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Abstract : We propose a new sequential procedure to detect change in the parameters of a process

X = (Xt)t∈Z belonging to a large class of causal models (such as AR(∞), ARCH(∞), TARCH(∞), ARMA-

GARCH processes). The procedure is based on a difference between the historical parameter estimator and

the updated parameter estimator, where both these estimators are based on a quasi-likelihood of the model.

Unlike classical recursive fluctuation test, the updated estimator is computed without the historical observa-

tions. The asymptotic behavior of the test is studied and the consistency in power as well as an upper bound

of the detection delay are obtained. Some simulation results are reported with comparisons to some other

existing procedures exhibiting the accuracy of our new procedure. The procedure is also applied to the daily

closing values of the Nikkei 225, S&P 500 and FTSE 100 stock index. We show in this real-data applications

how the procedure can be used to solve off-line multiple breaks detection.

Keywords: Sequential change detection; Change-point; Causal processes; Quasi-maximum likelihood esti-

mator; Weak convergence.

1 Introduction

In statistical inference, many authors have pointed out the danger of omitting the existence of changes in data.

Many papers have been devoted to the problem of test for parameter changes in time series models when all

data are available, see for instance Horváth [16], Inclan and Tiao [19], Kokoszka and Leipus [22], Kim et al. [21],

Horváth and Shao [18], Aue et al. [3] or Kengne [20]. These papers consider ”retrospective” (off-line) changes

i.e. changes in parameters when all data are available. Another point of view is the change detection when

new data arrive; this is the sequential change-point problem. For instance, consider the following sequential

problems.

Example 1.1 (Industrial quality control). Consider an industrial system producing electronic objects. To

know in real time the quality of production, some devices have been installed to rely the informations about

the functioning. The performance is evaluated for each production and the system is automatically stopped

if a disorder is detected. After an investigation of the root cause of the problem and a possible maintenance,

the system is resetting.

∗Supported by Université Paris 1 and AUF (Agence Universitaire de la Francophonie).
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Example 1.2 (Monitoring in economic system). Consider an economic system described by the regression

model Yt = X ′
tβ0 + ξt, t = 1, 2, · · ·n where Yt is the variable of interest and Xt the vector of explanatory

variables. New data arrive steadily at time t = n + 1, · · · ; Chu et al. (1996) asked : ”is yesterday’s model

capable of explaining today’s data?” This question leads to construct a procedure which will test sequentially

if the model with parameter β0 is able to explain new data. If at time k > n a change from β0 to β1 is detected,

the economic system will now use the model Yt = X ′
tβ1 + ξt, t = k + 1, · · · and monitoring will continue to

ensure that this new model can explain the new data that will arrive.

The sequential change-point problem presented in Example 1.1 is often designed by the terminology ”fault

detection control” or ”engineering process control”. The aim of the control scheme is to trigged an alarm and

stop the system when disorder is detected. Since the diagnostic, the resetting and the malfunctioning can

have a cost, the scheme will be able to reduce as soon as possible the false alarm and the delay of detecting

disorder. For more review of this approach, see Pollak and Siegmund (1991), Basseville and Nikiforov (1993),

Lai (1998), Lai and Shan (1999), Mei (2006), Moustakides (2008) · · ·
The problem presented in Example 1.2 is designed by the terminology ”monitoring scheme” (see for instance

Chu et al. [13]) ; the term ”on-line segmentation” or ”sequential segmentation” is often used in application in

signal processing (see for instance Basseville and Nikiforov [6] p. 2). These terminologies refer to the sequential

procedure where false alarms are less crucial (than in the previous example, because here, the system will deal

with in the next stage); in such case, it is important to estimate the model described by the system after

change.

This paper focus on such sequential change-point problem and we will follow the paradigm of Chu et al. [13],

Berkes et al. (2004), Horváth et al. (2004), Zeileis et al. (2005), Aue et al. (2009), Na et al. (2011) · · · , who
have seen this problem as a classical hypothesis testing with a fixed probability of type I error.

An important turning on this topic was made with the paper of Chu et al.. They considered the sequential

change in regression model and pointed out the effects of repeating retrospective test when new data are

observed; this can increase the probability of type I error of the test. They successfully applied a fluctuation

test to solve the sequential change-point problem. Two procedures are developed based on cumulative sum

(CUSUM) of residuals and recursive parameter fluctuations. Their idea has been generalized and several pro-

cedures are now based on this approach. Leisch et al. [27] introduced the generalized fluctuation test based on

the recursive moving estimator which contains the test of Chu et al. [13] as a special case. Horváth et al. [17]

introduced residual CUSUM monitoring procedure where the recursive parameter is based on the historical

data. This procedure has been generalized by Aue et al. [2] to the class of linear model with dependent

errors. Berkes et al. [7] considered sequential changes in the parameters of GARCH process. According to the

fact that the functional limit theorem assumed by Chu et al. [13] is not satisfied by the squares of residuals

of GARCH process, they developed a procedure based on quasi-likelihood scores. Na et al. [30] developed

a monitoring procedure for the detection of parameter changes in general time series models. They show

that under the null hypothesis of no change, their detector statistic converges weakly to a known distribu-

tion. However, the asymptotic behavior of this detector is unknown under the alternative of parameter changes.

In this new contribution, we consider a large class of causal time series and investigate the asymptotic

behavior under the null hypothesis of no change but also under the alternative hypothesis of change. More

precisely, let M, f : IRIN → IR be measurable functions, (ξt)t∈Z be a sequence of centered independent and

identically distributed (iid) random variables satisfying var(ξ0) = σ2 and let Θ be a fixed compact subset of
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IRd. Let T ⊂ Z, and for any θ ∈ Θ, define

Class MT (Mθ, fθ): The process X = (Xt)t∈Z belongs to MT (Mθ, fθ) if it satisfies the relation:

Xt+1 =Mθ

(
(Xt−i)i∈IN

)
ξt + fθ

(
(Xt−i)i∈IN

)
for all t ∈ T . (1)

The existence and properties of this general class of causal and affine processes were studied in Bardet and

Wintenberger [4]. Numerous classical time series (such as AR(∞), ARCH(∞), TARCH(∞), ARMA-GARCH

or bilinear processes) are included in MZ(M, f). The off-line change detection for such class of models has

already been studied in Bardet et al. [5] and Kengne [20].

Suppose now that we have observed X1, · · · , Xn which are available historical data such that there exists

θ∗0 ∈ Θ such as (X1, · · · , Xn) belongs toM{1,··· ,n}(Mθ∗

0
, fθ∗

0
). Then, we observe new dataXn+1, Xn+2 · · · , Xk, · · · :

the monitoring scheme starts. For each new observation, we would like to know if a change occurs in the pa-

rameter θ∗0 . More precisely, we consider the following test :

H0: θ
∗
0 is constant over the observation X1, · · · , Xn, Xn+1, · · · i.e. the observations X1, · · · , Xn, Xn+1, · · ·

belong to MIN (Mθ∗

0
, fθ∗

0
);

H1 : there exist k∗ > n, θ∗1 ∈ Θ such that X1, · · · , Xn, Xn+1, · · · , Xk∗ , Xk∗+1, · · · belongs to

M{1,··· ,k∗}(Mθ∗

0
, fθ∗

0
)
⋂M{k∗+1,··· }(Mθ∗

1
, fθ∗

1
).

When new data arrive, Chu et al. [13] proposed to compute an estimator of the parameter based on all

the observations and to compare it to an estimator based on historical data. A large distance between both

these estimators means that new data come from a model with different parameters. Then the null hypothesis

H0 is rejected and the new parameter is considered; otherwise, the monitoring scheme continues. In their

procedure, Leisch et al. [27] suggested to compute the recursive estimators on a moving window with a fixed

width. They fixed a monitoring horizon so that, the procedure will stop after a fixed number of steps even if

no change is detected. As Chu et al. [13], the recursive estimators computed by Na et al. [30] are based on all

the observations. As we will see in the next sections, their procedure cannot be effective in terms of detection

delay or if a small change in the parameter occurs.

For any k ≥ 1, ℓ, ℓ′ ∈ {1, · · · , k} (with ℓ ≤ ℓ′) let θ̂(Xℓ, · · · , Xℓ′) be the quasi-maximum likelihood estimator

(QMLE in the sequel) of the parameter computed on {ℓ, · · · , ℓ′} as it is defined in (6). When new data arrive at

time k ≥ n, we explore the segment {ℓ, ℓ+1, · · · , k} with ℓ ∈ {n−vn, n−vn+1 · · ·k−vn} (where (vn)n∈IN is a

fixed sequence of integer numbers) that the distance between θ̂(Xℓ, · · · , Xk) and θ̂(X1, · · · , Xn) is the largest.

If the norm ‖θ̂(Xℓ, · · · , Xk)− θ̂(X1, · · · , Xn)‖ is greater than a suitable critical value, then H0 is rejected and

a model with a new parameter is considered; otherwise, the monitoring scheme continues. More precisely,

we construct a detector that takes into account the distance between θ̂(Xℓ, · · · , Xk) and θ̂(X1, · · · , Xn). It is

shown that this detector is almost surely finite under the null hypothesis and almost surely diverges to infinity

under the alternative. Hence, the consistency of our procedure follows.

Finally, Monte-Carlo experiments have been done, comparing our procedure to the ones of Horváth et al. [17]

(see also Aue et al. [2]) and Na et al. [30]. It appears that our procedure outperforms these other procedures

in terms of test power and detection delay in different frames. An application to financial data (Nikkei 225,
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S&P 500 and FTSE 100 stock index) allows to detect changes in these data in accordance with historical and

economic events.

In the forthcoming Section 2 the assumptions and the definition of the quasi-likelihood estimator are

provided. In Section 3 we present the monitoring procedure and the asymptotic results. Section 4 is devoted

to a simulation study for AR(1) and GARCH(1, 1) processes. In Section 5 we apply our procedure to famous

financial data. The proofs of the main results are provided in Section 6.

2 Assumptions and definition of the quasi-likelihood estimator

2.1 Assumptions on the class of models MZ(fθ,Mθ)

Let θ ∈ IRd and Mθ and fθ be numerical functions such that for all (xi)i∈IN ∈ IRIN , Mθ

(
(xi)i∈IN

)
6= 0 and

fθ
(
(xi)i∈IN

)
∈ IR. Denote hθ :=M2

θ . We will use the following classical notations:

1. ‖ · ‖ applied to a vector denotes the Euclidean norm of the vector;

2. for any compact set K ⊆ IRd and for any g : K −→ IRd′

, ‖g‖K = supθ∈K(‖g(θ)‖);

3. for any set K ⊆ IRd,
◦

K denotes the interior of K.

Throughout the sequel, we will assume that the functions θ 7→ Mθ and θ 7→ fθ are twice continuously differ-

entiable on Θ. Let Ψθ = fθ, Mθ and i = 0, 1, 2, then for any compact set K ⊂ Θ define

Assumption Ai(Ψθ,K): Assume that ‖∂iΨθ(0)/∂θ
i‖Θ < ∞ and there exists a sequence of non-negative

real numbers (α
(i)
j (Ψθ,K))j≥1 such that

∞∑
j=1

α
(i)
j (Ψθ, |) <∞ and

∥∥∥∂
iΨθ(x)

∂θi
− ∂iΨθ(y)

∂θi

∥∥∥
K
≤

∞∑

j=1

α
(i)
j (Ψθ,K)|xj − yj | for all x, y ∈ IRIN .

In the sequel we refer to the particular case called ”ARCH-type process” if fθ = 0 and if the following as-

sumption holds with hθ =M2
θ :

Assumption Ai(hθ,K): Assume that ‖∂ihθ(0)/∂θi‖Θ < ∞ and there exists a sequence of non-negative real

numbers (α
(i)
j (hθ,K))j≥1 such as

∞∑
j=1

α
(i)
j (hθ,K) <∞ and

∥∥∥∂
ihθ(x)

∂θi
− ∂ihθ(y)

∂θi

∥∥∥
K
≤

∞∑

j=1

α
(i)
j (hθ,K)|x2j − y2j | for all x, y ∈ IRIN .

The Lipschitz-type hypothesis Ai(Ψθ,K) are classical when studying the existence of solutions of the general

model (see for instance [14]). Using a result of [4], for each model MZ(Mθ, fθ) it is interesting to define the

following set:

Θ(r) :=
{
θ ∈ Θ, A0(fθ, {θ}) andA0(Mθ, {θ}) hold with

∑

j≥1

α
(0)
j (fθ, {θ})+(E |ξ0|r)1/r

∑

j≥1

α
(0)
j (Mθ, {θ}) < 1

}

⋃{
θ ∈ Θ, fθ = 0 and A0(hθ, {θ}) holds with (E |ξ0|r)2/r

∑

j≥1

α
(0)
j (hθ, {θ}) < 1

}
.
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Then, if θ ∈ Θ(r) the existence of a unique causal, stationary and ergodic solution X = (Xt)t∈Z ∈ MZ(fθ,Mθ)

is ensured (see more details in [4]). The subset Θ(r) is defined as a union to consider accurately general causal

models and ARCH-type models simultaneously.

Here there are assumptions required for studying QMLE asymptotic properties:

Assumption D(Θ): ∃h > 0 such that inf
θ∈Θ

(|hθ(x)|) ≥ h for all x ∈ IRIN .

Assumption Id(Θ): For all (θ, θ′) ∈ Θ2,

(
fθ(X0, X−1, · · · ) = fθ′(X0, X−1, · · · ) and hθ(X0, X−1, · · · ) = hθ′(X0, X−1, · · · ) a.s.

)
⇒ θ = θ′.

Assumption Var(Θ): For all θ ∈ Θ, one of the families
(∂fθ
∂θi

(X0, X−1, · · · )
)
1≤i≤d

or
(∂hθ
∂θi

(X0, X−1, · · · )
)
1≤i≤d

is a.s. linearly independent.

Assumption K(fθ,Mθ,Θ): for i= 0, 1, 2, Ai(fθ,Θ) and Ai(Mθ,Θ) (or Ai(hθ,Θ)) hold and there exists

ℓ > 2 such that α
(i)
j (fθ,Θ) + α

(i)
j (Mθ,Θ) + α

(i)
j (hθ,Θ) = O(j−ℓ) for j ∈ IN .

Note that in this last assumption, as in [4], we use the convention that if Ai(Mθ,Θ) holds then α
(i)
ℓ (hθ,Θ) = 0

and if Ai(hθ,Θ) holds then α
(i)
ℓ (Mθ,Θ) = 0.

2.2 Two first examples

1. ARMA(p, q) processes.

Consider the ARMA(p, q) process defined by:

Xt +

p∑

i=1

a∗iXt−i =

q∑

j=0

b∗jξt−j , t ∈ Z (2)

with b∗0 6= 0, θ∗0 = (a∗1, · · · , a∗p, b∗0, · · · , b∗q) ∈ Θ ⊂ IRp+q+1 and (ξt) a white noise such as E (ξ20) = 1.

When
∑q

j=0 b
∗
jX

j 6= 0 and 1 +
∑p

i=0 a
∗
iX

i 6= 0 for all |X | ≤ 1, this process can be also written as:

Xt = b∗0ξt +

∞∑

j=1

φj(θ
∗
0)Xt−i , t ∈ Z

where θ ∈ Θ 7→ φj(θ) are functions only depending on θ and decreasing exponentially fast to 0

(j → ∞). The process (2) belongs to the class MZ(Mθ∗

0
, fθ∗

0
) where fθ(x1, · · · ) =

∑
j≥1 φj(θ)xj and

Mθ ≡ b∗0 for all θ ∈ Θ. Then Assumptions D(Θ), A0(fθ,Θ), A0(Mθ,Θ) hold with h = |b∗0| > 0 and

α
(0)
j (fθ,Θ) = ‖φj(θ)‖Θ while α

(0)
j (Mθ,Θ) = 0 for j ∈ IN∗. Assumption K(fθ,Mθ,Θ) holds since there

exists c > 0 and C > 0 such as |φj | ≤ C e−cj for j ∈ IN . Moreover, if (ξt) is a sequence of non-degenerate

random variables (i.e. ξt is not equal to a constant), Assumptions Id(Θ) and Var(Θ) hold. Finally, for

any r ≥ 1 such that E |ξ0|r <∞, then

Θ(r) =
{
θ ∈ IRp+q+1,

∑

j≥1

|φj(θ)| < 1
}
.
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Note that if θ ∈ Θ(r) with r ≥ 1 then the previous conditions of stationarity
∑q

j=0 bjX
j 6= 0 and

1 +
∑p

i=0 aiX
i 6= 0 for all |X | ≤ 1 are satisfied.

2. GARCH(p, q) processes.

Consider the GARCH(p, q) process defined by:

Xt = σt ξt , σ
2
t = α∗

0 +

p∑

j=1

α∗
jX

2
t−j +

q∑

j=1

β∗
j σ

2
t−j , t ∈ Z (3)

with E (ξ20) = 1 and θ∗0 := (α∗
0, · · · , α∗

p, β
∗
1 , · · · , β∗

q ) ∈ Θ where Θ is a compact subset of ]0,∞[×[0,∞[p+q

such that
∑p

j=1 αj +
∑q

j=1 βj < 1 for all θ ∈ Θ. Then there exists (see Bollerslev [11] or Nelson

and Cao [31]) a nonnegative sequence (ψj(θ
∗
0))j≥0 such that σ2

t = ψ0(θ
∗
0) +

∑
j≥1 ψj(θ

∗
0)X

2
t−j with

ψ0(θ
∗
0) = α∗

0/(1−
∑q

j=1 β
∗
j ).

This process belongs to the classMZ(Mθ∗

0
, fθ∗

0
) where fθ ≡ 0 andMθ(x1, · · · ) =

√
ψ0(θ) +

∑
j≥1 ψj(θ)x2j

for all θ ∈ Θ. Assumption D(Θ) holds with h = inf
θ∈Θ

(ψ0(θ)) > 0. If there exists 0 < ρ0 < 1 such

that for any θ ∈ Θ,
∑q

j=1 αj +
∑p

j=1 βj ≤ ρ0 then the sequences (‖ψj(θ)‖Θ)j≥1, (‖ψ′
j(θ)‖Θ)j≥1 and

(‖ψ′′
j (θ)‖Θ)j≥1 decay exponentially fast (see Berkes et al. [8]) and Assumption K(fθ,Mθ,Θ) holds.

Moreover, (ξ2t ) is a sequence of non-degenerate random variables (i.e. ξ2t is not equal to a constant),

Assumptions Id(Θ) and Var(Θ) hold. Finally for r ≥ 2 we obtain

Θ(r) =
{
θ ∈ Θ ; (E |ξ0|r)2/r

∞∑

j=1

φj(θ) < 1
}
.

2.3 The quasi-maximum likelihood estimator

Let k ≥ n ≥ 2, if (X1, · · · , Xk) ∈ M{1,··· ,k}(Mθ, fθ), then for T ⊂ {1, · · · , k}, the conditional quasi-

(log)likelihood computed on T is given by:

L(T, θ) := −1

2

∑

t∈T

qt(θ) with qt(θ) =
(Xt − f t

θ)
2

htθ
+ log(htθ) (4)

where f t
θ = fθ

(
Xt−1, Xt−2 . . .

)
, M t

θ =Mθ

(
Xt−1, Xt−2 . . .

)
and htθ =M t

θ
2
. The classical approximation of this

conditional log-likelihood (see more details in Bardet and Wintenberger [4]) is given by:

L̂(T, θ) := −1

2

∑

t∈T

q̂t(θ) where q̂t(θ) :=

(
Xt − f̂ t

θ

)2

ĥtθ
+ log

(
ĥtθ

)
(5)

with f̂ t
θ = fθ

(
Xt−1, . . . , X1, 0, 0, · · ·

)
, M̂ t

θ =Mθ

(
Xt−1, . . . , X1, 0, 0, · · ·

)
and ĥtθ = (M̂ t

θ)
2.

For T ⊂ {1, · · · , k}, define the quasi maximum-likelihood estimator (QMLE) of θ computed on T by

θ̂(T ) := argmax
θ∈Θ

(L̂(T, θ)). (6)

In Bardet and Wintenberger [4] it was established that if (X1, · · · , Xn) is an observed trajectory of X ⊂
MZ(fθ∗

0
,Mθ∗

0
) with θ∗0 ∈

◦

Θ(4) and if Θ is a compact set such as Assumptions Ai(fθ,Mθ,Θ) (or Ai(hθ,Θ))

hold for i = 0, 1, 2 and under Assumptions D(Θ), Id(Θ), Var(Θ), K(fθ,Mθ,Θ), then

√
n
(
θ̂(T1,n)− θ∗0

) D−→
n→∞

N
(
0 , F G−1 F

)
, (7)
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with

G := E
[∂q0(θ∗0)

∂θ

∂q0(θ
∗
0)

∂θ

′]
and F := E

[∂2q0(θ∗0)
∂θ∂θ′

]
, (8)

where ′ denotes the transpose and with q0 defined in (4). Note that under assumptions D(Θ) and Var(Θ), G

is symmetric positive definite (see [20]) and F is non-singular (see [4]). Also define the matrix

Ĝ(T ) :=
1

Card(T )

∑

t∈T

(∂q̂t(θ̂(T ))
∂θ

)(∂q̂t(θ̂(T ))
∂θ

)′

and F̂ (T ) := − 2

Card(T )

(∂2L̂m(T, θ̂(T ))

∂θ∂θ′

)
. (9)

Under the previous assumptions, Ĝ(T1,n) and F̂ (T1,n) converge almost surely to G and F respectively. Hence,

√
n Ĝ(T1,n)

−1/2F̂ (T1,n)
(
θ̂(T1,n)− θ∗0

) D−→
n→∞

N
(
0 , Id

)
(10)

with Id the identity matrix. This result will be the starting point of the following monitoring procedure.

3 The monitoring procedure and asymptotic results

3.1 The monitoring procedure

In the sequel, (X1, · · · , Xn) is supposed to be the historical available observations belonging to the class

M{1,··· ,n}(fθ∗

0
,Mθ∗

0
). For 1 ≤ ℓ ≤ ℓ′, denote

Tℓ,ℓ′ := {ℓ, ℓ+ 1, · · · , ℓ′}.

At a monitoring instant k, our procedure evaluates the difference between θ̂(Tℓ,k) and θ̂(T1,n) for any ℓ =

n, · · · , k. More precisely, from (10), for any k > n define the statistic (called the detector)

Ĉk,ℓ :=
√
n
k − ℓ

k

∥∥Ĝ(T1,n)−1/2F̂ (T1,n)
(
θ̂(Tℓ,k)− θ̂(T1,n)

)∥∥

for ℓ = n, · · · , k. Since the matrix Ĝ(T1,n) is asymptotically symmetric and positive definite (see [20]),

Ĝ(T1,n)
−1/2 exists for n large enough and Ĉk,ℓ is well defined. At the beginning of the monitoring scheme

and when ℓ is close to k, the length of Tℓ,k is too small, therefore the numerical algorithm used to compute

θ̂(Tℓ,k) cannot converge. This can introduce a large distortion in the procedure. To avoid this, we introduce a

sequence of integer numbers (vn)n∈IN with vn << n and compute Ĉk,ℓ for ℓ ∈ {n− vn, n− vn+1, · · · , k− vn}.
Thus, for any k > n denote

Πn,k := {n− vn, n− vn + 1, · · · , k − vn}.

For technical reasons, assume that,

vn → ∞ and vn/
√
n→ 0 (n→ ∞).

According to Remark 1 of [20], we can choose vn = [(log n)δ] with δ > 1.

Note that, if change does not occur at time k > n, for any ℓ ∈ Πn,k, the two estimators θ̂(Tℓ,k) and θ̂(T1,n) are

close and the detector Ĉk,ℓ is not too large. Hence, the monitoring scheme rejects H0 at the first time k > n

where there exists ℓ ∈ Πn,k satisfying Ĉk,ℓ > c for a fixed constant c > 0. To be more general, we will use a

b : (0,∞) 7→ (0,∞), called a boundary function satisfying:

7



Assumption B: b : (0,∞) 7→ (0,∞) is a non-increasing and continuous function such as Inf
0<t<∞

b(t) > 0.

Then the monitoring scheme rejects H0 at the first time k > n such as there exists ℓ ∈ Πn,k satisfying

Ĉk,ℓ > b((k − ℓ)/n). Hence define the stopping time:

τ(n) := Inf
{
k > n / ∃ℓ ∈ Πn,k, Ĉk,ℓ > b((k − ℓ)/n)

}
= Inf

{
k > n / max

ℓ∈Πn,k

Ĉk,ℓ

b((k − ℓ)/n)
> 1

}
.

Therefore, we have

P{τ(n) <∞} = P
{

max
ℓ∈Πn,k

Ĉk,ℓ

b((k − ℓ)/n)
> 1 for some k > n

}
= P

{
sup
k>n

max
ℓ∈Πn,k

Ĉk,ℓ

b((k − ℓ)/n)
> 1

}
. (11)

The challenge is to choose a suitable boundary function b(·) such as for some given α ∈ (0, 1)

lim
n→∞

PH0
{τ(n) <∞} = α

and

lim
n→∞

PH1
{τ(n) <∞} = 1

where the hypothesis H0 and H1 are specified in Section 1.

In the case where b(·) is a constant positive value, b ≡ c with c > 0, these conditions lead to compute a

threshold c = cα depending on α. If change is detected under H1 i.e. τ(n) < ∞ and τ(n) > k∗, then the

detection delay is defined by

d̂n = τ(n) − k∗.

Using the previous notations, Na et al. [30] used the following detector

D̂k :=
√
n
∥∥Ĝ(T1,n)−1/2F̂ (T1,n)

(
θ̂(T1,k)− θ̂(T1,n)

)∥∥.

At the step k of the monitoring scheme, their recursive estimator is based on X1, · · · , Xn, · · · , Xk. One can see

that this estimator is highly influenced by the historical data. Assume that a change occurs at time k∗ ≤ k, in

the sequel of the procedure, the recursive estimator contents the observationsX1, · · · , Xn, · · · , Xk∗−1 which de-

pends on θ∗0 . Then, one must wait longer before the difference between θ̂(X1, · · · , Xn) and θ̂(X1, · · · , Xn, · · · , Xk)

becomes significant at a step k > k∗. Therefore, their procedure cannot be effective in terms of detection delay.

Moreover, if n tends to infinity, it is not almost sure that this change will be detected. These are confirmed

by the results of simulations (see Section 4).

Berkes et al. (2004) considered an estimator based on historical data to compute the quasi-likelihood

scores. They used the fact that the partial derivatives applied to a vector u is equal to 0 if and only if u is

the true parameter of the model. So, when change occurs, their detector growths asymptotically to infinity.

Therefore, their procedure is consistent. They proved this result for GARCH(p,q) models.

3.2 Asymptotic behaviour under the null hypothesis

Under H0, the parameter θ∗0 does not change over the new observations. Thus we have the result

Theorem 3.1. Assume D(Θ), Id(Θ), Var(Θ), K(fθ,Mθ,Θ), B and θ∗0 ∈
◦

Θ(4). Under the null hypothesis

H0, then

lim
n→∞

P{τ(n) <∞} = P
{
sup
t>1

sup
1<s<t

‖Wd(s)− sWd(1))‖
t b(s)

> 1
}

where Wd is a d-dimensional standard Brownian motion.
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In the simulations, we will use the most “natural” boundary function b(·) = c with c a positive constant

since it satisfies the above assumptions imposed to b(·). In such case, the forthcoming corollary indicates that

the asymptotic distribution of Theorem 3.1 can be easily computed:

Corollary 3.1. Assume b(t) = c > 0 for t ≥ 0. Under the assumptions of Theorem 3.1,

lim
n→∞

P{τ(n) <∞} = P
{
sup
t>1

sup
1<s<t

1

t
‖Wd(s)− sWd(1))‖ > c

}
= P{Ud > c}

where Ud = sup0<u<1 f(u) ‖Wd(u)‖ with f(u) =

√
9− u+

√
1− u√

9− u+ 3
√
1− u

( 2

3− u+
√
(9− u)(1− u)

)1/2

.

Remark 3.1.

1. By the law of the iterated logarithm, it comes that

sup
1<s<t

1

t
‖Wd(s)− sWd(1))‖ a.s.−→

t→∞
‖Wd(1))‖.

So, the two distributions sup1<s<t
1
t ‖Wd(s) − sWd(1))‖ as t → ∞ (resp. t → 1) and f(u) ‖Wd(u)‖ as

u→ 1 (resp. u→ 0) are equal. It is easy to show (see proof of Corollary 3.1) that

sup
t>1

sup
1<s<t

1

t
‖Wd(s)− sWd(1))‖ D

= sup
0<u<1

f(u) ‖Wd(u)‖.

2. Under the null hypothesis, it holds that θ̂(T1,n)
a.s.−→

n→∞
θ∗0 (see [4]). Thus denote

Ĉ
(0)
k,ℓ :=

√
n
k − ℓ

k

∥∥Ĝ(T1,n)−1/2F̂ (T1,n)
(
θ̂(Tℓ,k)− θ∗0

)∥∥.

Under the assumptions of Theorem 3.1, one can easily show that

sup
k>n

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

∣∣Ĉk,ℓ − Ĉ
(0)
k,ℓ

∣∣ = oP (1) as n→ ∞.

Thus, the Theorem 3.1 still holds if the stopping time τ(n) is computed by using the detector Ĉ
(0)
k,ℓ . Hence,

if the parameter θ∗0 of the historical observations is known, then use the detector Ĉ
(0)
k,ℓ instead of Ĉk,ℓ.

But let us note that this situation is infrequent in practice.

Therefore, at a nominal level α ∈ (0, 1), take c = c(α) be the (1 − α)-quantile of the distribution of Ud =

sup0<u<1 f(u) ‖Wd(u)‖ which can be computed through Monte-Carlo simulations. Table 1 shows the (1−α)-

quantile of this distribution for α = 0.01, 0.05, 0.10 and d = 1, · · · , 5.

d = 1 d = 2 d = 3 d = 4 d = 5

α = 0.01 2.583 3.035 3.335 3.631 3.914

α = 0.05 1.954 2.432 2.760 3.073 3.334

α = 0.10 1.652 2.156 2.486 2.784 3.028

Table 1: Empirical (1 − α)-quantile of the distribution of Ud, for d = 1, · · · , 5.

9



3.3 Asymptotic behaviour under the alternative hypothesis

Under the alternative H1, the parameter changes from θ∗0 to θ∗1 at k∗ > n, where θ∗1 ∈ Θ and θ∗0 6= θ∗1 . Then

Theorem 3.2. Assume D(Θ), Id(Θ),Var(Θ), K(fθ,Mθ,Θ) and B. Under the alternative H1, if θ
∗
1 6= θ∗0 and

θ∗0 , θ
∗
1 ∈

◦

Θ(4) then for k∗ = k∗(n) such as lim supn→∞ k∗(n)/n <∞ and kn = k∗(n) + nδ with δ ∈ (1/2, 1),

max
ℓ∈Πn,kn

Ĉkn,ℓ

b((kn − ℓ)/n)

a.s.−→
n→∞

∞.

The forthcoming Corollary 3.2 can be immediately deduced from the relation (11).

Corollary 3.2. Under assumptions of Theorem 3.2,

lim
n→∞

P{τ(n) <∞} = 1.

Remark 3.2. We know that the monitoring scheme rejects H0 at the first time k where

max
ℓ∈Πn,k

Ĉk,ℓ

b((k − ℓ)/n)
> 1.

Therefore, it follows from Theorem 3.2 that under the hypothesis H1, the detection delay d̂n of the procedure

can be bounded by OP (n
1/2+ε) for any ε > 0 (or even by OP

(√
n(logn)a

)
with a > 0 using the same kind of

proof).

3.4 Examples

3.4.1 AR(∞) processes

Consider the generalization of ARMA(p, q) processes defined in (2) i.e. a AR(∞) processes defined by:

Xt = φ0(θ
∗
0) +

∑

j≥1

φj(θ
∗
0)Xt−j + ξt , t ∈ Z (12)

with θ∗0 ∈
◦

Θ, where we can chose Θ as a compact subset of Θ(4) ⊂ IRd where

Θ(4) =
{
θ ∈ IRd;

∑

j≥1

|φj(θ)| < 1
}
.

This process belongs to the classMZ(Mθ∗

0
, fθ∗

0
) where fθ(x1, · · · ) =

∑
j≥1 φj(θ)xj andMθ ≡ φ0(θ) for all θ ∈ Θ

and therefore α
(0)
j (fθ,Θ) = ‖φj(θ)‖Θ and α

(0)
j (Mθ,Θ) = 0 for j ∈ IN∗. Then

• Assumption D(Θ) holds if h = inf
θ∈Θ

(|φ0(θ)|) > 0;

• Assumption K(fθ,Mθ,Θ) holds if there exists ℓ > 2 and and if θ 7→ φj(θ) are twice differentiable

functions satisfying max
(
‖ψj(θ)‖Θ, ‖φ′j(θ)‖Θ, ‖φ′′j (θ)‖Θ

)
= O(j−ℓ) for j ∈ IN .

• if (ξt) is a sequence of non-degenerate random variables, Assumptions Id(Θ) and Var(Θ) hold.

Case of AR(p) process

Assume that

Xt = φ∗0 +

p∑

j=1

φ∗jXt−j + ξt with p ∈ IN∗.

10



The true parameter of the model is denoted by θ∗0 = (φ∗0, φ
∗
1, · · · , φ∗p) ∈ Θ where Θ = {θ = (φ0, φ1, · · · , φp) ∈

IRp+1 /
p∑

j=1

|φj | < 1}. Then, Θ(r) = Θ for any r ≥ 1. Assume that a trajectory (X1, · · · , Xk) has been

observed, for any t = 1, · · · , k and θ ∈ Θ we have, q̂t(θ) =
(
Xt − φ0 −

p∑
j=1

φjXt−j

)2
,
∂q̂t(θ)

∂θ
= −2

(
Xt − φ0 −

p∑
j=1

φjXt−j

)
· (1, Xt−1, Xt−2, · · · , Xt−p). Moreover,

∂2q̂t(θ)

∂φ0∂φ0
= 2, for j = 1, · · · , p, ∂2q̂t(θ)

∂φ0∂φj
= 2Xt−j and for

1 ≤ i, j ≤ p,
∂2q̂t(θ)

∂φi∂φj
= 2Xt−iXt−j.

3.4.2 ARCH(∞) processes

Consider the generalization GARCH(p, q) processes defined in (3) i.e. a ARCH(∞) processes defined by:

Xt = σt ξt and σ2
t = ψ0(θ

∗
0) +

∞∑

j=1

ψj(θ
∗
0)X

2
t−j , t ∈ Z (13)

with θ∗0 ∈
◦

Θ, where we can chose Θ as a compact subset of Θ(4) ⊂ IRd where

Θ(4) =
{
θ ∈ IRd; (E |ξ0|4)1/2

∞∑

j=1

|φj(θ)| < 1
}
.

This process, introduced by Robinson [34], belongs to the class MZ(fθ∗

0
,Mθ∗

0
, ) where fθ(x1, · · · ) ≡ 0 and

M2
θ (x1, · · · ) = ψ0(θ) +

∑
j≥1 ψj(θ)x

2
j for all θ ∈ Θ and therefore α

(0)
j (fθ,Θ) = 0 and α

(0)
j (hθ,Θ) = ‖φj(θ)‖Θ

for j ∈ IN∗ (X is of course a ARCH-type process). Then

• Assumption D(Θ) holds if h = inf
θ∈Θ

(ψ0(θ)) > 0;

• Assumption K(fθ,Mθ,Θ) holds if there exists ℓ > 2 and and if θ 7→ φj(θ) are twice differentiable

functions satisfying max
(
‖ψj(θ)‖Θ, ‖ψ′

j(θ)‖Θ, ‖ψ′′
j (θ)‖Θ

)
= O(j−ℓ) for j ∈ IN .

• if (ξ2t ) is a sequence of non-degenerate random variables, Assumptions Id(Θ) and Var(Θ) hold.

Case of GARCH(1, 1) process

Assume that

Xt = σtξt with σ2
t = α∗

0 + α∗
1X

2
t−1 + β∗

1σ
2
t−1

with θ∗0 = (α∗
0, α

∗
1, β

∗
1) ∈ Θ ⊂]0,∞[×[0,∞[2 and satisfying α∗

1 + β∗
1 < 1. The ARCH(∞) representation is

σ2
t = α∗

0/(1 − β∗
1) + α∗

1

∑
j≥1

(β∗
1 )

j−1X2
t−j . If a trajectory (X1, · · · , Xk) has been observed, for any t = 1, · · · , k

and θ ∈ Θ we have,

ĥtθ = α0/(1− β1) + α1X
2
t−1 + α1

t∑

j=2

βj−1
1 X2

t−j and q̂t(θ) = X2
t / ĥ

t
θ + log(ĥtθ).

Thus, it follows that
∂q̂t(θ)

∂θ
=

1

ĥtθ

(
1 − X2

t

ĥtθ

)(∂ĥtθ
∂α0

,
∂ĥtθ
∂α1

,
∂ĥtθ
∂β1

)
with

∂ĥtθ
∂α1

= X2
t−1 +

t∑
j=2

βj−1
1 X2

t−j

∂ĥtθ
∂α0

=

1/(1− β1), and
∂ĥtθ
∂β1

= α0/(1− β1)
2 + α1X

2
t−2 + α1

t∑
j=3

(j − 1)βj−2
1 X2

t−k.
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Let θ = (α0, α1, β1) = (θ1, θ2, θ3) ∈ Θ, for 1 ≤ i, j ≤ 3, we have

∂2q̂t(θ)

∂θi∂θj
=

1

(ĥtθ)
2

(2X2
t

ĥtθ
− 1

)∂ĥtθ
∂θi

∂ĥtθ
∂θj

+
1

ĥtθ

(
1− X2

t

ĥtθ

) ∂2ĥtθ
∂θi∂θj

with
∂2ĥtθ
∂α2

0

= 0,
∂2ĥtθ
∂α0∂α1

= 0,
∂2ĥtθ
∂α2

1

= 0,
∂2ĥtθ
∂α1∂β1

= X2
t−2 +

t∑
j=3

(j − 1)βj−2
1 X2

t−j ,
∂2ĥtθ
∂α0∂β1

= 1/(1− β1)
2 and

∂ĥtθ
∂β2

1

= 2α0/(1− β1)
3 + 2α1X

2
t−3 + α1

t∑
j=4

(j − 1)(j − 2)βj−3
1 X2

t−j .

3.4.3 TARCH(∞) processes

The process X is called Threshold ARCH(∞) (TARCH(∞) in the sequel) if it satisfies

Xt = σtξt and σt = b0(θ
∗
0) +

∞∑

j=1

[
b+j (θ

∗
0)max(Xt−j , 0)− b−j (θ

∗
0)min(Xt−j , 0)

]
, t ∈ Z (14)

where the parameters b0(θ), b
+
j (θ) and b

−
j (θ) are assumed to be non negative real numbers and θ ∈

◦

Θ where Θ

is a compact subset of Θ(4) where

Θ(4) =
{
θ ∈ IRd

/ (
E |ξ0|4

)1/4 ∞∑

j=1

max
(
b−j (θ), b

+
j (θ)

)
< 1

}

since α
(0)
j (M, {θ}) = max

(
b−j (θ), b

+
j (θ)

)
. This class of processes is a generalization of the class of TGARCH(p,q)

processes (introduced by Rabemananjara and Zaköıan [33]). Then,

• Assumption D(Θ) holds if h = infθ∈Θ b0(θ) > 0;

• Assumption K(fθ,Mθ,Θ) holds if there exists ℓ > 2 and and if θ 7→ b−j (θ) and θ 7→ b+j (θ) are twice

differentiable functions satisfying

max
(
‖b−j (θ)‖Θ, ‖b+j (θ)‖Θ, ‖

∂

∂θ
b−j (θ)‖Θ, ‖

∂

∂θ
b+j (θ)‖Θ, ‖

∂2

∂θ2
b−j (θ)‖Θ, ‖

∂2

∂θ2
b+j (θ)‖Θ

)
= O(j−ℓ) for j ∈ IN.

Unfortunately, for TARCH(∞) it is not possible to provide simple conditions for obtaining Assumptions Id(Θ)

and Var(Θ) as for AR(∞) or ARCH(∞) processes.

4 Some simulation and numerical experiments

First remark that, at a time k > n, we need to compute Ĉk,ℓ for all ℓ ∈ Πn,k to test whether change occurs or

not. On can see that, the computational time is very long and increases with k. To reduce it, we introduce an

integer sequence (un) (satisfying un/
√
n→ 0 as n→ ∞; typically un = [ln(n)]) and compute Ĉk,ℓ only for

ℓ ∈ Π0
n,k := {n− vn, n− vn + un, n− vn + 2un, · · · , k − vn}.

We have Π0
n,k ⊂ Πn,k and for any t = ℓ

n with ℓ ∈ Πn,k, we can find an integer jℓ such that n−vn+ jℓun ∈ Π0
n,k

and n− vn + jℓun ≤ ℓ ≤ n− vn + (jℓ + 1)un. This implies that n−vn+jℓun

n ≤ t ≤ n−vn+jℓun

n + un

n . Thus, we
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have asymptotically (as n → ∞), t ∼ n−vn+jℓun

n . It shows that the previous asymptotic results still hold by

computing Ĉk,ℓ for ℓ ∈ Π0
n,k. The condition un/

√
n→ 0 ensures that the Theorem 3.2 still holds by choosing

kn = k∗(n) + nδ with δ ∈ (1/2, 1). In practice, the use of Π0
n,k can introduce a distortion in the detection

delay. But, the new detection delay must be between d̂n and d̂n+un (where d̂n is the detection delay obtained

by using Πn,k). In the sequel, we use un = [ln(n)].

Moreover, if b ≡ c > 0 is a constant function, according to (11), we have

P{τ(n) <∞} = P
{

sup
k>n

max
ℓ∈Π0

n,k

Ĉk,ℓ > c
}
. (15)

Thus, denote

Ĉk = max
ℓ∈Π0

n,k

Ĉk,ℓ for any k > n.

The procedure is monitored from k = n+ 1 to k = n+ 500. The set {n+ 1, · · · , n+ 500} is called monitoring

period. According to the Remark 1 of [20], vn = [(logn)δ] (with 1 ≤ δ ≤ 3) is chosen. We evaluated the

performance of the procedure with vn = [logn], [(log n)3/2], [(logn)2], [(logn)3] and we recommend to use

vn = [(logn)3/2] for linear model and vn = [(logn)2] for ARCH-type model. The nominal level used in the

sequel is α = 0.05.

4.1 An illustration

We consider a GARCH(1,1) process : Xt = σtξt with σ2
t = α∗

0 + α∗
1X

2
t−1 + β∗

1σ
2
t−1. Thus, the parameter

of the model is θ∗0 = (α∗
0, α

∗
1, β

∗
1). The historical available data are X1, · · · , X500 (therefore n = 500) and

the monitoring period is {501, · · · , 1000}. At the nominal level α = 0.05, the critical values of the procedure

is Cα = 2.760. The Figure 1 is a typical realization of the statistic (Ĉk)500<k≤1000. We consider a scenario

without change (Figure 1 a-)) and a scenario with change at k∗ = n+ 250 = 750 (Figure 1 b-)).

Figure 1 a-) shows that the detector Ĉk is under the horizontal line which represents the limit of the critical

region. On Figure 1 b-) we can see that, before change occurs, Ĉk is under the horizontal line and increases

with a high speed after change. Such growth over a long period indicates that something happening in the

model.

4.2 Monitoring mean shift in times series

Let (X1, · · · , Xn) be an (historical) observation of a process X = (Xt)t∈Z. We assume that X satisfy

{
Xt = µ0 + ǫt for 1 ≤ t ≤ k∗

Xt = µ1 + ǫt for t > k∗

with k∗ > n, µ0 6= µ1 and (ǫt) a zero mean stationary time series belongs to a class MZ(fθ,Mθ). Under

H0, k
∗ = ∞. The monitoring procedure start at k = n + 1 and the aim is to test mean shift over the new

observations Xn+1, Xn+2, · · · .

This problem can be seen as monitoring changes in linear model (see Horváth et al. [17], Aue et al. [2])

with constant regressor. The empirical mean Xn = 1
n

∑n
i=1Xi is a consistent estimator of µ0 and the recur-

sive residuals are defined by ǫ̂k = Xk −Xn ; for k > n. Horváth et al. [17] and Aue et al. [2] proposed the
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 a−) Ck  for GARCH(1,1) without change
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Figure 1: Typical realization of the statistics Ĉk for GARCH(1,1), n = 500 and k = 501, · · · , 1000. a-)

The parameter θ∗0 = (0.01, 0.3, 0.2) is constant ; b-) the parameter θ∗0 = (0.01, 0.3, 0.2) changes to θ∗1 =

(0.05, 0.5, 0.2) at k∗ = 750. The horizontal solid line represents the limit of the critical region, the vertical

dotted line indicates where the change occurs and the vertical solid line indicates the time where the monitoring

procedure detecting the change.
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CUSUM detector

Q̂k =
1

σ̂n

1

c
√
n( kn )(1− n

k )
γ

∣∣∣
k∑

i=n+1

ǫ̂i

∣∣∣ k > n, c > 0, 0 ≤ γ < 1/2, (16)

where σ̂2
n is a consistent estimator of the long-run variance σ2 = limn→∞

1
n Var(

n∑
i=1

ǫi). If the process (ǫt)

are uncorrelated (for instance GARCH-type model), empirical variance of the historical data can be used as

estimator of σ2. If (ǫt) are correlated, the popular Bartlett estimator (see [9]) can be used. Under some regular

conditions, it hold that (see [17] and [2])

lim
n→∞

P{τ(n) <∞} = P
{

sup
0<s<1

|W1(s)|
sγ

> c
}
.

Hence, at a nominal level α = 0.05, the critical value of the test is the (1 − α)-quantile of the distribution of

sup
0<s<1

‖W1(s)‖/sγ . When γ = 0, these quantiles are known (see Table 1 of [30] for values obtained through a

Monte Carlo simulation).

We compare our procedure to this CUSUM one (see (16) with γ = 0) in two situations

1. (ǫt) is an AR(1) process; ǫt = φ∗1ǫt−1 + ξt with φ
∗
1 = 0.2;

2. (ǫt) is a GARCH(1, 1) process; ǫt = σtξt with σ2
t = α∗

0 + α∗
1ǫ

2
t−1 + β∗

1σ
2
t−1 and (α∗

0, α
∗
1, β

∗
1) =

(0.01, 0.3, 0.2).

The historical sample size are n = 500 and n = 1000. These procedures are evaluated at times k = n +

100, n+200, n+300, n+400, n+500, while the change occurs at k∗ = n+50 or k∗ = n+250. Tables 2 and 3

indicate the empirical levels and the empirical powers based of 200 replications. The elementary statistics of

the empirical detection delay are reported in Tables 4.

The results of Table 2 and Table 3 show that both the procedures based on detectors Ĉk and Q̂k are

conservative. One can also see that the larger n (length of historical data) the smaller the distortion size of

these procedures. This is due to the fact that the length of monitoring period is fixed and does not increase

with n.

Under H1, the change has been detected before the monitoring time k = n+500. But, as we mentioned above,

the challenge of this problem is to minimize the detection delay. For this criteria, it can be seen in Table 4

that in the case of the mean shift in AR process, our procedure works well as Horváth et al.’s procedure when

the change occurs at the beginning of the monitoring (k∗ = n+50); but our procedure is a little more accurate

when the change occurs a long time after the beginning of the monitoring (k∗ = n+ 250). For the case of the

mean shift in GARCH process, our test procedure outperforms the Horváth et al.’s test in terms of mean and

quantiles of the detection delay.

4.3 Monitoring parameter changes in AR(1) and GARCH(1,1) processes

In this subsection, we present some simulations results for monitoring parameter changes in AR(1) and

GARCH(1,1) models and compare our procedure to the one proposed by Na et al. [30]. If the boundary
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k n+ 100 n+ 200 n+ 300 n+ 400 n+ 500

Empirical levels n = 500 Ĉk 0.000 0.000 0.010 0.015 0.015

Q̂k 0.000 0.005 0.005 0.010 0.015

n = 1000 Ĉk 0.000 0.000 0.000 0.005 0.010

Q̂k 0.000 0.000 0.005 0.000 0.010

Empirical powers n = 500 ; k∗ = n+ 50 Ĉk 0.310 1 1 1 1

Q̂k 0.335 1 1 1 1

n = 500 ; k∗ = n+ 250 Ĉk 0.000 0.000 0.190 1 1

Q̂k 0.000 0.000 0.130 0.965 1

n = 1000 ; k∗ = n+ 50 Ĉk 0.075 1 1 1 1

Q̂k 0.095 1 1 1 1

n = 1000 ; k∗ = n+ 250 Ĉk 0.000 0.000 0.135 1 1

Q̂k 0.000 0.000 0.075 0.980 1

Table 2: Empirical levels and powers for monitoring means shift in AR(1) with φ∗

1
= 0.2. The empirical levels are computed

when µ0 = 0 and the empirical powers are computed when the mean µ0 = 0 changes to µ1 = 1.2.

k n+ 100 n+ 200 n+ 300 n+ 400 n+ 500

Empirical levels n = 500 Ĉk 0.005 0.015 0.030 0.055 0.060

Q̂k 0.000 0.000 0.005 0.010 0.010

n = 1000 Ĉk 0.000 0.005 0.005 0.010 0.015

Q̂k 0.000 0.000 0.000 0.010 0.010

Empirical powers n = 500 ; k∗ = n+ 50 Ĉk 1 1 1 1 1

Q̂k 1 1 1 1 1

n = 500 ; k∗ = n+ 250 Ĉk 0.010 0.015 1 1 1

Q̂k 0.000 0.000 0.920 1 1

n = 1000 ; k∗ = n+ 50 Ĉk 0.995 1 1 1 1

Q̂k 0.985 1 1 1 1

n = 1000 ; k∗ = n+ 250 Ĉk 0.000 0.000 0.980 1 1

Q̂k 0.000 0.000 0.765 1 1

Table 3: Empirical levels and powers for monitoring means shift in GARCH(1,1) with (α∗

0
, α∗

1
, β∗

1
) = (0.01, 0.3, 0.2). The

empirical levels are computed when µ0 = 0 and the empirical powers are computed when the mean µ0 = 0 changes to µ1 = 0.3.
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d̂n Mean SD Min Q1 Med Q3 Max

AR(1) n = 500 ; k∗ = n+ 50 Ĉk 54.74 14.95 18 44 54 64 103

Q̂k 53.78 14.72 16 43 54 63 102

n = 500 ; k∗ = n+ 250 Ĉk 63.14 23.18 12 45 61 77 135

Q̂k 72.70 21.47 7 56 71.5 90 139

n = 1000 ; k∗ = n+ 50 Ĉk 75.84 14.19 37 66 75 83 114

Q̂k 72.60 13.23 41 63 73 82 111

n = 1000 ; k∗ = n+ 250 Ĉk 76.24 19.15 23 60 76 89 140

Q̂k 86.82 22.57 27 70 85 100 151

GARCH(1,1) n = 500 ; k∗ = n+ 50 Ĉk 20.21 6.15 1 16 20 24 35

Q̂k 27.06 4.52 16 24 27 30 44

n = 500 ; k∗ = n+ 250 Ĉk 25.53 8.04 3 20 25 31 50

Q̂k 35.40 10.01 13 28 35 41 62

n = 1000 ; k∗ = n+ 50 Ĉk 28.43 7.41 6 24 28 33 51

Q̂k 36.98 5.09 21 33 37 40 48

n = 1000 ; k∗ = n+ 250 Ĉk 31.16 8.52 4 26 33 39 53

Q̂k 44.35 10.04 14 37 45 50 71

Table 4: Elementary statistics of the empirical detection delay for monitoring mean shift in AR(1) and GARCH(1,1).
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function b(·) ≡ c > 0 with a real number c > 0, Na et al. show that under H0,

lim
n→∞

P{τ(n) <∞} = lim
n→∞

P
{

sup
k>n

D̂k > c
}
= P

{
sup

0<s<1
‖Wd(s)‖ > c

}
,

where

D̂k :=
√
n
∥∥Ĝ(T1,n)−1/2F̂ (T1,n)

(
θ̂(T1,k)− θ̂(T1,n)

)∥∥.

Hence, at a nominal level α, the critical value of their procedure is the (1 − α)-quantile of the distribution of

sup
0<s<1

‖Wd(s)‖ which can be found in Table 1 of [30].

The comparisons between their procedure based on D̂k and ours based on Ĉk,ℓ are made in the following

situations:

1. For AR(1) model : Xt = φ∗1Xt−1 + ξt . Under H0, θ0 = φ∗1 = 0.2. Under H1, θ0 changes to θ1 = −0.5

at k∗.

2. ForGARCH(1, 1) model : Xt = σtξt with σ2
t = α∗

0+α
∗
1X

2
t−1+β

∗
1σ

2
t−1. UnderH0, θ0 = (α∗

0, α
∗
1, β

∗
1 ) =

(0.01, 0.3, 0.2), while under H1, θ0 = (0.01, 0.3, 0.2) changes to θ1 = (0.05, 0.5, 0.2) at k∗.

The sizes of historical samples are n = 500 and n = 1000. The procedures are evaluated at times k =

n+100, n+200, n+300, n+400, n+500, while the change occurs at k∗ = n+50 or k∗ = n+250. Tables 5 and

6 indicate the empirical levels and the empirical powers based of 200 replications. The elementary statistics

of the empirical detection delay are reported in Tables 7.

k n+ 100 n+ 200 n+ 300 n+ 400 n+ 500

Empirical levels n = 500 Ĉk 0.000 0.000 0.010 0.010 0.035

D̂k 0.000 0.000 0.000 0.000 0.025

n = 1000 Ĉk 0.000 0.000 0.000 0.010 0.025

D̂k 0.000 0.000 0.000 0.000 0.020

Empirical powers n = 500 ; k∗ = n+ 50 Ĉk 0.335 1 1 1 1

D̂k 0.175 0.985 1 1 1

n = 500 ; k∗ = n+ 250 Ĉk 0.000 0.000 0.180 990 1

D̂k 0.000 0.000 0.095 0.865 1

n = 1000 ; k∗ = n+ 50 Ĉk 0.065 0.995 1 1 1

D̂k 0.090 0.975 1 1 1

n = 1000 ; k∗ = n+ 250 Ĉk 0.000 0.000 0.140 0.990 1

D̂k 0.000 0.000 0.075 0.855 0.995

Table 5: Empirical levels and powers for monitoring parameter change in AR(1) process. The empirical levels are computed

when θ0 = φ∗

1
= 0.2 is constant and the empirical powers are computed when θ0 = 0.2 changes to θ1 = −0.5.

The considered AR and GARCH processes have zero mean. Contrary to the mean shift studied above,
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k n+ 100 n+ 200 n+ 300 n+ 400 n+ 500

Empirical levels n = 500 Ĉk 0.010 0.025 0.040 0.095 0.105

D̂k 0.010 0.015 0.040 0.040 0.055

n = 1000 Ĉk 0.000 0.000 0.030 0.045 0.055

D̂k 0.000 0.000 0.010 0.015 0.035

Empirical powers n = 500 ; k∗ = n+ 50 Ĉk 0.890 1 1 1 1

D̂k 0.390 0.855 0.930 0.965 0.985

n = 500 ; k∗ = n+ 250 Ĉk 0.010 0.030 0.825 1 1

D̂k 0.010 0.020 0.270 0.805 0.915

n = 1000 ; k∗ = n+ 50 Ĉk 0.835 1 1 1 1

D̂k 0.310 0.970 0.990 0.995 0.995

n = 1000 ; k∗ = n+ 250 Ĉk 0.000 0.005 0.685 1 1

D̂k 0.000 0.000 0.250 0.955 0.990

Table 6: Empirical levels and powers for monitoring parameter change in GARCH(1,1) process. The empirical levels are

computed when θ0 = (α∗

0
, α∗

1
, β∗

1
) = (0.01, 0.3, 0.2) is constant (hypothesis H0) and the empirical powers are computed when

θ0 = (0.01, 0.3, 0.2) changes to θ1 = (0.05, 0.5, 0.2) (hypothesis H1).

this mean is not estimated. For AR model, it appears in Table 5 that both procedures based on detector Ĉk

and D̂k are conservative. This is not the case for GARCH model (Table 6). The high size distortions when

n = 500 is due to the difficulty to estimate the parameter of GARCH model. This size distortion decreases

when n increases and Corollary 3.1 ensures that with infinite monitoring period, the empirical level tends to

the nominal one as n→ ∞.

For both the cases of AR and GARCH processes, the procedure based on detector Ĉk,ℓ detects the change

before the monitoring time k = n+ 500. Unlike Na et al. [30], we consider a scenario of GARCH model with

moderate change in parameter and it can be seen in Table 6 that the procedure based on detector D̂k provides

unsatisfactory results. At the monitoring time k = n + 500, it is not sure that the change must be detected

even when k∗ = n+ 50. This is not surprising according to the comment of subsection 3.1.

Table 7 indicates the distribution of the detection delay d̂n. We can see in Table 7 (even in Table 4) that

for our procedure, the relation d̂1000 ≤
√
1000/500 d̂500 is globally satisfied (from Theorem 3.2, we deduced

that d̂n = OP

(
n1/2 logn

)
when n is large enough). Moreover, elementary statistics (mean and quantiles) show

that the detection delay using our procedure is shorter than using the Na et al.’s one. The results of Table 5, 6

and 7 show that, our test is uniformly better and the procedure based on detector Ĉk could be recommended

in this frame.

5 Real-Data Applications

We consider the returns of the daily closing values of the Nikkei 225 stock index (from January 2, 1995 to

October 19, 1998), S&P 500 and FTSE 100 (from January 2, 2004 to June 11, 2012). These data are available
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d̂n Mean SD Min Q1 Med Q3 Max

AR(1) n = 500 ; k∗ = n+ 50 Ĉk 55.36 18.75 9 42 56 67 121

D̂k 71.54 38.44 2 52.75 69 89 167

n = 500 ; k∗ = n+ 250 Ĉk 66.81 25.27 5 49 65 83 149

D̂k 97.80 39.42 21 68 89 123 222

n = 1000 ; k∗ = n+ 50 Ĉk 75.13 19.87 24 62 74 90 147

D̂k 87.70 28.72 14 66 85 109 195

n = 1000 ; k∗ = n+ 250 Ĉk 76.89 26.16 15 56 77 96 172

D̂k 101.20 37.97 20 75 96 129 245

GARCH(1,1) n = 500 ; k∗ = n+ 50 Ĉk 29.41 15.84 4 22 31 40 98

D̂k 86.05 90.50 2 36 61 99 416

n = 500 ; k∗ = n+ 250 Ĉk 38.02 19.33 5 27 37 44 113

D̂k 87.72 50.96 1 49.25 79 112 236

n = 1000 ; k∗ = n+ 50 Ĉk 41.96 13.93 3 32 41 48 94

D̂k 71.29 37.12 6 46 66 88 287

n = 1000 ; k∗ = n+ 250 Ĉk 44.99 17.16 5 35 41 52 117

D̂k 75.78 35.10 7 52 71 95 198

Table 7: Elementary statistics of the empirical detection delay for monitoring parameter change in AR(1) and GARCH(1,1).
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on Yahoo! Finance at http://finance.yahoo.com/. They are represented on Figure 2 and Figure 6. These

series are known to represent ARCH effect and GARCH(1,2) (resp. GARCH(1,1)) can be used to capture it

in returns of Nikkei 225 (resp. S&P 500 and FTSE 100), see the book of Francq and Zaköıan 2010.

Consider the observations going from January 2, 1995 to December 31, 1996 (resp. January 2, 2004 to

December 30, 2005) as the historical data for the Nikkei 225 (resp. S&P 500 and FTSE 100) stock index.

These periods are known to be stable in the financial community. To verify it, we apply three procedures to

test for parameter change in the historical observations. The null hypothesis is that the parameter is constant

over the observations against the parameter changes alternative.

• The first test is proposed by Kengne [20]. Define the asymptotic covariance matrix (which take into

account the change possibility) of the estimator θ̂n(T1,n) by

Σ̂n,k :=
k

n
F̂n(T1,k)Ĝn(T1,k)

−1F̂n(T1,k)1det(Ĝn(T1,k)) 6=0+
n− k

n
F̂n(Tk,n)Ĝn(Tk,n)

−1F̂n(Tk,n)1det(Ĝn(Tk,n)) 6=0.

The test is based on the statistic

Q̂n := max
(
Q̂(1)

n , Q̂(2)
n

)
where

Q̂(1)
n := max

vn≤k≤n−vn
Q̂

(1)
n,k with Q̂

(1)
n,k :=

k2

n

(
θ̂n(T1,k)− θ̂n(Tn)

)′
Σ̂n,k

(
θ̂n(Tk)− θ̂n(Tn)

)
,

Q̂(2)
n := max

vn≤k≤n−vn
Q̂

(2)
n,k with Q̂

(2)
n,k :=

(n− k)2

n

(
θ̂n(Tk,n)− θ̂n(T1,n)

)′
Σ̂n,k

(
θ̂n(Tk,n)− θ̂n(Tk,n)

)
.

This test is applied with vn = (log n)δ where 2 ≤ δ ≤ 5/2.

• The second test (see Lee and Song [26]) is based on the statistic

Q̂(0)
n := max

vn≤k≤n−vn

(k2
n

(
θ̂n(T1,k)− θ̂n(T1,n)

)′
Σ̂n,n

(
θ̂n(T1,k)− θ̂n(T1,n)

))

with vn = (logn)2.

• The third procedure is the CUSUM test see Kulperger and Yu [23].

At a nominal level α ∈ (0, 1), each of these procedure rejects null hypothesis if the test statistic is greater than

a critical value Cα. Table 8 provides the results of these tests to the historical data that we have chosen.

Q̂n Q̂0
n CUSUM

Nikkei 225 3.35 (3.98) 2.31 (3.45) 0.98 (1.36)
S&P 500 2.13 (3.47) 2.01 (3.06) 0.93 (1.36)
FTSE 100 1.95 (3.47) 2.31 (3.06) 1.13 (1.36)

Table 8: Results of test for parameter changes in the historical data of Nikkei 225 (from January 2, 1995 to December 31, 1996),

S&P 500 and FTSE 100 (from January 2, 2004 to December 30, 2005). Figures in brackets the critical values of the procedure at

the nominal level α = 0.05.

Note that, these series are very closed to a nonstationary process, in the sense that
∑q

j=1 αj +
∑p

j=1 βj ≃ 1

(see (3)). Therefore, it would be difficult to compute the estimator θ̂n(Tk,l) (1 ≤ k < l ≤ n). For the statistics

Q̂n and Q̂
(0)
n , we consider only the time k that the computation of θ̂n(T1,k) and θ̂n(Tk,n) converges. This
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certainly introduces distortions on these tests. On the other hand, the CUSUM procedure needs to compute

only the estimator θ̂n(T1,n) which convergence is obtained. According to these results, we conclude that the

parameter does not change over these historical observations.

For Nikkei 225 data, monitoring starting at January 2, 1997. Figure 2 shows the realization of the sequence

(Ĉk) for k going from January 2, 1997 to October 19, 1998. Monitoring procedure stops at October 27, 1997.

Recall that, the monitoring scheme can be used as an alarm system. When it triggered, we need to apply

retrospective test to estimate the breakpoint. According to Kengne [20], the test based on Q̂n and Q̂
(0)
n are

more powerful than the CUSUM test. Thus, in the retrospective procedure, we applied these two tests and

considered the one which provides more significant result (in terms of p-value).

Retrospective procedure is applied to the observations going from January 2, 1995 to October 27, 1997 and

break is detected at t̂N ≃ September 17, 1997; see Figure 2. This change corresponds to the Asian financial

crisis (1997-1998) where the turmoil period started at July 1997.

We are going to see for S&P 500 and FTSE 100 data how multiple changes can be monitored. For these

series, monitoring starts at January 2, 2006. Figure 3 represents the sequence (Ĉk) for k going from January

2, 2006 to December 31, 2008. According to the Figure 3, the monitoring stops at November 16, 2007 and

September 4, 2007 for S&P 500 and FTSE 100 data respectively. Retrospective procedure is applied to the

series going from January 2, 2006 to November 16, 2007 (for S&P 500 data) and the series going from January

2, 2006 to September 4, 2007 (for FTSE 100 data). Breaks are detected at t̂S,1 ≃ June 18, 2007 (for S&P 500

data) and t̂F,1 ≃ July 6, 2007 (for FTSE 100 data); see Figure 6. These breaks correspond to the beginning

of the Subprime Crisis in US.

After monitored the first change, we need to update the procedure. The new historical data are the series

going from t̂S,1 to November 16, 2007 (for S&P 500 data) and the series going from t̂F,1 to September 4,

2007 (for FTSE 100 data). Therefore, monitoring continues at November 19, 2007 (for S&P 500 data) and at

September 5, 2007 (for FTSE 100 data). Figure 4 shows the curve of the sequence (Ĉk). The monitoring stops

at October 17, 2008 and November 10, 2008 for S&P 500 and FTSE 100 data respectively. The retrospective

test is applied and the break point estimation are t̂S,2 ≃ August 14, 2008 and t̂F,2 ≃ September 17, 2008

respectively for these two series; see Figure 6. These breaks correspond to the Lehman Brothers Bankruptcy

which affects the worldwide financial system.

After that, the procedure is updated and monitoring continues at October 20, 2008 and November 11, 2008

for S&P 500 and FTSE 100 data. Figure 5 shows the sequence (Ĉk). The monitoring stopped at March 17,

2009 (S&P 500) and March 9, 2009 (FTSE 100) and retrospective test detected change at t̂S,3 ≃ January 5,

2009 (in S&P 500) and t̂F,3 ≃ December 29, 2008 (in FTSE 100 data); see Figure 6. These breaks correspond

to the worldwide governments intervention to solve the financial crisis.

The procedure continues until June 2012, other breaks are detected at t̂S,4 ≃ 26 June 2009, t̂S,5 ≃ 5 April

2010, t̂S,6 ≃ 27 September 2010, t̂S,7 ≃ 19 July 2011, t̂S,8 ≃ 11 January 2012 (for S&P 500 data) and t̂F,4 ≃
30 June 2009, t̂F,5 ≃ 27 July 2011, t̂F,6 ≃ 21 December 2011 (for FTSE 100 data). They are represented on

Figure 6. These breaks correspond to the turmoils periods in the 2010 − 2012+ Greece and European debt

crisis.

Summary of the real-data applications
Both monitoring procedure (based on detector Ĉk) and retrospective test have been applied to detect breaks

in the Nikkei 225, S&P 500 and FTSE 100 stock index. The following results are obtained :
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1. For the Nikkei 225, from January 2, 1995 to October 19, 1998 ; break is detected at

• t̂N ≃ 17 September 1997 which correspond to the turmoil period of the Asian financial crisis (1997-

1998).

See also Figure 2.

2. For the S&P 500 and FTSE 100, from January 2, 2004 to June 11, 2012 ; break are detected at (t̂S,i and

t̂F,i are referred to the breakpoint in the S&P 500 and FTSE 100 respectively)

• t̂S,1 ≃ 18 June 2007 and t̂F,1 ≃ 6 July 2007 which correspond to the beginning of the Subprime

Crisis in US;

• t̂S,2 ≃ 14 August 2008 and t̂F,2 ≃ 17 September 2008 which correspond to the Lehman Brothers

Bankruptcy;

• t̂S,3 ≃ 5 January 2009 and t̂F,3 ≃ 29 December 2008 which correspond worldwide governments

intervention to solve the financial crisis;

• t̂S,4 ≃ 26 June 2009, t̂S,5 ≃ 5 April 2010, t̂S,6 ≃ 27 September 2010, t̂S,7 ≃ 19 July 2011, t̂S,8 ≃
11 January 2012 and t̂F,4 ≃ 30 June 2009, t̂F,5 ≃ 27 July 2011, t̂F,6 ≃ 21 December 2011. These

breaks indicates the turmoils periods in the 2010− 2012+ Greece and European debt crisis.

See also Figure 6.
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Figure 2: The top figure is a realization of the statistics Ĉk with k going from January 2, 1995 to October 19,

1998 for Nikkei 225 data; the historical data considered are the series going from January 2, 1995 to December

31, 1996. The horizontal solid line represents the limit of the critical region, the vertical dotted line indicates

the date of the beginning of the Asian financial crisis (1997-1998) and the vertical solid line indicates the time

where the monitoring procedure will stop. The bottom figure is the returns of Nikkei 225 data from January

2, 1995 to October 19, 1998; the vertical solid line indicates the date where break have been detected using

retrospective test after the monitoring stops.
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Figure 3: Realization of the statistics Ĉk with k going from January 2, 2006 to December 31, 2008 for S&P

500 and FTSE 100 data; the historical data considered are the series going from January 2, 2004 to December

30, 2005. The horizontal solid line represents the limit of the critical region, the vertical dotted line indicates

the date of the beginning of the Subprime Crisis in US and the vertical solid line indicates the time where the

monitoring procedure stopped.

25



Ck  for the S&P 500 

Time

 

0
5

10
15

2008        2009Sep      Oct

Ck  for the FTSE 100 

Time

 

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

2008       2009Sep     Nov

Figure 4: Realization of the statistics Ĉk for S&P 500 and FTSE 100 data; the historical data are the series

going from June 18, 2007 to November 16, 2007 (for S&P 500 data) and July 6, 2007 to September 4, 2007

(for FTSE 100 data). The horizontal solid line represents the limit of the critical region, the vertical dotted

line indicates the date of the Lehman Brothers Crisis and the vertical solid line indicates the time where the

monitoring procedure stopped.
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Figure 5: Realization of the statistics Ĉk for S&P 500 and FTSE 100 data; the historical data are the series

going from August 14, 2008 to October 17, 2008 (S&P 500) and September 17, 2008 to November 10, 2008

(FTSE 100). The horizontal solid line represents the limit of the critical region, the vertical dotted line indicates

the date of the beginning of stabilization in financial system due to the worldwide governments intervention

and the vertical solid line indicates the time where the monitoring procedure stopped.
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Figure 6: Break detection in the returns of S&P 500 and FTSE 100 data using monitoring procedure based

on Ĉk. The verticals lines indicate the dates where breaks have been detected.
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6 Proofs of the main results

Let us prove first some useful lemmas. In the sequel, for any x ∈ IR, [x] denotes the integer part of x. Let

(ψn)n and (rn)n be sequences of random variables. Throughout this section, we use the notation ψn = oP (rn)

to mean : for all ε > 0, P (|ψn| ≥ ε|rn|) → 0 as n → ∞. Write ψn = OP (rn) to mean : for all ε > 0, there

exists C > 0 such that P (|ψn| ≥ C|rn|) ≤ ε for n large enough.

Recall that (X1, · · · , Xn) is an observed trajectory of a process MZ(Mθ∗

0
, fθ∗

0
).

Let k ≥ n ≥ 2 and T1,n = {1, · · · , n}, Tℓ,k = {ℓ, ℓ + 1, · · · , k} with ℓ ∈ Πn,k = {vn, vn + 1, · · · , k − vn}, and
define

Ck,ℓ :=
√
n
k − ℓ

k

∥∥G−1/2F ·
(
θ̂(Tℓ,k)− θ̂(T1,n)

)∥∥,

with θ̂ defined in (6).

Lemma 6.1. Under the assumptions of Theorem 3.1,

sup
k>n

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

∣∣Ĉk,ℓ − Ck,ℓ

∣∣ = oP (1) as n→ ∞.

Proof. For any n ≥ 1, we have

sup
k>n

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

∣∣Ĉk,ℓ − Ck,ℓ

∣∣ = 1

infs>0 b(s)
sup
k>n

max
ℓ∈Πn,k

∣∣Ĉk,ℓ − Ck,ℓ

∣∣.

Now, proceed similarly as in the proof of Lemma 3 of [20].

Lemma 6.2. Under the assumptions of Theorem 3.1

sup
k>n

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

√
n

k

∥∥(k − ℓ)F ·
(
θ̂(Tℓ,k)− θ̂(T1,n)

)
− 2

( ∂
∂θ
L(Tℓ,k, θ

∗
0)−

k − ℓ

n

∂

∂θ
L(T1,n, θ

∗
0)
)∥∥

= oP (1) as n→ ∞.

Proof. Let k ≥ n and T ⊂ {1, · · · , k}. By applying the Taylor expansion to the coordinates of ∂L̂(T, ·)/∂θ,
and using the fact that ∂L̂(T, θ̂(T ))/∂θ = 0 we have

2

Card(T )

∂

∂θ
L̂(T, θ∗0) = F̃ (T ) · (θ̂(T )− θ∗0) where F̃ (T ) = −2

( 1

Card(T )

∂2L̂(T, θ̃i(T ))

∂θ∂θi

)
1≤i≤d

for some θ̃i(T ) between θ̂(T ) and θ
∗
0 .

Hence for any ℓ ∈ Πn,k

F (θ̂(Tℓ,k)− θ∗0) =
2

k − ℓ

∂

∂θ
L(Tℓ,k, θ

∗
0) +

(
F − F̃ (Tℓ,k)

)(
θ̂(Tℓ,k)− θ∗0

)

+
2

k − ℓ

( ∂
∂θ
L̂(Tℓ,k, θ

∗
0)−

∂

∂θ
L(Tℓ,k, θ

∗
0)
)
.

and

F (θ̂(T1,n)− θ∗0) =
2

n

∂

∂θ
L(T1,n, θ

∗
0) +

(
F − F̃ (T1,n)

)(
θ̂(T1,n)− θ∗0

)
+

2

n

( ∂
∂θ
L̂(T1,n, θ

∗
0)−

∂

∂θ
L(T1,n, θ

∗
0)
)
.
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Therefore, for any ℓ ∈ Πn,k

√
n

k

(
(k − ℓ)F

(
θ̂(Tℓ,k)− θ̂(T1,n)

)
− 2

( ∂
∂θ
L(Tℓ,k, θ

∗
0)−

k − ℓ

n

∂

∂θ
L(T1,n, θ

∗
0)
))

=
√
n
k − ℓ

k

(
F − F̃ (Tℓ,k)

)(
θ̂(Tℓ,k)− θ∗0

)
+ 2

√
n

k

( ∂
∂θ
L̂(Tℓ,k, θ

∗
0)−

∂

∂θ
L(Tℓ,k, θ

∗
0)
)

−√
n
k − ℓ

k

(
F − F̃ (T1,n)

)(
θ̂(T1,n)− θ∗0

)
− 2

k − ℓ

k

1√
n

( ∂
∂θ
L̂(T1,n, θ

∗
0)−

∂

∂θ
L(T1,n, θ

∗
0)
)
. (17)

For k > n and with some ℓk ∈ Πn,k, we have

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

√
n
k − ℓ

k
‖F − F̃ (Tℓ,k)‖ ‖θ̂(Tℓ,k)− θ∗0‖ ≤ 1

Inf
s>0

b(s)

√
k − ℓk‖F − F̃ (Tℓk,k)‖ ‖θ̂(Tℓk,k)− θ∗0‖.

According to [4] and [5], ‖F − F̃ (Tℓk,k)‖ = oP (1) and ‖θ̂(Tℓk,k)− θ∗0‖ = OP (1/
√
k − ℓk) as k− ℓk → ∞. Hence

sup
k>n

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

√
n
k − ℓ

k
‖F − F̃ (Tℓ,k)‖ ‖θ̂(Tℓ,k)− θ∗0‖ = oP (1) as n→ ∞. (18)

Similar arguments imply that

sup
k>n

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

√
n
k − ℓ

k
‖F − F̃ (T1,n)‖ ‖θ̂(T1,n)− θ∗0‖ = oP (1) as n→ ∞. (19)

For k > n and for some ℓk ∈ Πn,k, we have

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

√
n

k
‖ ∂
∂θ
L̂(Tℓ,k, θ

∗
0)−

∂

∂θ
L(Tℓ,k, θ

∗
0)‖

≤ 1

Inf
s>0

b(s)

1√
k − ℓk

‖ ∂
∂θ
L̂(Tℓk,k, θ

∗
0)−

∂

∂θ
L(Tℓk,k, θ

∗
0)‖.

According to [4],
1√

k − ℓk
‖ ∂
∂θ
L̂(Tℓk,k, ·)−

∂

∂θ
L(Tℓk,k, ·)‖Θ = oP (1) as k − ℓk → ∞. Hence

sup
k>n

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

√
n

k
‖ ∂
∂θ
L̂(Tℓ,k, θ

∗
0)−

∂

∂θ
L(Tℓ,k, θ

∗
0)‖ = oP (1) as n→ ∞. (20)

Similar arguments show that

sup
k>n

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

k − ℓ

k

1√
n
‖ ∂
∂θ
L̂(T1,n, θ

∗
0)−

∂

∂θ
L(T1,n, θ

∗
0)‖ = oP (1) as n→ ∞. (21)

Thus, Lemma 6.2 follows from (17), (18), (19), (20) and (21).

Lemma 6.3. Under the assumptions of Theorem 3.1

sup
k>n

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

√
n
k − ℓ

k
‖F ·

(
θ̂(Tℓ,k)− θ̂(T1,n)

)
‖ D−→

n→∞
sup
t>1

sup
0<s<t

‖WG(s)− sWG(1)‖
t b(s)

whereWG is a d-dimensional Gaussian centered process with covariance matrix E (WG(s)WG(τ)
′) = min(s, τ)G.

Proof. We are going to apply Lemma 6.2 for specifying the asymptotic behaviour of θ̂(Tℓ,k)− θ̂(T1,n).
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For k > n and ℓ ∈ Πn,k, we have

2

√
n

k

( ∂
∂θ
L(Tℓ,k, θ

∗
0)−

k − ℓ

n

∂

∂θ
L(T1,n, θ

∗
0)
)
= −n

k

1√
n

( k∑

i=ℓ+1

∂qi(θ
∗
0)

∂θ
− k − ℓ

n

n∑

i=1

∂qi(θ
∗
0)

∂θ

)
.

Now we are going to proceed in two steps.

Step 1. Let T > 1. We have

max
n<k<nT

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

2
√
n

k

∥∥ ∂
∂θ
L(Tℓ,k, θ

∗
0)−

k − ℓ

n

∂

∂θ
L(T1,n, θ

∗
0)
∥∥

= max
n<k<nT

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

√
n

k

∥∥
k∑

i=ℓ

∂qi(θ
∗
0)

∂θ
− k − ℓ

n

n∑

i=1

∂qi(θ
∗
0)

∂θ

∥∥

= max
t∈{1,1+ 1

n
,··· ,T}

max
s∈{1− vn

n
,2− vn

n
,··· ,t− vn

n
}

1

b(([nt]− [ns])/n)

n

[nt]

∥∥ 1√
n

( [nt]∑

i=[ns]+1

∂qi(θ
∗
0)

∂θ
− [nt]− [ns]

n

n∑

i=1

∂qi(θ
∗
0)

∂θ

)∥∥.

Define the set S := {(t, s) ∈ [1, T ] × [1, T ]/ s < t}. According to [4],
(∂qi(θ∗0)

∂θ

)
t∈Z

is a stationary ergodic

martingale difference sequence with covariance matrix G. By Cramér-Wold device (see [10] p. 206), it holds

that

1√
n

[nt]∑

i=[ns]+1

∂qi(θ
∗
0)

∂θ

D(S)−→
n→∞

WG(t− s).

with
D(S)−→
n→∞

means the weak convergence on the Skorohod space D(S). Hence

1√
n

( [nt]∑

i=[ns]+1

∂qi(θ
∗
0)

∂θ
− [nt]− [ns]

n

n∑

i=1

∂qi(θ
∗
0)

∂θ

) D(S)−→
n→∞

WG(t− s)− (t− s)WG(1).

Therefore

max
n<k<nT

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

2
√
n

k
‖ ∂
∂θ
L(Tℓ,k, θ

∗
0)−

k − ℓ

n

∂

∂θ
L(T1,n, θ

∗
0)‖

D−→
n→∞

sup
1<t<T

sup
1<s<t

‖WG(t− s)− (t− s)WG(1)‖
t b(t− s)

D−→
n→∞

sup
1<t<T

sup
1<s<t

‖WG(s)− sWG(1)‖
t b(s)

. (22)

Step 2. We will show that the limit distribution (as n, T → ∞) of

sup
k>nT

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

2
√
n

k
‖ ∂
∂θ
L(Tℓ,k, θ

∗
0)−

k − ℓ

n

∂

∂θ
L(T1,n, θ

∗
0)‖

exists and is equal to the limit distribution (as T → ∞) of

sup
t>T

sup
1<s<t

‖WG(s)− sWG(1)‖
t b(s)

.

Let k > nT . We have

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

√
n

k
‖ ∂
∂θ
L(Tℓ,k, θ

∗
0)‖ ≤ 1

Inf
s>0

b(s)

√
n

k
‖

k∑

i=ℓk+1

∂qi(θ
∗
0)

∂θ
‖ for some ℓk ∈ Πn,k.
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It comes from the Hájek-Rényi-Chow inequality (see [12]) that, for any ε > 0

lim
T→∞

lim
n→∞

P
(
sup
k>nT

√
n

k
‖

k∑

i=ℓk+1

∂qi(θ
∗
0)

∂θ
‖ > ε

)
= 0.

Hence

sup
k>nT

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

2
√
n

k
‖ ∂
∂θ
L(Tℓ,k, θ

∗
0)‖ = oP (1) as T, n→ ∞. (23)

Moreover, since the function b(·) is non-increasing, for any n, T > 1, we have:

sup
k>nT

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

2
√
n

k
‖k − ℓ

n

∂

∂θ
L(T1,n, θ

∗
0)‖ = ‖ 1√

n

n∑

i=1

∂qi(θ
∗
0)

∂θ
‖ × sup

k>nT
max
ℓ∈Πn,k

1

b((k − ℓ)/n)

k − ℓ

k

= ‖ 1√
n

n∑

i=1

∂qi(θ
∗
0)

∂θ
‖ × sup

k>nT

1

b((k − vn)/n)

k − vn
k

=
1

Inf
s>0

b(s)
‖ 1√

n

n∑

i=1

∂qi(θ
∗
0)

∂θ
‖

D−→
n→∞

1

Inf
s>0

b(s)
‖WG(1)‖, (24)

using again the Cramèr-Wold device. It comes from (23) and (24) that

sup
k>nT

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

2
√
n

k
‖ ∂
∂θ
L(Tℓ,k, θ

∗
0)−

k − ℓ

n

∂

∂θ
L(T1,n, θ

∗
0)‖

D−→
T,n→∞

1

Inf
s>0

b(s)
‖WG(1)‖. (25)

Furthermore, since the coordinates of WG are Brownian motions, by the law of the iterated logarithm there

exists t0 > exp(1) such as

s > t0 ⇒ ‖WG(s)‖ ≤ √
s log(s) almost surely.

Thus, for any t > t0, we obtain almost surely

sup
1<s<t

‖WG(s)‖ ≤ sup
1<s<t0

‖WG(s)‖ +
√
t log(t).

Therefore, for T large enough, we have

sup
t>T

sup
1<s<t

‖WG(s)‖
t b(s)

≤ 1

infs>0 b(s)

( 1
T

sup
1<s<t0

‖WG(s)‖+ sup
t>T

log(t)√
t

) a.s.−→
T→∞

0. (26)

Finally, since b(·) is non-increasing, for any T > 1, we have

sup
t>T

sup
1<s<t

‖sWG(1)‖
t b(s)

= ‖WG(1)‖ sup
t>T

1

t
sup

1<s<t

s

b(t)
= ‖WG(1)‖ sup

t>T

1

b(t)
=

1

Inf
s>0

b(s)
‖WG(1)‖. (27)

It comes from (26) and (27) that the limit of (22) satisfies when T → ∞,

sup
t>T

sup
1<s<t

‖WG(s)− sWG(1)‖
t b(s)

D−→
T→∞

1

Inf
s>0

b(s)
‖WG(1)‖. (28)

From Step 1 and Step 2 (the relations (22), (25) and (28)), it comes that

sup
k>nT

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

2
√
n

k
‖ ∂
∂θ
L(Tℓ,k, θ

∗
0)−

k − ℓ

n

∂

∂θ
L(T1,n, θ

∗
0)‖

D−→
n→∞

sup
t>T

sup
1<s<t

‖WG(s)− sWG(1)‖
t b(s)

.
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Hence, Lemma 6.3 follows from Lemma 6.2.

Proof of Theorem 3.1

We know that

P{τ(n) <∞} = P
{

sup
k>n

max
ℓ∈Πn,k

Ĉk,ℓ

b((k − ℓ)/n)
> 1

}

= P
{

sup
k>n

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

√
n
k − ℓ

k
‖Ĝ(T1,n)−1/2F̂ (T1,n) ·

(
θ̂(Tℓ,k)− θ̂(T1,n)

)
‖ > 1

}
.

Since Ĝ(T1,n)
a.s.−→

n→∞
G and F̂ (T1,n)

a.s.−→
n→∞

F , it comes from Lemma 6.1 and 6.3 that

sup
k>n

max
ℓ∈Πn,k

1

b((k − ℓ)/n)

√
n
k − ℓ

k
‖Ĝ(T1,n)−1/2F̂ (T1,n) ·

(
θ̂(Tℓ,k)− θ̂(T1,n)

)
‖

D−→
n→∞

sup
t>1

sup
1<s<t

‖G−1/2(WG(s)− sWG(1))‖
t b(s)

.

Since the covariance matrix of {WG(s) ; s ≥ 0}, is min(s, τ)G, the covariance matrix of {G−1/2WG(s) ; s ≥ 0}
is min(s, τ)Id (where Id is the d-dimensional identity matrix). Hence Theorem 3.1 follows.

Proof of Corollary 3.1

Since b ≡ c a positive constant, it follows immediately from Theorem 3.1 that

lim
n→∞

P{τ(n) <∞} = P
{
sup
t>1

sup
1<s<t

1

t
‖Wd(s)− sWd(1))‖ > c

}
.

Now, it suffices to show that sup
t>1

sup
1<s<t

1

t
‖Wd(s)− sWd(1))‖ D

= Ud.

For any t > 1, we have

sup
1<s<t

1

t
‖Wd(s)− sWd(1))‖ D

= sup
1<s<t

s

t
‖Wd

(s− 1

s

)
‖ = sup

0<u<1−1/t

1

t(1− u)
‖Wd(u)‖.

Thus

sup
t>1

sup
1<s<t

1

t
‖Wd(s)− sWd(1))‖ D

= sup
t>1

sup
0<u<1−1/t

1

t(1− u)
‖Wd(u)‖ = sup

0<v<1
sup
0<u<v

1− v

1− u
‖Wd(u)‖.

But, ‖Wd(u)‖ D
= v1/2

∥∥Wd

(
u
v

)∥∥. Therefore with u = u′v,

sup
0<v<1

sup
0<u<v

1− v

1− u
‖Wd(u)‖ = sup

0<v<1
sup

0<u′<1

(1− v)v1/2

1− u′v
‖Wd(u

′)‖.

It remains to compute sup
0<v<1

(1− v)v1/2

1− u′v
. Classical computations show that this supremum is obtained by

v = 2
(
3− u′ +

√
(9− u′)(1− u′)

)−1
and therefore

sup
t>1

sup
1<s<t

1

t
‖Wd(s)− sWd(1))‖ D

= sup
0<u′<1

f(u′) ‖Wd(u
′)‖

with f(u′) =

√
9− u′ +

√
1− u′√

9− u′ + 3
√
1− u′

( 2

3− u′ +
√
(9− u′)(1 − u′)

)1/2

. (29)

33



Hence,

sup
t>1

sup
1<s<t

1

t
‖Wd(s)− sWd(1))‖ D

= Ud

Proof of Theorem 3.2

Denote kn = k∗+nδ for δ ∈ (1/2, 1). For n large enough, we have vn < nδ and thus kn−vn = k∗+nδ−vn ≥ k∗.

Moreover, since k∗ > n then k∗ ∈ Πn,k for n large enough.

In addition, since k∗ = k∗(n) ≥ n and lim supn→∞ k∗(n)/n <∞, there exists c0 > 1 such that k∗ ≤ c0n for n

large enough. Hence, according to assumption B, there exists a constant c > 0 such that

max
ℓ∈Πn,kn

Ĉkn,ℓ

b((kn − ℓ)/n)
= max

ℓ∈Πn,kn

1

b((kn − ℓ)/n)

√
n
kn − ℓ

kn
‖Ĝ(T1,n)−1/2F̂ (T1,n) ·

(
θ̂kn

(Tℓ,kn
)− θ̂(T1,n)

)

≥ 1

b((kn − k∗)/n)

√
n
kn − k∗

kn
‖Ĝ(T1,n)−1/2F̂ (T1,n) ·

(
θ̂kn

(Tk∗,kn
)− θ̂(T1,n)

)

≥ c
√
n

nδ

k∗ + nδ

∥∥Ĝ(T1,n)−1/2F̂ (T1,n)
(
θ̂kn

(Tk∗,kn
)− θ̂(T1,n)

)∥∥

≥ c
n1/2+δ

c0n+ nδ

∥∥Ĝ(T1,n)
−1/2F̂ (T1,n)

(
θ̂kn

(Tk∗,kn
)− θ̂(T1,n)

)∥∥

≥ c
nδ−1/2

(c0 + 1)

∥∥Ĝ(T1,n)
−1/2F̂ (T1,n)

(
θ̂kn

(Tk∗,kn
)− θ̂(T1,n)

)∥∥. (30)

According to [4] and [20], Ĝ(T1,n)
a.s.−→

n→∞
G, F̂ (T1,n)

a.s.−→
n→∞

F , θ̂(T1,n)
a.s.−→

n→∞
θ∗0 and θ̂kn

(Tk∗,kn))
a.s.−→

n→∞
θ∗1 .

Since G is symmetric positive definite, F is invertible, θ∗0 6= θ∗1 and δ > 1/2 , then (30) implies that

max
ℓ∈Πn,kn

Ĉkn,ℓ

b((kn − ℓ)/n)

a.s.−→
n→∞

∞.
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