate K_;(Z[Dicyy,|) for any m >
2, not just for m an odd prime. As another example, consider the case where m is a
power of 2,50 G = Q. is the generalised quaternion group of order 2¥, where k = m + 2.

Proposition 22. K_1(Z[Qyx]) is trivial if k = 3, and is isomorphic to Z; if k > 4.

Proof. By Theorem 11 and Proposition 13, it suffices to show that for all k > 3, the rank
of K_1(Z[Q]) is zero. We must calculate rg, g, and ry,. Using the presentation (1) of
Q,r, we see that Qy = (x) [ [{x)y, and that the elements of (x) y are all of order 4. So
G} consists of the identity element, whence ry, = 1.

We now determine the number rg of Q-conjugacy classes, which by Remark 16(b),
is equal to the number of conjugacy classes of cyclic subgroups in Q,«. The elements of
Qo are of order 2 0 <1<k—1,and if ] # 2 then the elements of order 2/ are contained
entirely within (x). Thus there is just one subgroup of order 2 for each such I, and so
these subgroups contribute k — 1 to rg. Suppose then that I = 2. Using the relations
22

Y (18)

in Q,r, we see that there are at most three conjugacy classes of cyclic subgroups of order

y(x'y)y™ = x7y, x(x'y)x 7 = ¥y and (x'y) ! =

4, represented by the subgroups <x2k73 >, {y) and (xy). Since <x2k73> is contained in
the normal subgroup (x) of Q, it cannot be conjugate to the two other subgroups,
and using relations (18), we see that (y) and (xy) are non conjugate. We thus conclude
that rg = k + 2. This number may also be obtained by counting the number of simple
components in the Wedderburn decomposition (7) of Q[Q«].

Finally we calculate rg,. Consider the elements of Qy of order 2/, where 0 < | <

k —1. If I € {0,1} then there is just one element of order 2/, and so the contribution to
rQ, is one in each case. If | = 2 then Gal(Q2(0»2)/Q2) = Z5, = {1,3} by Theorem 18(b).
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Hence for every element z of Qy of order 4, [z]g, = [z] U [2°] = [z] U [z71] = [Z] since
in Oy, every element is conjugate to its inverse. Thus the elements of Q,« of order 4
contribute 3 to rg,. Suppose then that I > 3. The elements of order 2! are contained in

(x), are elements of the subgroup <x2k_l_1> of the form x2*“ "7, where ged (r,2!) = 1,

and so are of the form xz(ka)r, wherer € {1, 3,...,2 — 1}. On the other hand, applying
Theorem 18(b), we see that Gal(Q2({y)/Q2) = Zj. Now Z} = {1,3,.. L 1}, and

thus
|:x2k—l—1:|Q _ I:xzk—l—l:| O [x3(2k—l—l)] STy [x(zl—l)(zk_l_l):| .
2

From above, this is precisely the set of all elements of order 2/, and hence for each
3 <1 < k—1, the elements of order 2! contribute one to rg,. Summing over all possible
values of [ yields rg, = k + 2, and applying equation (6), we obtain r = 1 —rg + g, —
rr, = 0, which proves the proposition.

We now turn to the calculation of K_1(Z[G]), where G is a binary polyhedral group.
Proposition 23. K_{(Z[T*]) = Z, K_1(Z[O*]) = Zo ® Z and K_1(Z[1*]) = Z, ® Z*.

Proof. Let G be a binary polyhedral group. By Proposition 14, it suffices to calculate the
rank of K_1(Z[G]). Using Remark 16(b) and the notation of Section 3, rg = Z ra(d).

d[[G|
Clearly r5(1) = r2(2) = 1. If G = T* or O* (resp. G = I*) and d = 3 (resp. d € {3,5})
then the subgroups of G of order d are its Sylow d-subgroups, and thus r,(d) = 1. By
adjoining the central element of order 2 to such subgroups, one sees that rp(2d) = 1
also. We now consider the three possibilities for G.

(i) G = T*: G has cyclic groups of order 1,2,3,4 and 6. Using the notation of equa-
tion (3), G = (P, Q, X), (P, Q) = Qg, and the action by conjugation of X permutes P, Q
and PQ. The subgroups of G of order 4 are the subgroups of (P, Q) of order 4, and they
are pairwise conjugate, so r5(4) = 1. It follows from above that rg = 5.

(ii) G = I": G has cyclic groups of order 1,2,3,4,5,6 and 10. The Sylow 2-subgroups
of G are isomorphic to Qg, and since I* contains a subgroup isomorphic to T*, they are
each contained in a subgroup isomorphic to T*. It follows once more than the elements
of G of order 4 are pairwise conjugate, so r2(4) = 1, and rg = 7 from above.

(i) G = O": G has cyclic groups of order 1,2, 3,4,6 and 8. We saw in Lemma 9(b) that
r2(4) = 2and r2(8) = 1, so rg = 7 from above.

We remark that these values of rgp may also be obtained from the corresponding
Wedderburn decompositions given in equations (14), (15) and (16).

We first calculate the rank of K_;(Z[T*]), where a presentation of T* is given by
the first line of equation (3). The complement T*\ (P, Q) consists of 8 elements each
of order 3 and 6, so G; = (P, Q). Using the action of (X) on (P, Q), the elements of
T* of order 4 are pairwise conjugate. Hence for each m € {1,2,4}, the elements of
order m form a single conjugacy class, and thus form a single Q,-conjugacy class for
p € {2,3}. In particular, rp, = 3. On the other hand, G} consists of the identity and the
8 elements of T* of order 3. These elements generate four subgroups of T* isomorphic
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to Zs, which are conjugate because they are the Sylow 3-subgroups of T*. We now
determine the relation between the F,-conjugacy class of an element of T* of order 3 and
that of its inverse. By Theorem 19, we have an isomorphism ¢: Gal(IF»((3)/F2) — Z3,
with Im(¢) = {1,2}. Thus [X]p, = [X] U [X?] = [X] U [X"!]. It follows that there is a
single [F-conjugacy class of elements of order 3, whence rf, = 2.

It remains to determine the number of Q,-conjugacy classes, p € {2,3}, of the ele-
ments of T* of order 3 and 6. We first calculate the number of Q,-conjugacy classes of
the elements of order 3. These elements form two (usual) conjugacy classes:

{X, P1X,Q7 X, (PQ)—lx} and {X—l, PX1,0x71, (PQ)X—l}.

By Theorem 18(a) and (b), ¢: Gal(Q,((3)/Qp) — Zj3 is an isomorphism, Im(¢) =
{1,2}, and [X]q, = [X]u [X?] = [X] u [X~!], which is the union of the above two
(usual) conjugacy classes of elements of order 3. We have the same result for the ele-
ments of order 6 of T*, since they are obtained from those of order 3 by adjoining the
central element of T* of order 2. Thus rg, = rg, = 5. By equation (6), the rank of
K_1(Z[T*]) is equal to one.

We now calculate the rank of K_1(Z[O*]). The group O* contains a unique sub-
group (P, Q, X) isomorphic to T*, plus twelve elements each of order 4 and 8. So from
the previous case, we obtain F, = 2, and the elements of O* of order 1,2, 3 and 6 each
give rise to a single Q,-conjugacy class of O* for p € {2,3}. It remains to calculate the
number of Qy-conjugacy classes of elements of order 4 and 8, as well as rr,. We first
consider the case of the elements of order 8. By Lemma 9(b), 2(8) = 1, so the three
cyclic subgroups of O of order 8 are conjugate, and r1(8) = 2, hence there are exactly
two (usual) conjugacy classes of elements of order 8, represented by [v] and [0°], where
v € O* is any element of O* of order 8. We claim that v and v are Q)-conjugate, since
by Theorem 18(a) and (b), ¢: Gal(Q,(ls)/Qp) — Zg satisfies Im(¢) > {1,3}, hence
[v]g, = [v]u [©%]. So there is a single Qp-conjugacy class of elements of order 8. We now
turn to the elements of order 4. By Theorem 18(a) and (b), ¢: Gal(Q,(4)/Qp) — Z;
is an isomorphism, Im(¢) = {1,3}, and [w]g, = [w] U [w~1] for every element w € O
of order 4. But by Lemma 9(b)(ii) and its proof, [w] = [w™!] and the number of Q,-
conjugacy classes of elements of order 4, which is the number of (Q-conjugacy classes of
these elements, is equal to 2, from which we conclude that rg, = 7.

Finally, we calculate rp,. With the notation of equatlon (3), the set of 3-regular
elements of O* is equal to <P Q> u (O*\(P,Q,X)). Let m € {4,8}. By Theorem 19,
¢: Gal(F3(Cm)/F3) — Zj, satisties Im(¢) = {1,3}. As in the previous paragraph,
the number of F3-conjugacy classes of elements of order m is just the number of Q-
conjugacy classes of these elements. It follows that rp, = 5, and equation (6) implies
that the rank of K_1(Z[O"]) is equal to one.

Now we determine the rank of K_1(Z[I*]). The elements of I* are of order I/, where
le€{1,2,3,4,5,6,10}. As we saw in (ii) above, ro(I) = 1 for all such /, and so any two cyc-
lic subgroups of I* of the same order are conjugate. Consequently, to study the various
F-conjugacy classes, it suffices to consider the F-conjugacy relation for the elements of a
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given cyclic subgroup of each possible order I. Suppose that p € {2,3,5}. We first calcu-
late the number of Q,-conjugacy classes of elements of order /, where I € {3,5}. A case-
by-case analysis using Theorem 18(a) and (b) implies that ¢: Gal(Q,(Z;)/Qp) — Zj is
an isomorphism, and so the non-trivial elements of each cyclic subgroup of I* of order
[ are pairwise Q,-conjugate. It follows then that there is a single Q,-conjugacy class of
elements of order [ in I* for the given values of p and . Since the elements of order 6
(resp. 10) of I* are obtained from those of order 3 (resp. 5) by adjoining the central ele-
ment of I* of order 2, there is just one Q,-conjugacy class of elements of order 6 and of
order 10. It remains to study the Q,-conjugacy classes of the elements of I* of order 4.
By Lemma 8 and (ii) above, r1(4) = r2(4) = 1, so there is a single (usual) conjugacy class
of elements of order 4 in I*, and thus there is a single Q,-conjugacy class of elements of
order 4. We thus obtain rg, = 7 for all p € {2,3,5}.

We now turn to the [Fp-conjugacy classes of I*. The set G} is the union of the elements
of I* of order 1, 3 and 5. For m € {3,5}, Gal(IF2({n)/F2) — Z;, is an isomorphism by
Theorem 19, and Im(¢) = {1,...,m —1}. Once more, there is a single [F>-conjugacy
class of 2-regular elements of order 3 or 5, so rf, = 3.

Finally, we calculate the number of F3- and Fs-conjugacy classes of I*. The set G}
(resp. Gg) is the union of the elements of order 5 and 10 (resp. of order 3 and 6) with
the elements of order 1, 2 and the (conjugacy class of) elements of order 4. But for
m,p € {3,5}, where m # p, Gal(F,({u)/Fp) is isomorphic to Z,_1 by Theorem 19. In
particular, Im(¢) = {1,...,m —1}. As before, we conclude that there is a single F -
conjugacy class of p-regular elements of order m. The same is true for the elements
of order 2m, and so rp, = rp, = 5. Applying equation (6), we see that the rank of
K_1(Z|I*]) is equal to two as required. O

6 Calculation of the lower K-theory of infinite virtually
cyclic groups

In this section, we provide the ingredients needed to compute the Whitehead and lower
algebraic K-groups of infinite virtually cyclic groups. As we mentioned at the begin-
ning of Section 2, an infinite virtually cyclic group I is isomorphic to one of the follow-
ing:
(I) a semi-direct product of the form I' = F x, Z, where F is a finite group and a €
Hom(Z, Aut (F)). Such I surject onto Z with finite kernel F.
(II) an amalgam of the form I' = Gj % G, where Gy, G, are finite groups containing
a common subgroup F of index 2 in both G; and G,. Such I surject onto the infinite
dihedral group Dih,, with finite kernel F.
We shall say that these infinite virtually cyclic groups are of Type I or of Type II respect-
ively.

For virtually cyclic groups I of Type I, the algebraic K-groups of Z[I'| are described
by the Bass-Heller-Swan formula with « = 1, which asserts that for a finite group 7,
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there is a natural decomposition [Ba]:
Ki(Z|t x Z]) = Ki(Z|rt]) ® Ki_1(Z|t]) ®2 NK;(Z|t]) forallie Z, (19)

where the i*" Bass Nil group of 7t, denoted by NK;(Z[]), is defined to be the kernel of the
homomorphism in K-groups induced by the evaluation e: Z[m|[t] — Z[r]att =1.In
the reduced version, equation (19) takes the form:

Wh(7 x Z) = Wh(7) ® Ko(Z[]) ®2NKy(Z[]), and
Ko(Z[r x Z]) = Ko(Z[n]) ® K_1(Z[7t]) ® 2 NKo(Z[]).

When a # 1, the group ring Z[I'] is equal to Z[F x4 Z] = Z[F]4[t,t71], the latter
being the twisted Laurent polynomial ring of Z[F|, and the twisting is given by the
action of «. In this case, the Bass Nil groups are replaced by the Farrell-Hsiang Nil groups
NK;(Z[F], &) ® NK;(Z[F],«~") [FH].

For virtually cyclic groups I of Type II, the fundamental work by Waldhausen gives
rise to an exact sequence [WaF]:

-+ — Ku(Z[F]) — Ku(Z[G1]) ® Kn(Z[Gy]) — Kn(Z[T])/Nily — K,,_1(Z[F])
— Ku_1(Z[G1]) ® Ku—1(Z[Gs]) —> Ku_1(Z[G])/Nily)  y — -+,

where Nil!Y denotes the Waldhausen Nil groups [WaF] defined by:
Nil!Y = Nil'V(Z[F]; Z[G1\F], Z| G\ F]).

If ' is an infinite virtually cyclic group of Type II, there is a surjection f: I' —» Dihy,
with finite kernel F. Let T be the unique infinite cyclic subgroup of Dihy, of index 2.
Then the subgroup I = f~1(T) c T is an infinite virtually cyclic group of Type I, so T is
of the form F x, T. In this situation, it was established recently that the Waldhausen Nil
groups may be identified with the Farrell-Hsiang Nil groups as follows [DKR, LO2]:

Nil!Y = NillY(Z[F); Z[G1\F], Z[G>\F]) =~ NK,(Z[F], &) ® NK,,(Z[F],a™ ).

On the other hand, since the Nil groups vanish in negative degrees, one has the follow-
ing:

Theorem 24 ([F]2, Theorem 2.1]). Let I' be an infinite virtually cyclic group. Then:

(a) K_1(Z|I')) is a finitely-generated Abelian group.

(b) K_1(Z|I']) is generated by the images of K_1(Z[F]) under the maps induced by the inclu-
sions F — I', where F runs over the representatives of the conjugacy classes of finite subgroups

of I'.

So in order to compute the K-groups of an infinite virtually cyclic group, we need
to understand the K-groups of the corresponding finite kernel subgroup and the cor-
responding Bass or Farrell-Hsiang Nil groups. This shall be achieved in the following
section for the group By(S?).

r
r
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7 Whitehead groups and lower K-theory groups of the
group ring Z[B,(S?)], n < 4

As we mentioned in Section 2, Bn(Sz) is finite for n < 3. For these values of 1, the
corresponding K-groups were given in Sections 3-5. This section, which is divided into
tive subsections is devoted to the explicit computation of the Whitehead and lower K-
groups of Z[B,(S?)] for the special case n = 4. The aim is to prove Theorem 1, whose
statement we recall here.

Theorem 1. The group By4(S?) has the following Whitehead and lower algebraic K-groups:

Wh(B4(S?)) =~ Z@Nily,
SH)]) =~ Z, ®Nily, and
K_1(Z[Bs(S%)]) = Z, ® Z,

where fori = 0,1,
Nil; = D[2(Z2)” ®2W],
Q0
2(Zy)* denotes a direct sum of two copies of a countably-infinite number of copies of Zy, and
W is an infinitely-generated Abelian group of exponent 2 or 4.

In Section 7.1, we start by recalling a presentation of B4(S?). We then study the al-
gebraic description of the finite subgroups of B4(S?) given by Theorem 2, which enables
us to prove in Proposition 27 that B4(S?) may be expressed as an amalgamated product
of T* and Qj¢ along their common normal subgroup that is isomorphic to Qg. This
implies in particular that B4(S?) is hyperbolic in the sense of Gromov (as we shall see in
Proposition 38, B4(S?) is virtually free). In Section 7.2, we carry out K-theoretical calcu-
lations using Section 6 and [JL, JLMP], from which we are able to prove Theorem 1, up
to determining the Nil; factors. The rest of the section is then devoted to determining
these factors. In order to do this, in Section 7.3, we study the structure of the maximal
virtually cyclic subgroups of B4(S?), our main result being Theorem 30. Using [JLMP],
in Section 7.4, we show that the maximal infinite virtually cyclic subgroups of B4(S?)
possess an infinite number of conjugacy classes. Finally, in Section 7.5, we put together
all of these ingredients to compute the Nil; factors in Theorem 1.

7.1 Generalities about B4(S?)

We recall several results concerning B4(S?). As we shall see, it possesses some very
interesting properties that will allow us to calculate its K-groups.
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Theorem 25 ([FVB]). The group B4(S?) admits the following presentation:

generators: 01, 03, 03.
relations:

0103 = 0301
0102071 = 020102
020302 = 030203

(71(72(7_%02(71 = 1. (20)

The first three ‘braid relations” will be used freely and without further comment in
what follows. Since the given generators together with the first three relations consti-
tute a presentation of the Artin braid group By, it follows that B4(S?) is a quotient of
Bs. We may determine generators of the representatives of the conjugacy classes of the
finite subgroups of B4(S?) in terms of the above generators of B4(S?). According to
Murasugi [M], any finite order element of B4(S?) is conjugate to a power of one of the
following elements:

&g = 010203 (of order 8)

] = (71(72(732 (of order 6) (21)
ay = 01(722 (of order 4).
Let
Ay = 010203010207 (22)

denote the ‘half twist” braid. Then the ‘full twist” braid Ai generates the centre of By(S?)
and is the unique element of B4(S?) of order 2 (this is true in general, see [GVB]). Let
Q= <oc%, A4>. By [GG4, Theorem 1.3(3)], Q is isomorphic to Og, and is a normal sub-
group of By(S?). Further, it is well known that (see [GG6, Lemma 29] for example):

txoal-oaal =o0;,1fori=1,2,and oc%agocaz =01, (23)
and that:
AgoiAt =0, foralli=1,2,3 (24)
(these two relations in fact hold in By).
Remarks 26.

(a) By Theorem 2, the isomorphism classes of the maximal finite subgroups of By(S?)
are T* and Q.
(b) Within By(S?), there is a single conjugacy class of each of T* and Q14 [GG6, Propos-
ition 1.5(1)]. These subgroups may be realised algebraically as follows:
(i) Q16 may be realised as {(wp, A4) (xg is of order 8 and A4 is of order 4) [GG2]. In
particular,

AMOA;l = aal and 0/01 = Ai. (25)
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(ii) By [GG6, Remark 3.2], T* may be realised as <(71(73_1,A4> X <oc%> >~ Qg x Z3. Note

that the first factor of the semi-direct product is Q, since by equations (21) and (22), we
have:
txa2A4 = (73_1(72_1(71_1(73_102_101_1. 010203010707 = (7103_1. (26)

The action is given by a%AMl_ 2 = 0105 Iand a%alag 1041_ 2 = Ayo105 L oy 2. The only
other isomorphism class of finite non-Abelian subgroups of B4(S?) is Qg: the subgroups
Q = {(ad,Ayyand Q' = {(af, a9As) of {wg, Ay) are isomorphic to Qg and realise the two
conjugacy classes of Qg in B4(S?) [GG6, Proposition 1.5(2) and Theorem 1.6].

(c) By Theorem 2, the remaining finite subgroups are cyclic, and as we mentioned pre-
viously, are realised up to conjugacy by powers of the a;, i € {0,1,2}. For each finite
cyclic subgroup, there is a single conjugacy class, with the exception of Z,, which is
realised by both of the non-conjugate subgroups (a3 and {(a,) [GG6, Proposition 1.5(2)
and Theorem 1.6].

As we mentioned above, Q is a normal subgroup of B4(S?). From this, we may
obtain the following:

Proposition 27. B4(S?) =~ Q14 ko, T

Proof. Let T = B4(S?)/Q. Since o105" € Q and <c71c73_ 1> is not normal in B4(S?) by

Remarks 26(b)(ii), it follows that the normal closure of o0, Lin B4(S?) is Q, and that
a presentation of I' is obtained by adjoining the relation 07 = 03 to the presentation of
B4(S?) given in Theorem 25. We see then that T is generated by elements o7 and o7,
subject to the two relations 07 03 07 = 07 07 02 and (10207)? = 1. Let

A:<a,b‘a2:b3:1>

denote the free product Z; * Z3, and consider the map ¢: A — I' defined on the gen-
erators of A by ¢(a) = o707 7 and @(b) = 77 03. Since (¢(b))® = (71 72)° = (107 07)? =
(p(a))? = 1, ¢ extends to a homomorphism that is surjective since ¢(b~'a) = 77 and
@(a~1b?) = 7. Conversely, the map : T — A defined on the generators of T by

¢(07) = b~'a and ¢(72) = a~1b? extends to a homomorphism since:
Y1) Y(@) p(@1) = b laa Wb a = a = a 0P a0 = (03) Y(07) Y(@2)  and
($(@) p(@) $(o1)* =a” =1,
and is surjective because (07 02 07) = a and (07 02) = b. Hence ¢ is an isomorphism,
and I' =~ Z, % Z3

Let G = Qi gz T*, and consider the following presentation of G with generators
u,v,p,q,r that are subject to the relations:

=g qpg t=p Lrpr =g gt =pg, P =1

4 2 1 1

U =0°,0Uv " =u

w =p,v=q,
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so that (p,q,r) =~ T%, (u,v) =~ Q1¢,and {p,q,7) n{u,v) = H, where H = (p,q) =~ Qg. It
follows from this presentation that H <« G and G/H = Z, % Z3. Let f: G —> B4(S?) be
the map defined on the generators of G by f(u) = ay’, f(p) = a52, f(v) = f(q) = Ay
and f(r) = a3. Using Remarks 26(b), we see that f respects the relations of G, and so
extends to a homomorphism that sends H isomorphically onto Q. Further, a3 = A2
using equation (21) and the uniqueness of A7 as the element of order 2 of B4(S?). Thus
K| = Aﬁtxl_ 2 and since B4(S?) = {ag, a1) [GG1, Theorem 3], it follows that f is surjective.
We thus obtain the following commutative diagram of short exact sequences:

1 H G G/H —1
:lfH Lf lf
1 ﬁ-Qﬁ-B4(SZ) r 1,

where j? is the homomorphism induced by f on the quotients. Since f is surjective, f
is too, and the isomorphisms G/H = Z % Z3 = I' and the fact that Z; * Z3 is Hopfian

(see [DN] for example) imply that ]? is an isomorphism. The result is then a consequence
of the 5-Lemma. O

7.2 Preliminary K-theoretical calculations for Z[B4(S?)]

Since B4 (S?) is an amalgam of finite groups by Proposition 27, it is a hyperbolic group in
the sense of Gromov (we shall see in Proposition 38 that B4(S?) is in fact virtually free).
Using the results of [JL] and [JLMP, Example 3.2], we may compute K, (Z[B4(S?)]), and
we obtain:

Kn(Z[B4(S?)]) = Ay ® B, @ (@ Cokery, <V>> ,
Vey
where
Ay, = Coker (Ky(Z[Qs]) — Kn(Z[Q16]) ® Ku(Z[T*])),
and
B, = Ker(Kn—1<Z[Q8]> - Kn—l(Z[Q16]) @Kn—l(Z[T*]))/

Coker, (V) corresponds to the various Nil groups described in Section 6 (and will be
determined in what follows), and the sum is over the family V of conjugacy classes
of maximal infinite virtually cyclic subgroups of B4(S?). By using the pseudo-isotopy

28



functor instead of K, we obtain similar formula for the Whitehead and Ky-groups:

Coker(Wh(Qs) — Wh(Q16) ® Wh(T¥))
S

Wh(B4(S?)) = { Ker (Ro(Z[Qs]) — Ko(Z[Que)) ® Ko(Z[T*]) )
S

tNﬂl;

(Coker (KO(Z[Qs]) — Ko(Z[Q16)) @KO(Z[T*]))
@

Ro(Z{Bs(8%)]) = { Ker (R-1(Z[Qs)) — R-1(Z[Qu]) @R (Z([T7)))
@

| Nilo

and the K;-group:

K_1(Z[B4(S?)]) = Coker(K_1(Z[Qs]) — K_1(Z[Q16]) ® K_1(Z[T*])),

where for i = 0,1, Nil; splits as a direct sum of Bass or Farrell-Hsiang Nil groups over
representatives of V' (see Section 6). From Theorem 10 and Propositions 7, 22 and 23,
we have the following:

Wh(Qs) =0 Ko(Z[Qs]) = Zs K_1(Z[Qs]) =0
Wh(Q6) = Z Ko(Z[Qi6)) = Zo K_1(Z[Q16]) = Zo
Wh(T*) =0 Ko(Z[T*]) = Zy KA(Z[T)) = Z

Moreover, by [Sw, Lemma 14.6], the induction IZO(Z[QS]) — KO(Z[Q16]) is zero and
Ko(Z[Qg]) — Ko(Z|T*]) is an isomorphism by hyperelementary induction (cf. [Sw,
Theorem 14.1(1)]). Hence we have the following isomorphisms:

Wh(B4(S?)) =~ Z@Nily, Ko(Z[B4(S?)]) = Z> @ Nilg and K_1(Z[B4(S?)]) = Z, ®Z, (27)

which proves Theorem 1 up to the computation of the Nil; terms. To complete the proof,
we next need to determine the maximal infinite virtually cyclic subgroups of B4(S?),
and the number of their conjugacy classes, which we do in the following section.

7.3 Maximal virtually cyclic subgroups of By(S?)

Recall from Remarks 26 that up to isomorphism, the maximal finite subgroups of B4(S?)
are Q14 and T*, and that there exists a single conjugacy class of each. The isomorphism
classes of the infinite virtually cyclic subgroups have also been classified:
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Theorem 28 ([GG6, Theorem 5)). The infinite virtually cyclic subgroups of B4(S?) are iso-
morphic to the following groups:

(a) subgroups of Type I: Zy x Z, k € {1,2,4}; Z4 x Z for the non-trivial action; Qg x Z for
all three possible actions (the trivial action, and the actions of order two and three respectively).
(b) subgroups of Type II: Zy %7, Z4, Zg %7, Zs, I %7, Ls, Ls *z, L8, Q16 * gz Q16

For each of the Type Il subgroups given in Theorem 28(b), abstractly there is a single
isomorphism class, with the exception of Q16 kg, Q16 for which there are two iso-
morphism classes [GG6, Proposition 11]. In the latter case, we recall the following
results concerning the structure and the realisation in B4(S?) of the two classes.

Proposition 29 ([GG6, Propositions 11 and 78]). Abstractly, there are exactly two isomorph-
ism classes of the amalgamated product Q6 % g, Q16, possessing the following presentations:

r, = <a, b,x,y ‘a‘l = bz, ¥t = yz, bab~! = a_l, yxy_l = x_l, X% = a2, y= b> (28)
and
I, = <a, b,x,y )a4 =%, x* = yz, bab~! =471, yxy_1 —x 1 x> =, y= a2b>. (29)

Further, for i € {1,2}, B4(S?) possesses a subgroup G; such that G; = T ;.

Since Out(Qg) =~ Sz, there are three isomorphism classes of Type I groups of the
form Qg x Z. For j € {1,2,3}, let Qg x; Z denote the group for which the action is of
order j. We consider the problem of deciding which subgroups of B4(S?) are maximal
within the family of virtually cyclic subgroups.

Theorem 30.

(a) Let G be a maximal infinite virtually cyclic subgroup of By(S?). Then G is isomorphic to
one of the following groups: Qg x Z for one of the three possible actions, or Q16 % g4 Q16-

(b) If G is a subgroup of B4(S?) isomorphic to T* then it is maximal as a virtually cyclic sub-
group.

(c) Foreachje {1,2,3}, there are subgroups of By(S?) isomorphic to Qg x j Z that are maximal
as virtually cyclic subgroups, and others that are non maximal.

(d) There exist subgroups of B4(S?) isomorphic to Q16 * o4 Q1 that are maximal as virtually
cyclic subgroups, and others that are non maximal.

We shall prove the theorem in several steps. Since B4(S?) is a hyperbolic group in
the sense of Gromoyv, the following result implies that every infinite virtually cyclic
subgroup By(S?) is contained in a unique maximal virtually cyclic subgroup, in other
words, there are no infinite ascending chains (for inclusion) of infinite virtually cyclic
subgroups.

Proposition 31 ([JL, Propositions 5,6 and Remark 7]). Every infinite virtually cyclic sub-
group of a Gromov hyperbolic group is contained in a unique maximal virtually cyclic subgroup.
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We start with the proof of parts (a) and (b) of Theorem 30.

Proposition 32.

(a) Let G be a maximal virtually cyclic subgroup of By(S?). Then G is isomorphic to one of the
following groups: T*, Qg x Z for one of the three possible actions, or Q16 * g, Q16
(b) If G is a subgroup of B4(S?) isomorphic to T* then it is maximal as a virtually cyclic sub-

group.

Proof of Proposition 32. Let G be a maximal virtually cyclic subgroup of B(S?).

(a) First assume that G is finite. Then G is a maximal finite subgroup of B4(S?), so is
isomorphic to either Q14 or T* by Theorem 2. Suppose that G =~ Q4. Since By(S?)
possesses a single conjugacy class of subgroups isomorphic to Q14 by Remarks 26(b),
by Proposition 29, there exists a subgroup of B4(S?) isomorphic to the amalgamated
product Q16 * g, Q16, of which one of the factors is G, so G is not maximal as a virtually
cyclic subgroup. Thus G =~ T*.

Now assume that G is infinite and of Type I, so G = F x Z, for some action of Z on
F, where F is finite and is the torsion subgroup of G. Suppose that F is either trivial or
isomorphic to Z; or Z4, and let u be a generator of the Z-factor of G. Up to conjugation,
we claim that F < (&3). If F is trivial or isomorphic to Z, then F = {A?) = {a3) since
ag = AJ. So suppose that F =~ Z,. By Remarks 26(c), B4(S?) admits two conjugacy
classes of subgroups isomorphic to Z4, generated respectively by a2 and a. But since
u normalises F and the normaliser of {(ay) in B4(S?) is finite [GG6, Proposition 8(b)],
it follows that F is conjugate to (a3). This proves the claim, and so conjugating G if
necessary, we may suppose that F < (a3). Since Q = (a3, Ay) < B4(S*) and Q = Qg,
the subgroup (a3, A4, u) is isomorphic to one of the three Type I groups Qg iZ, ] €
{1,2,3}, and admits G = {aj,u) as a proper subgroup. Hence G is non maximal as
a virtually cyclic subgroup of B4(S?). The result in this case is then a consequence of
Theorem 28(a).

Finally suppose that G is a Type II subgroup of B4(S?) that is non isomorphic to
Q16 * g4 Q16- By Theorem 28(b), we may write G = Gy sk G, where either:

(i) G1 and G, are subgroups of B4(S?) isomorphic to Qg or Zg, and H = Gy n Gy is
isomorphic to Zy4, or
(ii) Gy and G; are subgroups of B4(S?) isomorphic to Zs, and H = Gy n G = (A)).

By Remarks 26, in B4(S?), there are two conjugacy classes of subgroups isomorphic to
Qg represented by Q and Q’, one conjugacy class of subgroups isomorphic to Zg, repres-
ented by («g), and two conjugacy classes of subgroups isomorphic to Z,, represented
by {a3) and (a,). Conjugating G if necessary, we may suppose that G = Gy s G},
where G, = AGyA ™! for some A € B4(S?), H = Gy n G, and for i = 1,2, H; is equal
to Q, Q or {ag) in case (i), and to (a3) or (ay) in case (ii) (since Q is normal in B4(S?)
and G is infinite, one may in fact see that H; # Q in case (i) and H; # <tx(2)> in case (ii),
but we do not need to use this for the rest of the proof). Let L1 = (g, A4), and let
Ly = ALiA™Y. Then L; =~ Ly =~ Qq4, and G; < L; fori = 1,2. Further, Q ¢ L;n L,
because Q < B4(S?). Let L = (L; U Ly). Since G c L, L is infinite, so Ly n L, = Q.
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Thus L =~ Qs4 % g, Q16, and G is a non-maximal virtually cyclic subgroup of B4(S?). It
then follows from Theorem 28(b) that any maximal virtually cyclic subgroup of B4(S?)
of Type Il is isomorphic to Q14 3 o, Q16-

(b) By Theorem 28(b), none of the infinite virtually cyclic subgroups of B4(S?) admit
subgroups isomorphic to T*, so any subgroup of B4(S?) isomorphic to T* is maximal as
a virtually cyclic subgroup. Combined with part (a), this shows in fact that G is finite if
and only if G =~ T*. O

Before proving Theorem 30(c), we state and prove the following lemma.

Lemma 33. Let 7t: By(S?) — Zg denote the Abelianisation homomorphism. Then:

(a) If H is a subgroup of B4(S?) that is isomorphic to either Zs, Qg or Q1 then (H) <= (3).
(b) If G is a subgroup of B4(S?) that is isomorphic to an amalgamated product of one of the
forms Q16 % 05 Q16, Qs k7, Qs, Qs k7, Zs or Lg %7, Lg then (G) = (3).

Proof of Lemma 33.

(a) Consider the subgroup K = {(wp, A4). As we mentioned in the proof of Proposi-
tion 32, K contains representatives of the conjugacy classes of all subgroups of B4(S?)
that are isomorphic to Zg, Qg or Q14. So there exists A € By(S?) such that AHA~! = K.
Now 7t(ap) = 3 and 7t(Ag) = 0, thus 71(K) = (3), which yields the result.

(b) If G is a subgroup of B4(S?) that is isomorphic to one of the given amalgamated
products then by Remarks 26(c), the factors appearing in the amalgamation are sub-
groups of conjugates of K, and thus 77(G) < 71(K) < (3) by part (a). O

To prove Theorem 30(c), for each j € {1,2,3}, we shall exhibit a subgroup of B(S?)
that is isomorphic Qg x; Z, and that is maximal (resp. non maximal) as a virtually cyclic
subgroup of B4(S?). The proof of the existence of a maximal virtually cyclic subgroup
of B4(S?) that is isomorphic to Qg x Z is long, and will be treated separately. With the
exception of this case, we now prove Theorem 30(c) as well as part (d).

Proposition 34.

(a) For each j € {1,2,3}, there are subgroups of B4(S?) isomorphic to Qg xj Z that are non
maximal as virtually cyclic subgroups.

(b) For each j € {2,3}, there are subgroups of B4(S?) isomorphic to Qg x j Z that are maximal
as virtually cyclic subgroups.

(c) There exist subgroups of B4(S?) isomorphic to Q1 % o, Q16 that are maximal as virtually
cyclic subgroups, and others that are non maximal.

Proof of Proposition 34.

(a) By Proposition 29, for i = 1,2, B4(S?) possesses a subgroup G; that is isomorphic to
the amalgamated product I'; given by equations (28) and (29), and so admits a present-
ation given by the corresponding equation. The amalgamating subgroup I = {a?,b) =
{x?,y)isisomorphicto Qg, and the element a~'x is a product of elements chosen altern-
ately from the two sets (g, b)\ (a%,b) and (x,y)\ {x?, ), so is of infinite order by stand-
ard properties of amalgamated products. Consider the subgroup H; = (T; u {a"!x})
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of G;. One may check that (a~1x) acts by conjugation on (a?,b). If i = 1 then

a_lx.az.x_la = a2
1

a lx.b.x 1

a Yx.a’b.x 'a = d?b,

a=atxyxla=ateyx Yy lya = aPya = abab"'b=b  (30)

and hence Hy =~ Qg x Z. If i = 2, a similar computation shows that conjugation by a~'x
permutes cyclically a%, b~ and a=2b~!, and thus H, =~ Qg x3 Z. In each case, H; & G;
because [G; : H;| = 2. Now G; is isomorphic to Q16 % g, @16, and so H; is non maximal

as a virtually cyclic subgroup of B4(S?), which proves the statement for j € {1,3}. It
1

thus remains to treat the case j = 2. Note that in Gy, the action by conjugation of xa™"x
on [ is as follows:
xa 'x.a® xlax7! = xa?x 71 = 22
xa tx.b.oxtax Tt = xyx 7t = xyxlyTly = X%y = 2D (31)

xa x.a?b.x tax V= at*b =171,
using equation (30). Now xa~!x is of infinite order, so we conclude from equation (31)
that the subgroup (I' U {xa~1x} ) is isomorphic to Qg x, Z. Furthermore, this subgroup
is contained (strictly) in Gy, so is non maximal.

(b) Let j = 2. Consider the subgroup H = (Q U {01}) of B4(S?). By Proposition 31, H
is contained in a maximal virtually cyclic subgroup M of B4(S?). Since Q is normal in
B4(S?) and 07 is of infinite order, H must be isomorphic to a semi-direct product of the
form Qg x Z for some k € {1,2,3}. To determine k, we study the action by conjugation
of o1 on Q. Using equation (26), we have:

-

Ul.oc%.al_l = Ulocgal_locazoc% = (71(73_1

a3 by equation (23)
= ZA403 = Xy Ay = A;l by equation (25)
S oA o = A o ALA L = o5 T AT by equation (24) (32)

=ay 2 by equation (26)

2 -1 _ A—1,2 _ .2
L 0—]_060A40'1 - A4 IXO - (XoA4

Since o7 is of infinite order, H is thus isomorphic to Qg x5 Z because the action fixes the
subgroup (a3A4 ) of order 4 of Q, and exchanges (a3) and A4. But 7t(07) = 1 ¢ (3), so
H is not contained in any subgroup of the form Qg k7, Qg, Qg 7, Zg or Q16 * g4 Q16
by Lemma 33(b). It cannot be contained either in a subgroup isomorphic to Qg x Z or
Qg x3 Z because the actions on Q are not compatible. This implies that M, which is
maximal in B4(S?) as a virtually cyclic subgroup, must also be isomorphic to Qg x Z.
Now assume that j = 3. As in the case j = 2, if there exists a subgroup L of B4(S?)
that is isomorphic to Qg x3 Z, it cannot be contained in a subgroup of B,(S?) isomorphic
to Qg x Z or to Qg x» Z. Moreover, by Lemma 33(b), if 77(L) ¢ (3) then L is not

contained in any subgroup of B4(S?) isomorphic to Qg 7, 98, Lg *7z, Lg, Qg *7z, Zg or
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Q16 k94 Q16- As in the previous paragraph, we conclude using Proposition 31 that L is
contained in a maximal virtually cyclic subgroup of B4(S?) that must also be isomorphic
to Qg x3 Z. To prove the result, we exhibit such a subgroup L. Consider the action by
conjugation of o7 on Q:

( — — — — — .
0. oc%. o, 1= g ® Looag. X0, 1tx0 Ly = X010 Lo by equation (23)

= noly 2A4x9 by equation (26)
3 = ay?Ay = (§A4)”" by equation (25) (33)

02 Dy 0yt = a0 AT Ay = Ay

2 -1_ -2 _ 42
L 02- IXOA4.O'2 = & A4. A4 = Xy-.

In particular, 05x0; 4 — x for all x € Q. This implies that the action by conjugation of
z = (727 01 on the elements of Q is the same as that of (75’01. By equations (32) and (33),

this action is as follows:
af 7 AL %, A
A 1 <71 “02 "";’ (“%A4)—1
(57 2%

Hence the action by conjugation of z on Q is of order 3. Further, 7(z) = 2 ¢ (3),
which shows that L = (Q u {z}) is not contained in any subgroup 1somorph1c to an
amalgamated product of the form Qg 7, Og, Zg %7z, Zs, Qg %7, Zg or Q16 kg, P16 by
Lemma 33(b). To prove that L =~ Qg %3 Z, it remains to show that z is of infinite order.
To achieve this, we shall write z3, which is an element of P4(SZ), in terms of the basis
(A14, Aay) of the free group 711 (S?\ {xl, X2, X3}, x4), which we identify with the kernel of
the homomorphism Py(S?) — P5(S?) given geometrically by forgetting the last string.
We recall that for 1 <i < j < 4, the elements

1.-2 2
A lXO A4—IXO

o 2 1 1
Ajj=0j10ip1070.5 01,

form a generating set of P4(S?). Thus Aiiv1 = 01-2, and the generators A;; satisfy the
following relations (the relations are not complete):

A1pA13A14 =1 (
A1pAz3Ans =1 (
A13A23A34 =1 (36)
A14A24A34 =1 (
A1pA13A14A03A4A54 = A} (

It follows from relations (34), (37) and (38) that
Az = NJAS AL, = NA1, (39)

34



from relations (36), (37) and (39) that
Arg = Az Ass = AradaaArLAT (40)

and from relations (35) and (39) that
Arp = A5 AsL = Ay AT AL (41)

1

Applying the relation (Ticflk“af = U'illlo'lka'lqu foralli e {1,2} and k € Z, we obtain:

3 7 - \3 3 71 27 3 7 27 3 A3 27
27 = (0301)° = A3 300010507 . 070501 = A3 30102010501 = A3 3A7 01020710501

3 3 2 -1 8 3 3 8 3 3 -1.8

= A%,BA%,2A2,3A1,20'20{50-2_1 = A%,BA%,ZAZ,SAl,ZA%I_’g
= (AjAL0) (A AT DAL AL L AT G (A1 g Ar g AT LAY

_ A3 —1A-1 -1 -1 42 -1
B A1,4A2,4A1,4A2,4A1,4A2,4A1,4

by equations (39), (40) and (41). But (A4, Az4) is a basis of ; (S?\ {x1,x2,x3},X4), 5O
z3 # 1, and since z° € (A14, Az ), it is of infinite order. We conclude that L =~ Qg %3 Z,
which completes the proof in this case.

(c) The existence of subgroups of B4(S?) isomorphic to Q¢ 3 0y Q16 that are non max-
imal as virtually cyclic subgroups is actually a consequence of the structure of the am-
algamated product. Indeed, consider the following short exact sequence

1—>Q8—>Q16*Q8Q16LZ2*ZQ—>1.

Now Zj * Z, is isomorphic to the infinite dihedral group Dih,, = Z % Z;. Then for
all n € N, n > 2, the subgroup nZ x 7Z is abstractly isomorphic to Z x Z; while be-
ing a proper subgroup (in other words, it is non co-Hopfian). Thus p~'(nZ x Z) is
isomorphic to Q16 ko, Q16 While being a proper subgroup (of index 7). In particular,
since B4(S?) contains a subgroup I that is isomorphic to Q14 % g, Q16, I admits proper
subgroups that are also isomorphic to Q16 * o, Q16, and any one of these subgroups is a
non-maximal virtually cyclic subgroup that is isomorphic to Q16 sk g, Q@16. Conversely,
let G be a subgroup of By(S?) that is isomorphic to Q16 %o, Q16. By Proposition 31,
G is a contained in a subgroup M of B4(S?) that is maximal as a virtually cyclic sub-
group. But Theorem 28 implies that the only isomorphism class of infinite virtually
cyclic subgroups of B4(S?) that contains Q14 is Q14 %k g4 @16, and so we conclude that
M = Q16 * g, Q16, Which completes the proof. O

We now complete the proof of Theorem 30(c) by proving the existence of maximal
virtually cyclic subgroups of B4(S?) that are isomorphic to Qg x Z.

Proposition 35. The group By(S?) contains maximal virtually cyclic subgroups that are iso-
morphic to Qg x Z.
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Proof. As before, let Q denote the normal subgroup (a3, As) of B4(S?), and let Hy =
(Ay), Hy = {a3) and H3 = {a§A4) be the three subgroups of Q isomorphic to Z. Then
B4(S?) acts transitively on the set H = {H;, Hy, H3} by conjugation, and this action gives
rise to the permutation representation : B4(S?) — Sj that satisfies the following re-
lation:

forall1 <i,j < 3,and forall B € B4(S?), (BH;* = H;) < (¥(B)(i) = j).

Note that the homomorphism ¢ is surjective, that (cq) = (1,2) by equation (32), and
that ¢(02) = (2,3) by equation (33). Since 005 1 e Q by equation (26), and the action of
the elements of Q on H is trivial, it follows that ¥(c3) = ¥(cy). If B is of infinite order
then (Q U {B}) = Og x Z, and the order of the action of Z on Qg is that of the element
P(B). The first step is to describe Ker (1) whose elements of infinite order will give rise
to subgroups of B4(S?) isomorphic to Qg x Z.

Lemma 36. Ker (v) is isomorphic to the direct product of Q with a free group Fo(x,y) of rank
2, for which a basis (x,y) is given by:

X = adA407 and y = Ayo3. (42)

Proof of Lemma 36. By Remarks 26(b) and Proposition 27, B4(S?) =~ T* s g, Q16, where
the T*-factor Gy of B4(S?) is generated by Q and oc:}, and the Qq¢-factor G, of B4(S?) is
generated by Q and «g, so G; n G, = Q. Consider the canonical projection

p: B4(S?) — Ba(S?)/Q.

As in the proof of Proposition 27, we identify the quotient B4(S?)/Q with the free
product Zs3 sk Zy, the Z3- (resp. Zy-) factor being generated by a = p(aq) (resp. b =
o(xp)). Consider the surjective homomorphism §: Zj % Zy —> S3 defined by ¢(a) =
(1,3,2) and (b) = (1,3). Since P(ag) = P(o10203) = (1,2)(2,3)(1,2) = (1,3), P(a1) =
P(o10202) = (1,2)(2,3) = (1,3,2) and B4(S?) = {ap, a1) by [GG1, Theorem 3], it follows
that (o p = 1, so p induces a homomorphism p: Ker () — Ker (l])\) of the respective
kernels. We thus obtain the following commutative diagram of short exact sequences:

1~ Ker () — = By(S?) V=55 — =1 (43)




as well as the equality Ker () = Q. Taking the Schreier transversal {1,4,42,b,ab, azb}
for ¢ and applying the Reidemeister-Schreier rewriting process [J], we see that Ker (gb)
is a free group of rank 2 with basis ((ab)?, (ba)?), which implies that Ker () =~ Qg x I,
by the commutative diagram (43). To determine the action of Ker (1,5) on Q, note by
equations (32) and (33) that (71 and 07 belong to Ker (¢), and that:

p(e7) = p(03) = (plog"a1))” = (ba)?
p(03) = plaootag ') = (ab)?,
so p(02) = (ba)?> and p(03) = (ab)®. The same equations imply that the actions by

conjugation of 07 and 03 on Q yield elements of Inn (Q), namely conjugation by aZA4
and by A4 respectively. Let s: Ker (173) — Ker (¢) be the section defined on the basis
of Ker (i) by s ((ba)?) = x and s ((ab)?) = y. The action of these two elements on Q is

thus trivial, which shows that Ker (1) =~ Qg x [, as required. O
Using the definition of 1, a transversal of Ker (1) in B4(S?) is seen to be:
T ={e, 01,00, 010201, 0109, 0201 } - (44)

Before going any further with the proof of Proposition 35, we determine the action by
conjugation of these coset representatives on x and y.

Lemma 37. Let T € T\ {e}. Then

X ift =0 yox ift =0
Nxly™l ifr =0y y ifT =0
Tt ! =4 Ay if T =ojopoy  and Tyt ' ={ Adx if T = 010707
Ay if T =010, y Ixl ift =00,
Ay T =0 | Afx if T = 0p0y.
Proof of Lemma 37. The action by conjugation of 03 and 0> on ¢7 and 073 is given by:
(71(712(71_ 1—0? and (72(722(72_ Lo o3
0102201’ = o, lo2oy = o, . 2. 0h0%0y = oy 2(75 2 by equation (20)
_ 2.2 2 -2
=0, “ayoy “ay - by equatlon (23)
_ 2 -2 2.2 -2 —2
= 0, 0y . 07&0] 040 = Aoy ? (71 by equations (25) and (32)
0201205 - 0201205 e (72(712(72. 02 A4(71 0, 2 in a similar manner.

Using also equations (32) and (33) as well as the fact that x and y commute with the
elements of Q, we see that:

leal_l = alzx%ANlZUl_l = 03N 07 = x

1

-2

— 2 242, 1 1,2
myo; = 01A4(72c71 = a0A402 0y = 3Ny A a3 A, =y
-1 2.-2 _ 2 2 1 2
X0, ~ = a3 A4 02 = aOA4(71 o, = ZAIxLad Ay IAy = Ayt
~1 2 -2 -2 2 2
oyo, = T2 Ay05 (72 = ocOA4(72 o =007 =y,
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from which we deduce that:

((71(72(71)9((01(7201)_1 = Aiy, (0’10'2)360'2_10'1_1 = Aiy, (0’2(71)3(0'1_1(72_1 = Aﬁx‘ly_l,

(g10207)y(10007) ™ = A2x, (Ule)yﬂglUfl —yix7l, ((7201)]/(71’1(72’1 — A%x,
as required. O

We continue with the proof of Proposition 35. Let z € B4(S?) be an element of infinite
order, and suppose that I' = (Q U {z}) = Qg x; Z, where j € {2,3}. Our aim is to obtain
necessary conditions on the generators of the infinite cyclic factor of those subgroups of
I that are isomorphic to Qg x Z. Thus will enable us to construct subgroups of B4(S?)
that are isomorphic to Qg x Z but are not contained in any subgroup isomorphic to
Qg % Z, where j € {2,3}. With this in mind, let A be a subgroup of I that is isomorphic
to Qg x Z. Since the finite-order elements of I' are precisely the elements of Q, the
subgroup of A that is isomorphic to Qg is Q. The remaining elements of T’, of the form
q.z*, where g € Q and k € Z\ {0}, are of infinite order. In order that such an element
belong to the centraliser of Q (and thus form a subgroup isomorphic to Qg x Z), the
fact that the action of z on Q is of order j implies that k must be a multiple of j, and
thus A = (Q u {g.2Y}) ={(Qu {z"}) = (Q U {Z/}) for some A € Z\ {0}. In particular,
{Q u {z/}) is the maximal subgroup of T that is isomorphic to Qg x Z.

Since the action by conjugation of z on Q is of order j, it follows from the definition
of 1 that z belongs to one of the cosets 7. Ker (1) of B4(S?) where T € T\ {e}, T being the
transversal of equation (44). More precisely, z € T.Ker (¢), where T € {0y, 02, 010207 } if
j = 2,and T € {0109,0201} if j = 3. Further, by Lemma 36 there exist v € Ker (¢),
u € Fy(x,y) and g1 € Q such that z = tv and v = gyu. Let us write u = u(x,y) as a freely

reduced word in [F5(x, y):

u — x€1y51 P xgi'y5}'1
where¢;,6; € Zforalli =1,...,r,and dq,¢€,...,0,_1, & are non-zero. If v € Ker (¢), let
v denote the image of v under projection onto the > (x, y)-factor, followed by Abelian-

isation of F2(x, ). We now compute z/. We have that:

1T tutgyt tu (Tu)? ifj=2
| N
7 = (tqiu) = €Q €Q o
(Tqu) g7 Turqlr’lu’lT’i :CururqlT’lu’lT’lu’lr’i(Tu)e‘ ifj=3
<0 eQ <Q

=q'(tu)/, whereq € Q.

Now
()] - Tut .12 u ifj =2
| (rur Y (tPuTr ). P ifj = 3.

Applying Lemma 37, and using equation (42) as well as the fact that x and y commute
=11

with the elements of Q, it follows that there exists ¢’ € Q such that (tu)/ = ¢~ ¢"w,
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where w € F»(x, y) is given by:

P .
x€1 (yilel)(sl cooxtr (yilel)‘srxxsly(sl . xsfy(sf ift= (o]
—1,,—1\eq,,0 —1,,—1\¢&r,,0 €1 4,0 Er4,0 :
(x y )1y1...(x y )ryryxlyl...xryr 1fT:0’2
< y£1x51 .. .ygrx57x81y51 ... xgryér ift = 010201

ygl (y_lx_l)‘sl . ysr(y_lx_l)(sr (y_lx_l)elx(sl R (y_lx_l)erxérxsly‘sl e xeryfsr ift = 0109

L (x_ly_1)€1x51 . (x_ly_l)grx(srysl (x_ly_l)(sl e ygr (x_ly_l)érxglygl e xgryér lf T = 0p07.
We have also used the fact that:
010201 )" = (0102)” = (02071)° = (0105 = equations , an .

’ ’ 3= (0105")> = A} by equations (20), (25) and (26)

Since z/ = g"w, and g” commutes with w, relative to the basis (¥, ) of the Abelianisation
77 of F5(x,y), we obtain:

AQer+-+e)—(b1+--+6)+1,0) ft=0y

— A(0,2(61+ - +6)—(e1+--+&)+1) fT=0
AMer+-+e&+0+--+6).(1,1) if T =000y
(0,0) if T =010 or T = 007,

for all A € Z\ {0}. We conclude that if A is a subgroup of I' = (Q U {z}) =~ Qg x; Z that is
isomorphic to Qg x Z then A = (Q u {q.2"}), where zV € { (a,b) € Z* | ab(a — b) = 0}
relative to the basis (%,7) of the Abelianisation Z? of F5(x, y).

To complete the proof of Proposition 35, we shall exhibit an element w € By(S?) for
which:

(a) w is a non-trivial element of F»(x, y) such that w = (¢, d), where cd(c — d) # 0.

(b) mt(w) ¢ (3).

Since IF,(x, y) < Ker (), the first condition implies that such an element w is a suitable
generator of the Z-factor of a subgroup of B4(S?) that is isomorphic to Qg x Z, but
which from the above discussion, is not contained in any subgroup that is isomorphic
to Qg x; Z for j € {2,3}. By Lemma 33(b), the second condition implies that (Q u {w}) is
not contained in any subgroup of B4(S?) that is isomorphic to Q1 * 0y Qi6, 98 %7, 9s,
Zg *7, Zg or Qg *z, Zg.

Take w = xy>, and let A = (Q U {w}). Then A =~ Qg x Z since w € Ker (¢) is an
element of infinite order, and by Proposition 31, there exists a maximal infinite virtu-
ally cyclic subgroup M of B4(S?) that contains A. Clearly condition (a) above holds,
and equation (42) implies that condition (b) is also satisfied. It follows from the pre-
vious paragraph and Theorem 28(b) that M =~ Qg x Z, which completes the proof of
Proposition 35. In conjunction with Proposition 34, this also proves parts (c) and (d) of
Theorem 30. O
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Figure 1: The tree T, showing the edge and vertex stabilisers under the action of
PSL(2,7Z).

7.4 Conjugacy classes of maximal infinite virtually cyclic subgroups
in By(S?)

In order to determine the number of conjugacy classes of maximal infinite virtually
cyclic subgroups, we follow the procedure given in [JLMP, Section 2.5] based on the
action of B4(S?) on a suitable tree. Using the proof of Proposition 27, we identify B4 (S?)
with Qy % o, T*, and the quotient group B4(S?)/Q with the modular group PSL(2, Z) =~
Zy % Z3 = {a,b |a*> = b® = 1). Thus we have the following short exact sequence:

1— Q—By(SH) 5 ZyxZs — 1, (45)

p being the quotient map as in the proof of Proposition 27. There is a well-known action
of PSL(2,7Z) on the tree T of Figure 1, the edge and vertex stabilisers being Z, and Zs.
The quotient of T by this action is the graph:

Zs e o 7o

It follows from the short exact sequence (45) that B4(S?) acts on T via p, and since
Ker (p) = Qg, the quotient graph of this action is:

Qg ® o« T*.
16 Os

We now apply the Reidemeister-Schreier rewriting process to the Abelianisation ho-
momorphism 77: Zp % Z3z —> Zg. A computation similar to that given in the proof of
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Lemma 36 shows that I';(Z; % Z3) is a free group, that we denote by F;, of rank two
with basis ([a, b], [, b?]).

Proposition 38. Let F = o071 (F2). Then there exists a (free) subgroup Fy of F of rank k > 2
that is normal and of finite index in B4(S?).

Remark 39. The above construction gives rise to the following commutative diagram of
short exact sequences:

1—=Q——By(S?) -7y % Zy — 1.
T T

Lo == 1

1 1

We see that I'»(B4(S?)) = F =~ Qg x Fy, which yields an alternative proof of the decom-
position given in [GG4, Theorem 1.3(3)].

Proof of Proposition 38. By Remark 39, F is isomorphic to a semi-direct product of the
form Qg x F,. Lets: Fp — Fbe a section for p ‘f: Since s(F,) is of finite index in B4(S?),
it suffices to take Fj to be the intersection of the conjugates of s(Fy) in By(S?). O

The group F; acts freely on T, the resulting quotient space being a graph I'; that
is homotopy equivalent to a wedge of two circles. The group Fy also acts freely on T
in the same way as its image o(Fy) in Zy % Z3, the quotient graph I' = T/Fy being a
tinite-sheeted covering space of I';.

According to [JLMP, Section 2.5], in order to determine the number of conjugacy
classes of the maximal infinite virtually cyclic subgroups of B4(S?), we need to analyse
the closed geodesics in the graph I and their stabilisers under the action of B4(S?)/Fy. In
fact, from the results in the previous sections, we need only study the closed geodesics
that are fixed pointwise by the image of Q in the quotient B4(S2)/F;. The pointwise
fixed graph of the image of Q is all of I and its fundamental group has rank at least 2.
It follows that there are infinitely many conjugacy classes of maximal infinite virtually
cyclic subgroups of the form Qg x; Z for j € {1,2,3} and of Q1 * g4 Q16
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7.5 Nil group computations

In this section, we compute the Bass Nil groups NK;(Z[Qg]) for i = 0,1, as well as the
twisted versions. In the non-twisted case, we show that:

Proposition 40. For i = 0,1, the groups NK;(Z|Qg]) are isomorphic to a countably-infinite
direct sum of copies of Zj.

In order to prove this proposition, we shall first consider the ring R of Lipschitz
quaternions of the form a + bi + cj + dk where a, b, ¢, d € Z, and show that its Nil groups
are trivial. Recall that the ring S of Hurwitz quaternions consists of the quaternions of
the form a + bi + cj + dk where a,b, ¢, d are either all integers or all half integers. It is
known that S is a non-commutative integral domain [Ch], and so is a regular ring. In
this section, we denote the cyclic group of order n by C,,.

Theorem 41. Fori =0,1,2, NK;(R) = 0.

Proof. Clearly R < S. By [Ch], M = (1 +i)R is the R-conductor of R in S, and both R/M
and S/M are fields. Consider the following commutative square:

R — §

J l

R/M —— S/M,

The associated Mayer-Vietoris sequence and the long exact sequence of the pairs (S, M)
and (R, M) yield NK;(R) = NK;(S) =0fori=0,1,2. O

We now prove Proposition 40.

Proof of Proposition 40. We first consider the case i = 0. Let Qg have the presentation:

Qg = <x,y ’xz = yz,yxy’l = x’1>.

The group ring Z| Qg| fits in a Cartesian square (see [CR2, Theorem 50.31, page 266]):

Z[Qs] —- Z[C; x 3]
Lg lp (46)
R Fz [Cz X Cz] ’

where ¢ is defined on the generators of Qg by g(x) = i and g(y) = j, and f is induced
from the homomorphism Qg — C; x C; given by taking the quotient of Qg by its
centre. This Cartesian square gives rise to the following Mayer-Vietoris sequence:

NK»(Z[Qg]) — NK»(R) ® NK»(Z[Cy x Cs]) —> NKy(F2[Cy x Ca]) — NK1 (Z[Qg]) — - - - .
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By [LO1, Lemmas 5.3 and 5.4] and [We, Theorem 1.3], we have:

NK1 (Z[Cz X Cz]) = QIFZ = Fz[x] dx, NK()(Z[CZ X Cz]) >~V = sz[x] (47)
NKl(Fz[Cz]) = (1 + XS]Fz[.X])X ~V, and NKo(Fz[Cz]) = 0.

As Abelian groups, O, and V are both countable infinite direct sums of copies of Zo.
On the other hand, the ring R has trivial Nil groups by Theorem 41. The above Mayer-
Vietoris sequence thus reduces to:

NK(Z[Qs]) —» NKa(Z[Cy x Ca]) —» NKa(F5[Ca x Ca]) —2> NK; (Z[Qg]) 22

NK;(Z[C x Ca]) 2 NK; (F[Ca x Cal) — NKo(Z[Qs]) 2% (48)

NKo(Z[Ca x C]) — NKo(F2[C2 x Ca]) — 0

(the labelled homomorphisms are discussed below). The components of the homo-
morphism p,: NK;(Z[Cy x Ca]) — NK;j(F2[Cy x Cy]) are induced by the projections

Z[Cy x Ca] Pi F>[Cs x Ca]

\ / (49)
Z|C]

where fori = 1,2,3, p;: C; x C — C; are the non-trivial homomorphisms of C; x C;
defined by p1((1,0)) = p2((0,1)) = p3((1,1)) = 0. The commutative diagram (49) thus
induces the following commutative diagram:

NK;1(Z[Cy x Cy)) P NK; (F2[C2 x C7])

\/

NK1(Z[C]).

But since NKj(Z[Cz]) = 0 [Har], it follows that p. = 0, and the homomorphism
T: NK;(F2[Ca x Cp]) — NKo(Z[Qs))

is a monomorphism. On the other hand, we claim that the homomorphism
fro: NKo(Z[Qs]) — NKo(Z[C2 x C2])

is zero. To see this, let w € NKo(Z[Qg]). Then f.o(w) € NKo(Z[Cy x C3]) = NK;(IFa[¢]).

Identifying NKi(IF,[e]) with the corresponding summand in NK;(F,[C, x Co]) = V3

given by (1 + vxF[x])* of NK;(IF1[¢]) (see [We, Remark before Theorem 1.3]), we have

that T(w’) = w for some w' € NK;(Fy[e]). Exactness of the sequence (48) implies that

feo(w) = 0, so T is an isomorphism, and hence NKy(Z[Qg]) = (P Z,, a countably-
Q0

infinite direct sum of copies of Z,.
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We now turn to the case i = 1. Consider the following homomorphism:
fa1: NK(Z[Qs]) — NKi(Z[Cy x o))

Exactness of the sequence (48) and the fact that 7 is a monomorphism implies that £,
is surjective, which gives rise to the following short exact sequence:

0 — Im(8) — NK;(Z[Qs]) 25 NK,(Z[Cy x Co]) —> 0,

where 6: NKy(Z[Cy x C3]) — NK;(Z[Qg]) is the homomorphism that appears in the
sequence (48). Recall from (47) that

NK1(Z[Cy x C]) = QO[] = Coker (NK2(Z[C2]) — NK;(F2[C2])) -

It follows that elements of NK; (Z[Cy x Cy]) lift to NK;(Z[Qg]). This therefore defines a
section for f,; and hence:

NK;(Z[Qs]) = NK; (Z[C; x C2]) @ Im().

Since Im(4) is an Abelian group of exponent 2, it follows that NK;(Z[Qs]) =~ (P Z,. O
0

Remark 42. In the rest of the manuscript, we shall write NK} (Z[Qg]) = NK;(Z[Qs], ).

In order to complete the proof of Theorem 1, it remains to determine the twisted Nil
groups of Og. Recall from Section 7.3 that up to isomorphism, there are two non-trivial
semi-direct products of the form Qg x Z, namely Qg x; Z , where j € {2,3}.

Proposition 43. Let i € {0,1}.
(a) For the action « of Z on Qg of order 3,

NK#(Z[Qs]) = NK* (Z[Qs]) = NKA(Z[Qs)) = (P Zo. (50)

(b) For the action w of Z on Qg of order 2, the twisted Nil groups are infinitely-generated
Abelian groups of exponent 2 or 4.

Proof.

(a) Since the action of Z on Qg is of order three, there is a surjective homomorphism
¢p: Qg x3Z —» Qg x Z3 onto the group Og x Z3 =~ T* defined by taking the Z-factor
modulo 3. We use the technique of induction on hyperelementary subgroups [FH, proof
of Theorem 3.2] that asserts that:

Ki(Z| Qg »3 Z]) = HE}T{;IPKz'(Z[GD_l(H)])f

where Hyp denotes the set of hyperelementary subgroups of Qg x Z3, and the limit is
with respect to the morphisms induced by conjugation and inclusion in the category
Hyp. Using the proof of Proposition 14, we see that the hyperelementary subgroups
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of Qg x Z3 are isomorphic to one of Z¢, Z3, Zy, Z4 or Qg, and their inverse images by ¢
are isomorphic to Zy x Z,7, 7y x 7, 7.4 x Z and Qg x Z respectively. With the exception
of the last two, the corresponding group rings of these groups have trivial Nil groups.
Further, the subgroups of Qg x3 Z that are isomorphic to Z4 x Z are pairwise conjugate,
and there is only one maximal element of the form Qg x Z in the limit. We thus obtain
equation (50) using Proposition 40.

(b) Consider the action a of Z on Qg that is of order 2 given by exchanging the generat-
ors x and y of Qg. Comparing with the Cartesian square (46), we observe that this action
may be transposed in all the rings of (46), thus giving rise to the following Cartesian
square of twisted polynomial rings:

Z[Qslalt] —L— Z[Cy x Cola[t]

gl lp

Ru[t]  —— F2[Cy x Colalt],

where the induced action of a exchanges the generators in all group rings, and ex-
changes i and j in R. By [F, Theorem 1.6], the Farrell-Hsiang Nil groups of R also
vanish, and hence we obtain the following long exact sequence:

NK§(Z[Qs]) — NK4(Z[Ca x C]) — NK§(F2[Cp x Ca]) —> NKH(Z[Qs]) —

NK$(Z[Cp x Ca]) 5 NK§ (F[Ca x C,]) — NK§(Z[Qs]) —
NK%(Z[C2 X Cz]) — NKg(IFz[CZ X Cz]) —_—> 0,

where the labelled homomorphisms will be analysed in the rest of the proof. By an
argument similar to that given in the proof of Proposition 40, we observe that the ho-
momorphism p.: NK{(Z[C; x Cp]) — NKf(F2[Cy x C3]) is zero, and thus the homo-
morphism NKf (F2[Cy x C3]) < NKG(Z [Qg]) is injective by exactness. We now apply
the following proposition.

Proposition 44 ([R]). Let i.: K;j(Ry[t?]) — Ki(Ry[t]) and i*: K;(Ry[t]) — Ki(Ry[t?]) be
the induction and transfer homomorphisms respectively. Then i*i,(x) = x + a(x) fori = 1,2.

The element x = 1 + iit? belongs to the Nil part of K (F2[Cy x Cp]4[t?]), is non trivial,
and i*i,(x) = 1+ (i + 9)t?, which is also non trivial in the Nil part of K;(FF2[C) x
C>]a[t?]). But the restriction of i*i, to the Nil part factors through NK4(F,[C, x Co]),
hence this latter group is non trivial, and since it injects into NK{j(Z[ Qg]), it follows that
NKG(Z[Qs]) is non trivial as well.

We now analyse the homomorphism 6: NK5(IF»[Cy x Cp]) — NK{(Z[Qg]) that ap-
pears in the above exact sequence. Consider the non-trivial elements (as Dennis-Stein
symbols: see, for example [KS]) (x*"i10,0) € NK5(F,[C; x Cy]). Since these elements
do not lift to NK;(Z[C, x Cp]) and i*i, ((x*"i10,0)) = (x>0, 0y {x*"ii0,1 ), which is
also non trivial in the Nil part of K»(F2[Cy x Cz]4[t?]), it follows that

0+#6 <<x 0?0, v> <x 0o, u>) e NKY(Z[Qs))-
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Thus NKG(Z[Qs]) and NK7 (Z[Qg]) are non-trivial infinitely-generated Abelian groups,
of exponent 2 or 4. This proves Proposition 43. O

In summary, Propositions 40 and 43 give us the Nil; summands in equation (27),
and the decompositions in the statement of Theorem 1 then follow. This completes the
proof of that theorem.

Appendix: The Fibred Isomorphism Conjecture

The setup

Let S: TOP — -SPECTRA be a covariant homotopy functor. Let F be the category
of continuous surjective maps: objects in F are continuous surjective maps p: E — B,
where E, B are objects in TOP, and morphisms between pairs of maps p;: E; — B and
p2: E; — B consist of continuous maps f: E; — Ep and g: By — B, that make the
following diagram commute:

B E

1 l le (51)

B, -2 B,.
Within this framework, Quinn constructs a functor from F to (O-SPECTRA [Q]. The
value of this Q)-spectrum at the object (p: E — B) is denoted by H(B; S(p)). The value
at the object (E — *) is S(E). The map of spectra A: H(By;S(p1)) — H(By; S(p2)) as-
sociated to the commutative diagram (51) is known as the Quinn assembly map. Other
ingredients for the Fibred Isomorphism Conjecture may be found in [FJ1].

The conjecture

Given a discrete group I, let Ey¢I' be a universal I'-space for the family of virtually
cyclic subgroups of I', let By¢I' denote the orbit space EycI'/T, and let X be a space on
which I acts freely and properly discontinuously. If (f, g) is the following morphism in
F:
Evel xr X —1— X/T
p1 l p2 l

Byel  —5

then the Fibred Isomorphism Conjecture for the functor S and the group I' is the assertion
that
A: H(ByeT; S(p1) — S(X/T)

is a homotopy equivalence, and hence the induced map

Av: Ta(H(ByeT; S(pr) — ma(S(X/T))

46



is an isomorphism for all n € Z. This conjecture was stated in [FJ1] for the functors S =
P.(-), K(-) and L~%, the pseudoisotopy, algebraic K-theory and £~*-theory functors
respectively. In this paper, we use the functor S = P.(-). The relation between P, ()
and lower algebraic K-theory is described in the work of Anderson and Hsiang, who
proved the following [AH]:

Wh(Zm (X)) ifj=—1
7(Pu(X)) = < Ko(Zmy (X)) ifj=—2
Kjj2(Zmi (X)) ifj < -3,
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