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Minimal time control of fed-batch bioreactor with product
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Térence Bayen · Francis Mairet

September 21, 2012

Abstract This paper is devoted to the minimal time

control problem for fed-batch bioreactors, in presence of

an inhibitory product, which is released by the biomass

proportionally to its growth. We first consider a growth

rate with substrate saturation and product inhibition,

and we prove that the optimal strategy is fill and wait

(bang-bang). We then investigate the case of the Jin

growth rate which takes into account substrate and

product inhibition. For this type of growth function, we

can prove the existence of singular arc paths defining

singular strategies. Several configurations are addressed

depending on the parameter set. For each case, we pro-

vide an optimal feedback control of the problem (of

type bang-bang or bang-singular-bang). These results

are obtained gathering the initial system into a planar

one by using conservation laws. Thanks to Pontryagin

maximum principle, Green’s theorem, and properties of

the switching function, we obtain the optimal synthesis.

A methodology is also proposed in order to implement

the optimal feeding strategies.
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1 Introduction

Fed-batch operation of bioreactor is a popular operating

mode used in industry as the limiting substrate concen-

tration can be easily controlled, see e.g. [1]. Moreover,

it allows to reach a high concentration of cells or prod-

ucts, or a low concentration of substrate (for depollu-

tion). Defining an optimized feeding strategy is a real

challenge which can be tackled using optimal control

theory (see e.g. [2]). For the minimal time problem (i.e.

given initial conditions, the goal is to define a feeding

policy in order to reach a given substrate concentration

with a completely full reactor in a minimal amount of

time), the optimal synthesis (that is the description of

an optimal feedback control for any initial condition)

has been proposed by [3] for increasing growth functions

(e.g., the Monod kinetic, see [4,5]) and nonmonotonic

growth functions with one maximum point (e.g., Hal-

dane kinetic, see [6,5]) using Green’s theorem, via the

technique introduced in [7]. More recently, the prob-

lem for growth functions with two local maxima has

been tackled numerically [8] and analytically [9] allow-

ing impulsive controls (corresponding to instantaneous

dilutions, see [10]).

In this paper, we consider the minimal time con-

trol problem for fed-batch bioreactors in presence of

an inhibitory product. Optimal control problems with

product inhibition have been tackled by [11] using Kel-

ley’s transformation [12] for specific rate of product for-

mation which are not correlated to the specific growth

rate. As an example, the optimal feeding strategy to

maximize the amount of ethanol produced by Saccha-

romyces cerevisiae is provided. Contrary to [11], we con-

sider in this work that the product is released by the

biomass proportionally to its growth [13]. The growth

rate function associated to this model is a smooth func-



2

tion µ(s, p) depending both on the substrate and prod-

uct concentrations.

The paper is organized as follows. In Section 2, the

problem is stated, and we derive several general prop-

erties about extremal trajectories via the Pontryagin

maximum principle. In Section 3, we give the optimal

strategy for the case of an inhibition by product only

and Section 4 is devoted to the case of an inhibition

by product and substrate. As an example, we provide

the optimal synthesis for the Jin growth rate [14]. In

Section 5, we propose a method in order to implement

the optimal strategies. Finally, in Section 6, we discuss

a controllability assumption which was previously used.

2 Statement of the problem and general results

2.1 Formulation of the problem

A perfectly mixed bioreactor with product inhibition

operated in fed-batch can be described by the following

system (after a scaling):
ẋ =

(
µ(s, p)− u

v

)
x,

ṡ = −µ(s, p)x+ u
v (sin − s),

ṗ = µ(s, p)x− u
v p,

v̇ = u,

(1)

where x, s, and p are respectively the concentrations

of biomass, substrate, and product, and v is the vol-

ume of the tank. Here u is the input flow (which is a

measurable control function taking values in [0, 1]) and

sin is the concentration of substrate in the input flow.

If (x, s, p, v) is a solution of (1), one can see that the

functions M := v(x+ s− sin) and N := v(p+ s− sin)

are constant. Therefore, we have x = M
v − s + sin and

p = N
v − s + sin, and the system can be gathered into

a planar system with a drift and a single input u:{
ṡ = −h(s, v)

(
M
v − s+ sin

)
+ u

v (sin − s),
v̇ = u,

(2)

where h(s, v) := µ
(
s, Nv − s+ sin

)
. Note that for N =

0, the system can be written with a growth function

h0(s) := µ (s,−s+ sin) depending only on the sub-

strate concentration.

The optimal control problem can be stated as fol-

lows. We aim at finding a feeding strategy (that is a

control u(·)) steering System (2) in a minimal amount

of time tf (u) to a given target T :

inf
u∈U

tf (u), s.t. ξ(tf (u)) ∈ T , (3)

where ξ(·) := (s(·), v(·)), and U is the set of admissible

controls u. In the present work, T is given by:

T = {ξ ∈ R2
+ | s.t. s(tf ) ≤ sref , v(tf ) = vm}, (4)

where sref is a given substrate concentration, and vm is

the volume of the tank. This set is of particular interest

for wastewater treatment.

Given the domain D = [0, sin) × (0, vm], one can

prove that the target can be reached from any initial

condition (s0, v0) ∈ D by taking u = 1 until v = vm and

then applying u = 0 until s ≤ sref if necessary. The ex-

istence of an optimal control is standard by applying

Fillipov’s Theorem, see [15]. In the following, we call P
the optimal control problem (2)-(3), with initial condi-

tion (s0, v0) ∈ D, and we apply Pontryagin maximum

principle (PMP) on P.

2.2 Pontryagin maximum principle

Let H = H(s, v, λs, λv, λ0, r, u) the Hamiltonian of the

system:

H = −λsh(s, v)

[
M

v
− (s− sin)

]
+ u

[
λs(sin − s)

v
+ λv

]
+ λ0 (5)

If u denotes an optimal control and (s, v) the corre-

sponding solution of (2), there exists tf > 0, λ0 ≤
0, and an absolutely continuous map λ = (λs, λv) :

[0, tf ] → R2 such that (λ0, λ) 6= 0, λ̇s = −∂H∂s , λ̇v =

−∂H∂v , that is:λ̇s = λs

(
∂h(s,v)
∂s x− h(s, v) + u

v

)
,

λ̇v = λs

(
∂h(s,v)
∂v x+ −h(s,v)M+u(sin−s)

v2

)
,

(6)

and we have the maximality condition:

u(t) ∈ argmaxω∈[0,1]H(s(t), v(t), λs(t), λv(t), λ0, ω),

(7)

for almost every t ∈ [0, tf ]. We call extremal trajectory a

sextuplet (s(·), v(·), λ0, λs(·), λv(·), u(·)) satisfying (2)-

(6)-(7), and extremal control the control u associated to

this extremal trajectory. As tf is free, the Hamiltonian

is zero along an extremal trajectory. Notice from (5)-(6)

that λs is always non-zero (it is therefore of constant

sign, see also Lemma 1).

Next, let us define the switching function φ associ-

ated to the control u by:

φ := λs
sin − s
v

+ λv. (8)
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We obtain from (7) that any extremal control satisfies

the following control law: for a.e. t ∈ [0, tf ], we have
φ(t) < 0 =⇒ u(t) = 0 (No feeding),

φ(t) > 0 =⇒ u(t) = 1 (Maximal feeding),

φ(t) = 0 =⇒ u(t) ∈ (0, 1].

If φ vanishes in an isolated point t0, then u is bang-

bang around t0 (that is u switches from 0 or 1 to another

extremal value 0 or 1 at time t0). Whenever φ is zero on

some time interval I ⊂ [0, tf ] (such that meas(I) > 0),

we say that u is a singular control, and the trajectory

contains a singular arc (see e.g. [17]). A computation

shows that we have

φ̇ = λsxψ(s, v), (9)

with

ψ(s, v) =
sin − s
v

∂h

∂s
(s, v) +

∂h

∂v
(s, v). (10)

It follows that if I is a singular arc, we have φ̇ = 0, on

I, that is:

ψ ≡ 0, (11)

as λs and x are non-zero.

The sign of λs is of particular interest in order to

study the switching function. Following [8], let us con-

sider the curve v 7−→ γ(v) which is the unique solution

of (2) with constant control u = 1 and that passes

through (sref , vm). Moreover consider:

D′ = {(s, v) ∈ D | s ≥ γ(v)}. (12)

Lemma 1 If (s0, v0) is in D′, then any optimal trajec-

tory satisfies λs < 0.

Proof From System (6), we have that if λs(0) = 0, then

λs(t) is always zero, and if λs(0) 6= 0, then λs(t) is al-

ways non-zero and of constant sign. An optimal trajec-

tory is a concatenation of arcs where u = 0 (no feeding),

u = 1 (maximal feeding), or singular arcs satisfying

φ = 0. If the initial condition is in D′, any optimal tra-

jectory contains at least an arc u = 0 or a singular arc

(otherwise, the trajectory would not reach T ). Conse-

quently, there exists an interval [t1, t2] such that on this

interval, one has:

H = −λsh(s, v)

[
M

v
− (s− sin)

]
+ λ0 = 0

Now, if at some point t, we have λs(t) > 0, we get a

contradiction as λ0 ≤ 0 and x = M
v − (s − sin) > 0.

Hence, we have λs < 0. �

By a similar argument as in the proof of the previous

lemma, one can prove immediately that λ0 6= 0. By

homogeneity, we take λ0 = −1 in the following.

The next proposition allows to compare the cost of

two trajectories and is based on Green’s Theorem and

a clock form argument, see [7,3].

Proposition 1 Consider two points A and B in D,

and two different trajectories Ta and Tb joining A to

B, such that the trajectory Tb from A to B followed by

the trajectory Ta from B to A is a positively oriented

curve Γ . Let A be the region enclosed by Γ . If ψ(s, v) ≥
0 (resp. ≤ 0) for all (s, v) ∈ A, then the cost Ja of

trajectory Ta is bigger (resp. lower) than the cost Jb of

trajectory Tb.

Proof Using Green’s Theorem, we obtain:

Jb − Ja =

∮
Γ

dt =

∫∫
A
− ψ(s, v)

µ(s, p)2x
dsdv. (13)

If ψ ≥ 0 (resp. ψ ≤ 0), it follows that Jb−Ja ≤ 0 (resp.

Jb − Ja ≥ 0) from the integral above, which proves the

result (see [7] and [3] for more details). �

The expression of ψ(s, v) will be important in the fol-

lowing in order to apply this proposition. We first ex-

press ψ in term of the growth function µ. In the follow-

ing expression, we have written p in instead of p(v) =
N
v − s+ sin. By derivating, we get

∂h

∂s
(s, v) =

∂µ

∂s
(s, p) +

∂p

∂s

∂µ

∂p
(s, p) =

[
∂µ

∂s
− ∂µ

∂p

]
(s, p)

and:

∂h

∂v
(s, v) =

∂p

∂v

∂µ

∂p
(s, p) = −N

v2
∂µ

∂p
(s, p) .

Thus, ψ can be written:

ψ(s, v) =
sin − s
v

∂µ

∂s
(s, p)− N + v(sin − s)

v2
∂µ

∂p
(s, p) .

(14)

The previous expression will be used in order to com-

pute singular arcs in Section 4.

2.3 Computation of singular arcs

In this part, we provide an expression of singular con-

trols in the general case of System (2) and we discuss

the admissibility of singular arcs. The computation of

singular controls is based on the second derivative of φ
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which can be obtained by using Lie brackets, see e.g.

[16]. A direct computation shows that:

φ̈ = λsx
{
u
[∂2h
∂v2

+ 2
(sin − s)

v

( ∂2h
∂s∂v

− 1

v

∂h

∂s

)
+

(sin − s)2

v2
∂2h

∂s2

]
− hx ∂

2h

∂s∂v
− 1

v

∂h

∂s
+
sin − s
v

∂2h

∂s2

}
.

To address the optimality of a singular arc, we use

Legendre-Clebsch necessary condition, see e.g. [17]. If

u is a singular optimal control, we must have:

∂

∂u

d2

dt2
Hu ≥ 0, (15)

along the singular arc, where Hu = φ. In this frame-

work, Legendre-Clebsch condition writes:

∂2h

∂v2
+ 2

(sin − s)
v

( ∂2h
∂s∂v

− 1

v

∂h

∂s

)
+

(sin − s)2

v2
∂2h

∂s2
≥ 0.

(16)

Moreover, if ∂
∂u

d2

dt2Hu > 0 along the singular arc, the

singular control is given by:

ũ(s, v) = hx
∂2h
∂s∂v −

1
v
∂h
∂s + sin−s

v
∂2h
∂s2

∂2h
∂v2 + 2 (sin−s)

v

[
∂2h
∂s∂v −

1
v
∂h
∂s

]
+ (sin−s)2

v2
∂2h
∂s2

.

(17)

Now, we address the question of admissibility of a sin-

gular arc. First, notice that if for all (s0, v0) ∈ D′, we

have
∂ψ

∂v
(s0, v0) 6= 0,

then by the implicit function Theorem, there exists a

unique function s 7−→ ṽ(s), defined in some neighbor-

hoodW of s0 and such that ψ(s, ṽ(s)) = 0 for all s ∈ W.

Therefore, if we consider a singular arc defined on

some time interval [t1, t2], we have that it is admissible

if and only if{
ṽ(s(t)) > 0, ∀t ∈ [t1, t2],

ũ(s(t), ṽ(s(t))) ∈ [0, 1], ∀t ∈ [t1, t2].
(18)

In Section 4, the first condition of (18) is used in order

to determine the structure of an optimal control. More-

over, we assume in section 4 that the singular arc is

controllable, that is the singular control ũ takes values

in [0, 1]. In Section 6, we will discuss the validity of this

assumption.

In the case where h(s, v) = h0(s), condition (11)

implies that

h′0(s) = 0, (19)

hence the concentration of substrate s(t) is constant

and is equal to a critical point s̃ of h0 (if it exists).

Moreover, we have in in this case

∂

∂u

d2

dt2
Hu = λsx

sin − s
v2

h′′(s),

hence, (15) implies that only local maxima of h0 are

candidates for optimality (see [9],[8]).

3 Inhibition by product only

In this section, we study problem P in the case of in-

hibition by the product which means that the mapping

s 7−→ µ(s, p) is increasing with respect to s for all p,

and that the mapping p 7−→ µ(s, p) is decreasing with

respect to p for all s > 0.

Property 1 In the case of inhibition by product only,

the optimal strategy is fill and wait.

Proof Since N + v(sin − s) = vp ≥ 0, we get from (14)

that ψ(s, v) > 0 for all (s, v) ∈ D. Therefore, φ̇(t) 6= 0,

so the optimal strategy does not contain a singular arc.

Using Proposition 1, we can conclude that the optimal

strategy is u = 1 until vm, and then u = 0 (strategy fill

and wait). �

Remark 1 Using the same approach, we can show that

this strategy is also optimal for bioprocesses in which

microbial growth is represented by the Contois model

µ(s, x), see [18]:

µ(s, x) = µm
s

kx+ s
.

In particular µ is increasing with respect to s and de-

creasing with respect to x. This growth rate is widely

used in wastewater treatment as it is suitable to repre-

sent hydrolysis, which is generally the limiting step for

particulate waste treatment.

4 Inhibition by product and substrate

In this section, we consider inhibition by product and

substrate, using as an example the growth rate pro-

posed by Jin et al. (see [14]):

µ(s, p) = µm
s

k1 + s
e−k2p−k3s. (20)

Notice that s 7−→ µ(s, p) is non-monotonic. In the case

where µ is given by (20), we obtain by (14):

ψ(s, v) = µm
e−k2p−k3s

v(k1 + s)
Ψ(s, v), (21)
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with:

Ψ(s, v) = (sin − s)
[

k1
k1 + s

+ s(k2 − k3)

]
+
k2Ns

v
.

This expression will allow to characterize singular arcs

in the next section.

4.1 Case N = 0

For future reference, let us define a polynomial ρ by

ρ(s) = s2 + k1s+
k1

k2 − k3
.

The discriminant of ρ reads: ∆ = k1(k1 − 4
k2−k3 ), and

whenever ∆ ≥ 0, let s̄ = −k1+
√
∆

2 the positive root of

ρ. Notice that we always have ρ′ ≥ 0.

From (19), s = s is a singular arc provided that

∆ ≥ 0 (see also [9],[8],[3]), and we can define a singular

control ū depending only on v and which is obtained

solving (2) when the substrate concentration is constant

equal to s:

u(v) = h0(s)

(
v +

M

sin − s

)
. (22)

The singular arc is therefore admissible provided that

u(v) ∈ [0, 1] for all v ∈ (0, vm]. First, one has x =
M
v + sin − s > 0 so that u(v) > 0. Thus, if:

h0(s)

(
vm +

M

sin − s

)
< 1, (23)

then the singular arc is admissible. This assumption

is generally used for minimal time control of fed-batch

reactor with nonmonotonic growth rate (see e.g. [10]).

The next proposition gives an optimal synthesis of the

problem for N = 0 which is closely related to the one

obtained in [3].

Proposition 2 Assume that (23) is satisfied.

(i). If ∆ ≤ 0 or s̄ ≥ sin, the optimal strategy is fill and

wait (bang-bang).

(ii). If ∆ > 0 and s̄ < sin, the optimal strategy is the

singular arc strategy s, defined as follows (see Fig. 1):

u(s0, v0) =


ū if s0 = s̄ and v0 < vm,

0 if s > s̄ or v0 = vm,

1 if s < s̄ and v0 < vm,

where control u is given by (22) and is such that s(t) = s̄

until the volume reaches vm.

Proof If N = 0, it follows from (21) that a singular arc

is possible if ρ(s) = 0. If ∆ ≤ 0, the equation ρ = 0

does not have any positive root, so a singular arc is not

possible, and ψ(s, v) > 0 for all (s, v) ∈ D. If ∆ > 0,

there exists a positive root s̄ of ρ = 0 which defines a

singular arc, and ψ(s, v) > 0 (resp. < 0) if s < s̄ (resp.

> s̄). Using Proposition 1, we can conclude that the

optimal strategy is:

– fill and wait if ∆ ≤ 0 or s̄ ≥ sin,

– the singular arc strategy s̄ if ∆ > 0 and s̄ < sin. �

0 Sin
0

Vm

 Substrate

 V
o
lu

m
e

SSref

Fig. 1 Optimal trajectories (in red) for various initial condi-
tions for the Jin growth rate with N = 0 (see Proposition 2).
In blue, the line s = s̄. Parameter values used for simulation
are given in Table 1.

4.2 Computation of singular arcs in the case N 6= 0

We now investigate the case where the parameter N is

non-zero. First, let us characterize the singular arc in

this case. From (21), we obtain that along a singular

arc, the volume ṽ depends on the concentration s by:

ṽ(s) = −N s(k1 + s)k2
(sin − s) [k1 + s(k1 + s)(k2 − k3)]

. (24)

Remark 2 One has Ψ(s, v) = k2Ns
v

(
1− v

ṽ(s)

)
for all

(s, v) ∈ D′ .



6

The derivative of ṽ(s) writes:

∂ṽ

∂s
=

ṽ(s)

sin − s
− Nk1k2(k1 + 2s)

(sin − s) [k1 + s(k2 − k3)(k1 + s)]
2 .

(25)

By combining the previous equality and (2), we get that

the singular control only depends on the substrate con-

centration and is given by:

ũ(s) =
x(s)ṽ(s)h(s, ṽ(s))

sin − s

(
1− ṽ(s)

(k2 − k3)2

Nk1k2

ρ2(s)

ρ′(s)

)
(26)

where x(s) = M
ṽ(s) + (sin − s).

The next lemma is concerned with the orientation

of the singular arc.

Lemma 2 If N < 0 (resp. N > 0), then ṡ > 0 (resp.

ṡ < 0) along the singular arc, and the singular arc is

oriented clockwise (resp. counterclockwise).

Proof Replacing the expression of the singular control

ũ(s) into (2) yields to:

ṡ = −h(s, ṽ(s))x(s)ṽ(s)(k2 − k3)2

Nk1k2

ρ2(s)

ρ′(s)
,

and the result follows directly from the sign of the right

member of the expression above. �

In order to tackle the controllability of the singular arc,

it can be convenient to replace ṽ(s) by its expression in

(26). First, we have:
−k2

(
N
ṽ(s) + sin − s

)
= k1(sin−s)

s(k1+s)
− (sin − s)k3

h(s, ṽ(s)) = µm
s

k1+s
e
−k3sin+k1

sin−s

s(k1+s) ,
xṽ(s)
sin−s = M

sin−s + ṽ(s) = 1
sin−s

(
M −N k2s(k1+s)

(k2−k3)ρ(s)

)
,

therefore, the singular control becomes:

ũ(s) = µm
s

(k1 + s)(sin − s)
e
−k3sin+k1

sin−s

s(k1+s)(
M −N k2s(k1 + s)

(k2 − k3)ρ(s)

)(
1 +

k2 − k3
k1

s(k1 + s)ρ(s)

(sin − s)ρ′(s)

)
In order to be admissible the singular arc must be such

that ṽ(s) ≥ 0 and ũ(s) ∈ [0, 1]. From (24) and (26), it

follows that if

−N(k2 − k3)ρ(s) > 0 (27)

and

0 ≤ h(s, ṽ(s))x(s)ṽ(s)

sin − s

(
1− ṽ(s)

(k2 − k3)2

Nk1k2

ρ2(s)

ρ′(s)

)
≤ 1,

(28)

then the singular control is admissible. We now make

the following assumption on the system:

Hypothesis 1 The singular arc is always controllable,

that is ũ(s) ∈ [0, 1].

Remark 3 Following [9],[8] and (23), it is standard to

assume that

max
s

x(s)ṽ(s)h(s, ṽ(s))

sin − s
< 1, (29)

where the maximum is taken for s ∈ (0, sin) such that

ṽ(s) ≤ vm. This condition ensures that ṡ > 0 along the

singular arc in (2) whenever u = 1. As we have ṡ < 0

whenever u = 0, one can infer that in some cases (29)

implies that the singular arc is controllable. However,

from (26), this condition is not sufficient to define ad-

missible singular arcs (as in the case where N = 0). For

instance, when N > 0, condition (29) ensures only that

ũ(s) ≤ 1, but ũ(s) ≥ 0 is not guaranteed.

Finally, we have the following result on the optimality

of a singular arc.

Proposition 3 If a singular arc is admissible, then it

satisfies Legendre-Clebsch condition (15).

Proof From (26), we obtain:

∂

∂u

d2

dt2
Hu = λsxµm

e−k2p−k3s

v(k1 + s)
γ(s, v),

where γ(s, v) := k1k2Nρ
′(s)(sin−s)

(k2−k3)v2ρ(s)(k1+s) . As we have λs < 0

in D′, we obtain that ∂
∂u

d2

dt2Hu ≥ 0 if and only if

−N(k2 − k3)ρ(s) ≥ 0, (30)

which is exactly saying that ṽ(s) ≥ 0. Therefore, the

singular arc satisfies Legendre-Clebsch condition. �

4.3 Optimal synthesis in the case N 6= 0

Throughout this part, we assume that Hypothesis 1 is

satisfied. Our aim is to perform an optimal synthesis of

the problem when N 6= 0 and to find an optimal feeding

strategy for any initial condition in D′
In order to determine the optimal feeding strategy,

we consider the following cases:

– Case 1: N < 0,

– Case 2: N > 0 and k2 − k3 > 0,

– Case 3: N > 0, k2 − k3 < 0, and s̄ ≥ sin,

– Case 4: N > 0, k2 − k3 < 0, and s̄ < sin.

For each case, we can now provide the optimal synthe-

sis:

Property 2 For Case 1, the optimal strategy is the sin-

gular arc strategy ṽ(s) (see Fig. 2), defined as follows:
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– if s > ṽ−1(v) or v = vm, then u = 0.

– if v = ṽ(s) and v < vm, then u = ũ(s, v).

– if s < ṽ−1(v) and v < vm, then u = 1.

Proof If k2 − k3 > 0, then ṽ(s) is positive and increas-

ing on (0, sin). If k2 − k3 < 0, we have two subcases:

if s̄ ≥ sin, then ṽ(s) is also positive and increasing

on (0, sin) while if s̄ < sin, then ṽ(s) is positive and

increasing on (0, s̄), and negative on (s̄, sin) (one has

ṽ(s) → +∞ when s → s). From Remark 2, one can

check that ψ(s, v) > 0 for s < ṽ−1(v) and ψ(s, v) < 0

for s > ṽ−1(v). Consequently, Proposition 1 implies

that the optimal feeding strategy is the singular arc

strategy ṽ(s). �
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Fig. 2 Optimal trajectories (in red) for various initial con-
ditions for the Jin growth rate, Case 1 (see Property 2). In
blue, the curve s 7−→ ṽ(s). Parameter values used for simula-
tion are given in Table 1.

Table 1 Parameter values used for simulations with the Jin
growth rate (see Fig. 1, 2, and 3)

vm sin sref M N k1 k2 k3

N = 0 0.3 100 1 20 0 20 0.01 0.02
Case 1 0.3 100 1 20 -10 20 0.02 0.01
Case 4 0.5 100 1 20 10 36 0.1 0.2

Property 3 For Cases 2 and 3, the optimal strategy is

fill and wait.

Proof We have ṽ(s) < 0 for s ∈ (0, sin), so a singular

arc is not possible and the optimal control is bang-bang.

Given that ψ(s, v) > 0 in the domain D, we conclude

the proof by using Proposition 1. �

For Case 4, ṽ(s) is negative on the interval (0, s̄),

and positive on (s̄, sin) with two vertical asymptotes

for s = s̄ and s = sin (see Fig. 3). The next Lemma on

the behavior of ṽ(s) is rather technical and its proof is

provided in the Appendix.

Lemma 3 The function s 7−→ ṽ(s) admits a unique

minimum on the interval (s̄, sin) that we call (sd, vd).

If vd > vm, one can easily show that the optimal strat-

egy is fill and wait (in this case, the singular arc is not

admissible), so we will only consider the case vd < vm.

In order to define the optimal strategy, we divide the

domain D in five regions A, B, C, D, E (see Fig. 3),

delimited by the following curves:

– the blue curve is the mapping s 7−→ ṽ(s) on (s̄, sin),

– the solution of (2) with u = 1 which passes through

the point (sd, vd) is denoted by s 7−→ γ1(s) in the

plane (s, v). We call L1 this curve (depicted in green

on Fig. 3).

– the dot-dashed curve L2 is the set of points ŝ(v) >

s0(v) for v > vd such that:∫ ŝ(v)

s0(v)

ψ(s, v)

h(s, v)2(M/v + sin − s)
ds = 0,

where s0(v) is such that v = ṽ(s0) and s0(v) < sd.

– the solution of (2) with u = 1 which passes through
the intersection between L2 and the line v = vm is

denoted by s 7−→ γ3(s) in the plane (s, v). We call

L3 this curve (depicted in green on Fig. 3).

We can now define the regions as follows:

A = {(s, v) ∈ D | v > ṽ(s)}
B = {(s, v) ∈ D \A | v > γ1(s)}
D = {(s, v) ∈ D | v < γ3(s)}
E =

{
(s, v) ∈ [sd, sin]× [vd, vm] | ŝ−1(v) < v < ṽ(s)

}
C = {(s, v) ∈ D \ (A ∪B ∪D ∪ E)}

Notice that from Remark 2 we have ψ(s, v) > 0 for

(s, v) ∈ A, and ψ(s, v) < 0 otherwise.

Remark 4 Given the definition of ŝ(v), the curve L2

starts at the point (sd, vd). Nevertheless, it is not clear

that ŝ(v) will always exist for all v ∈ [vd, vm]. In this

case, the curve L2 will end at s = sin for some volume

v ∈ (vd, vm), and the region D will not exist (but the

same optimal synthesis holds).
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Hypothesis 2 For any volume v ∈ (vd, vm), we have
dŝ(v)
dv > sin−ŝ(v)

v .

If this hypothesis holds, then any trajectory starting in

E can not go in C ∪D. According to various numerical

simulations, this assumption seems to be always true.

Table 2 presents a numerical verification of this hypoth-

esis with the parameter set used for simulations (given

in Table 1).

Table 2 Numerical verification of Hypothesis 2 with the pa-
rameter set used for simulations (given in Table 1).

v vd = 0.17 0.2 0.3 0.40 vm = 0.5

dŝ(v)

dv
2.1e3 605 132 71 40

sin−ŝ(v)

v
330 238 86 42 23

Property 4 For Case 4 under hypothesis 2, we have:

(i). If (s0, v0) ∈ A ∪B ∪ E, the optimal strategy is the

singular arc strategy ṽ(s), defined as follows:

– if (s0, v0) ∈ A, then u = 0.

– if v0 = ṽ(s0) with s0 ≤ sd, then u = ũ.

– if (s0, v0) ∈ B, then u = 1.

(ii). If (s0, v0) ∈ C, the optimal strategy is u = 1 until

reaching L2, and then the singular arc strategy ṽ(s).

(iii). If (s0, v0) ∈ D, the optimal strategy is fill and

wait.

Proof First, let us prove (i) for (s0, v0) ∈ A ∪ B. The

region A ∪ B is invariant: any trajectory starting in

A∪B will stay in it. Indeed, if we consider the trajectory

u = 1 starting at (s, v) such that s > sd and v = ṽ(s),

we have:
∂v

∂s
>

v

sin − s
>
∂ṽ

∂s
,

which proves that A ∪ B is invariant. Moreover, from

Lemma 2, a trajectory cannot follow the singular arc

for s > sd (as ṡ < 0 for N > 0 and v̇ ≥ 0). Given that

ψ(s, v) < 0 in A and ψ(s, v) > 0 in B, we can apply

Proposition 1 and conclude that, if (s0, v0) ∈ A ∪ B,

then the singular arc strategy is optimal.

For proving (i), it remains to consider the case where

the initial condition is in E. First, consider a sequence

u = 0 (at a given constant volume v) on a time interval

[t0, t1]. We have for all t ∈ [t0, t1]:

λs(t) =
−1

h(s, v)x
, φ̇(t) =

−ψ(s, v)

h(s, v)
. (31)

Take v > vd, and let s(t0), s(t1) the two substrate con-

centrations such that s(t0) = ŝ(v), v = ṽ(s(t1)), and

s(t1) < sd. We obtain from (31):∫ t1

t0

φ̇(t)dt =

∫ s(t1)

s(t0)

ψ(s, v)

h(s, v)2(M/v + sin − s)
ds = 0

Therefore, a sequence u = 0 that contains two switches

at t0 and t1 is candidate for optimality.

Finally, take (s0, v0) ∈ E. As we have in this region

φ̇ < 0, we only have two candidates C1 and C2 for

optimality:

– C1: if φ(t0) < 0, then u = 0 until reaching A.

– C2: if φ(t0) > 0, then the trajectory starts with

u = 1. In order to reach the target, this trajectory

must switch at a time t1 (with φ(t1) = 0). Then, it

satisfies u = 0 until reaching A (as φ̇ < 0, only one

switch is possible in E).

For both strategies, we must have u = 0 until reaching

the singular arc ṽ at a time t2 with φ(t2) = 0 and a

substrate concentration s(t2) < sd (see above in region

A). However, the second trajectory C2 satisfies s(t1) <

ŝ(v(t1)), hence we have

φ(t2) =

∫ t2

t1

φ̇(t)dt =

∫ s(t2)

s(t1)

ψ(s, v)

h(s, v)2(M/v + sin − s)
ds

>

∫ ŝ(v)

s(t1)

ψ(s, v)

h(s, v)2(M/v + sin − s)
ds = 0,

where v = v(t1) = v(t2). Thus, we get a contradiction.

Therefore, the first candidate C1 is optimal, which con-

cludes the proof of (i).

Now consider (ii) and (iii) (i.e. let (s0, v0) ∈ C ∪ D a

given initial condition at time t0). First, if v0 < vd, we

have u(t0) = 1. Otherwise, we would have φ(t0) < 0

and u(t0) = 0, but as φ̇(t) < 0, the trajectory would

not reach the target (as the control cannot switch).

Secondly, assume vd < v0 < vm. If u(t0) = 0, then

the trajectory must switch at a time t1 (in order to

reach the target). As φ̇ < 0 in C ∪ D ∪ E, the switch

should be in A. Following the proof of (i), the trajec-

tory will switch to the singular arc at a time t1 such

that ṽ(s(t1)) = v(t0) with s(t1) < sd. But we have:

φ(t1) = φ(t0) +

∫ t1

t0

φ̇u=0(s, v)dt

<

∫ s(t1)

ŝ(v(t0))

ψ(s, v)

h(s, v)2(M/v + sin − s)
ds = 0,

as s(t0) > ŝ(v(t0)), which is a contradiction. Therefore,

we have u(t0) = 1 and a switch is possible only in the

two following cases:
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– If (s(t0), v(t0) ∈ C, then the trajectory switches for

s = ŝ(v),

– If (s(t0), v(t0) ∈ D, then the trajectory switches at

volume v = vm.

This concludes the proof. �
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Fig. 3 Optimal trajectories (in red) for various initial con-
ditions for the Jin growth rate, Case 4 (see Property 4 and
the paragraph above this property for the definition of the
curves Li). In blue, the curve ṽ(s). Parameter values used for
simulation are given in Table 1.

5 Practical implementation

Given model uncertainties that arise in bioprocesses

and the lack of online sensors, the practical implemen-

tation of such optimal strategies is not straightforward.

The first challenge is to determine which case applies

since it depends on model parameters and initial con-

ditions which are generally poorly known. Then, a ro-

bust approach should be used to implement the opti-

mal strategy. For inhibition by product only (Section

3) and inhibition by product and substrate with N = 0

(Section 4.1), the optimal strategy is either fill and wait

(which implementation is straightforward), either a sin-

gular strategy which consists at regulating s = s̄, i.e.

maintaining the specific growth rate at its maximum.

Implementation of the second strategy has been tackled

in the case of nonmonotonic growth rate by Moreno et

al. [19]. Their method - called Event-Driven Time Op-

timal Control (ED-TOC) - consists in the approxima-

tion of the singular arc by a sequence of bang-bang arcs

(that is u is equal either to 0 or 1) where the switching

instants are determined by the variations of the specific

growth rate (which is estimated via online measurement

of the dissolved oxygen concentration). This strategy

has been validated experimentally with the removal of

the toxic organic compound 4-chlorophenol in a lab-

scale bioreactor. Other methods have been proposed for

nonmonotonic growth rate such as adaptive extremum

seeking [20] but their experimental implementation has

not yet been carried out (probably because of a higher

complexity). Thereby, the ED-TOC strategy seems to

be a good candidate for the practical implementation

of the optimal strategy for N = 0. This case is of par-

ticular interest since N tends to zero when repeated

fed-batch cultures are carried out (assuming that the

new fed-batch culture starts, after a partial discharge

of the reactor, with the substrate and product concen-

trations reached at the end of the previous culture).

For N 6= 0, the optimal trajectory (see Section 4.2)

should follow the singular arc path ṽ(s) defined by ψ =

0. Implementation of this strategy is more problematic

given the uncertain framework. Nevertheless, note that

ψ (see Equation (10)) is actually the directional deriva-

tive of the specific growth rate h(s, v) along the vector

( sin−sv , 1) in the (s, v) plan. This vector defines the tra-

jectory u = 1 if we assume u(sin−s)
v � h(s, v)x (as it

is done in [10,9] for impulsive control). Thus, along a

sequence u = 1, the observed growth rate goes through

a maximum when the trajectory cross the curve ṽ(s).

This is a first hint that an ED-TOC strategy can be

adapted to this case: the optimal trajectory can be ap-

proximated by a bang-bang strategy where the varia-

tion of the growth rate determines the switching in-

stants. Fig. 4 illustrates this approach. For each inter-

section between the trajectory with u = 1 and the curve

ṽ(s) (at times tA and tB), the growth rate goes through

a maximum. Nevertheless, a slight lag appears, prob-

ably due to the fact that the hypothesis u(sin−s)
v �

h(s, v)x is not verified. In practice, the maximal feed-

ing rate (taken as 1 in this work) should be tuned ade-

quately: a high value will make the hypothesis valid, but

the substrate concentration will increase rapidly during

a sequence u = 1 and the trajectory will go away from

the singular arc, before the controller reacts.

In order to approximate the optimal trajectory, the fol-

lowing strategy can be used:
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Fig. 4 Approximation of the optimal strategy for the Jin
growth rate, Case 1 by a sequence of bang-bang arcs. Top:
trajectory (in red) in the (s, v) plan. Down: Variation of the
(observed) growth rate. The intersections of the trajectory
u = 1 with the curve ṽ(s) (in blue) at time tA and tB can be
estimated by the variation of the growth rate (see Section 5).

∣∣∣∣∣∣∣∣∣∣∣∣

while v < vm∣∣∣∣∣∣
while µ̇ > 0 and v < vm
u = 1

end

u = 0 during ∆t

end

u = 0 until s = sref

(32)

Another difficulty with this strategy is that during a

sequence u = 0, we cannot determine if the trajectory

has crossed the singular arc ṽ(s). Nevertheless, if the

control switches to u = 1 before crossing the singular

arc, then we will have µ̇ < 0, so the control will switch

back to u = 0. In practice, the time ∆t should be pre-

determined via simulations and ideally adjusted by an

adaptive strategy. This will deserve further investiga-

tions.

6 Controllability assumption

So far, we have assumed that the singular arc is al-

ways controllable. This means that the singular control

always satisfies the bound constraints in the invariant

domain of the system. This is a classical assumption

in this kind of problem (see e.g. [8]). Nevertheless, for

some initial conditions, this should not be true (as the

expressions providing the singular control do not neces-

sarily define an admissible control), and it changes the

optimal synthesis. We will discuss the validity of this

assumption for the different cases where a singular arc

is possible (case N = 0, case 1 and 4 of section 4.3) by

studying if the singular control is admissible.

6.1 Study of case N = 0

Let us define a volume v∗ such that:

v∗ =
1

h0(s)
− M

sin − s
. (33)

From (22), it follows that the singular arc is controllable

for v ∈ (0, v∗] (indeed, if v > v∗, then u no longer be-

longs to [0, 1]). Thus, the controllability condition (23)

rewrites:

vm < v∗

Otherwise, a trajectory cannot follow the singular arc

until the maximal volume vm, which affects the optimal

synthesis. In particular, we have depicted a result which

goes against intuition: it is not optimal to stay as long

as possible on the singular arc (manuscript under prepa-

ration). This result applies also for the more classical

problem of a growth rate s 7−→ µ(s) with one unique

maximum s (e.g. the Haldane function) and where the

singular arc is precisely s(t) = s.

6.2 Study of case 1

We now consider the first case of Section 4.3 when

N < 0, and we study in particular if (26) defines an ad-

missible control. The values of the parameter are taken

from Table 1. In particular we have k2−k3 > 0, thus we

get from (24) that s 7−→ ṽ(s) is well defined and positive

on [0, sin). Moreover, we have that ṽ(s) goes to infinity

when s goes to sin. From (26), we have that ũ(s) ≥ 0 (as

N < 0). But the inequality ũ(s) ≤ 1 may not be valid
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for all s ∈ D′. In view of the expressions of the singu-

lar control ũ(s) of Section 4.2, finding the set of points

where this inequality is satisfied is more difficult than

for the case N = 0. From a numerical point of view, the

plot of s 7−→ ũ(s) (see Fig. 5) shows that the singular

arc is controllable only if s is in some interval [s1, s2],

where s1 and s2 are such that ũ(s1) = ũ(s2) = 1, see

Fig. 5.
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Fig. 5 Figure left : plot of the singular control s 7−→ ũ(s)
defined by (26) when N < 0. Figure right : plot of the singular
arc s 7−→ ṽ(s) defined by (24) when N < 0.

Therefore, in this case, our optimal synthesis for

the trajectories bang-singular-bang remains valid un-

der two conditions:

– the trajectory should reach the singular arc ṽ(s)

with s > s1,

– the trajectory can follow the singular arc until the

maximal volume, that is ṽ(s2) > vm.

6.3 Study of case 4

Recall that in case 4 of Section 4.3, we have N > 0,

k2 − k3 < 0 and s < sin. Contrary to the case 1, we

have the following result.

Proposition 4 Assume that (29) holds. Then for all

s ∈ (s, sd], the singular control ũ(s) given by (26) sat-

isfies ũ(s) ∈ [0, 1].

The proof is technical and is given in the Appendix.

7 Conclusion

This paper has tackled the minimal time control prob-

lem for fed-batch bioreactors, in presence of an inhibitory

product, which is released by the biomass proportion-

ally to its growth. Thanks to Pontryagin maximum

principle, Green’s theorem, and properties of the switch-

ing function, we have provided the optimal strategy,

which is of type bang-bang or bang-singular-bang de-

pending on the parameter set. Finally, we have provided

a methodology in order to implement these strategies

in a real process.

8 Appendix

We first prove Lemma 3. Let us define β := k1
k2−k3 < 0

and write ṽ(s) as follows:

ṽ(s) = − Nk2
k2 − k3

ρ(s)− β
ρ(s)(sin − s)

.

Let us now show that the derivative of the mapping

s 7−→ α(s) := ρ(s)−β
ρ(s)(sin−s) has exactly one zero on the

interval (s, sin). By derivating, one has:

α′(s) =
γ(s)

ρ2(s)(sin − s)2
,

where

γ(s) = ρ2(s)− βρ(s) + βρ′(s)(sin − s).

Now, s 7−→ γ(s) is convex on [s, sin] as we have

γ′′(s) = 2ρ′(s)2 + 4ρ(s)− 6β > 0.

Finally, one has γ(s) < 0 and γ(sin) > 0, therefore γ

admits exactly one zero on (s̄, sin). It follows that α

has also exactly one zero on (s̄, sin) which concludes

the proof as lim ṽ(s) = +∞ when s goes to s̄ or to sin.

We now prove that for case 4 (that is when N > 0

and k2− k3 < 0), the singular control ũ satisfies ũ(s) ∈
[0, 1] for s ∈ (s, sd]. Using (29) and N > 0, we get eas-

ily that ũ(s) ≤ 1. Let us now show that ũ(s) ≥ 0 for

s ∈ (s, sd]. By (26), it is enough to prove that

ϕ(s) := ṽ(s)
(k2 − k3)2ρ2(s)

Nk1k2ρ′(s)
≤ 1.

By (25), the derivative of ϕ can be written:

ϕ′(s) =
ϕ(s)− 1

sin − s
+ λ(s)ϕ(s), (34)

where

λ(s) :=
2[ρ′(s)2 − ρ(s)]

ρ(s)ρ′(s)
.

As β < 0, it is straightforward to check that λ(s) > 0

for s ∈ (s, sd]. Now, as sd is the unique minimum of ṽ

on (s, sin), one has ∂ṽ
∂s (sd) = 0, and by (25), this gives
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ϕ(sd) = 1. It follows from (34) that ϕ′(sd) > 0, thus ϕ

is increasing in a neighborhood of sd. As a consequence,

we have ϕ ≤ 1 in a left neighborhood of sd.

Assume now by contradiction that ϕ−1 is vanishing

on the interval (s, sd), and consider the greatest s0 <

sd such that ϕ(s0) = 1. By definition of s0, we have

ϕ < 1 on the interval (s0, sd), consequently we get that

ϕ′(s0) ≤ 0. On the other hand, (34) gives ϕ′(s0) =

λ(s0)ϕ(s0) > 0 (recall that both λ and ϕ are positive

on (s, sd]). Therefore, we have a contradiction which

proves that we have ϕ < 1 on the interval (s, sd).
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