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We propose a new sequential procedure to detect change in the parameters of a process X = (X t ) t∈Z belonging to a large class of causal models (such as AR(∞), ARCH(∞), TARCH(∞), ARMA-GARCH processes). The procedure is based on a difference between the historical parameter estimator and the updated parameter estimator, where both these estimators are based on a quasi-likelihood of the model. Unlike classical recursive fluctuation test, the updated estimator is computed without the historical observations. The asymptotic behavior of the test is studied and the consistency in power as well as an upper bound of the detection delay are obtained. Some simulation results are reported with comparisons to some other existing procedures exhibiting the accuracy of our new procedure. The procedure is also applied to the daily closing values of the Nikkei 225, S&P 500 and FTSE 100 stock index. We show in this real-data applications how the procedure can be used to solve off-line multiple breaks detection.

Introduction

In statistical inference, many authors have pointed out the danger of omitting the existence of changes in data.

Many papers have been devoted to the problem of test for parameter changes in time series models when all data are available, see for instance Horváth [START_REF] Horváth | Change in autoregressive processes[END_REF], Inclan and Tiao [START_REF] Inclan | Use of cumulative sums of squares for retrospective detection of changes of variance[END_REF], Kokoszka and Leipus [START_REF] Kokoszka | Leipus Testing for parameter changes in ARCH models[END_REF], Kim et al. [START_REF] Kim | On the CUSUM test for parameter changes in GARCH(1, 1) models[END_REF],

Horváth and Shao [START_REF] Horváth | Limit theorems for permutations of empirical processes with applications to change point analysis Stochastic Processes and their[END_REF], Aue et al. [START_REF] Aue | Delay times of sequential procedures for multiple time series regression models[END_REF] or Kengne [START_REF] Kengne | Testing for parameter constancy in general causal time-series models[END_REF]. These papers consider "retrospective" (off-line) changes i.e. changes in parameters when all data are available. Another point of view is the change detection when new data arrive; this is the sequential change-point problem. For instance, consider the following sequential problems.

Example 1.1 (Industrial quality control). Consider an industrial system producing electronic objects. To know in real time the quality of production, some devices have been installed to rely the informations about the functioning. The performance is evaluated for each production and the system is automatically stopped if a disorder is detected. After an investigation of the root cause of the problem and a possible maintenance, the system is resetting. IR d . Let T ⊂ Z, and for any θ ∈ Θ, define Class M T (M θ , f θ ): The process X = (X t ) t∈Z belongs to M T (M θ , f θ ) if it satisfies the relation:

X t+1 = M θ (X t-i ) i∈I N ξ t + f θ (X t-i ) i∈I N for all t ∈ T . (1) 
The existence and properties of this general class of causal and affine processes were studied in Bardet and Wintenberger [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]. Numerous classical time series (such as AR(∞), ARCH(∞), TARCH(∞), ARMA-GARCH or bilinear processes) are included in M Z (M, f ). The off-line change detection for such class of models has already been studied in Bardet et al. [START_REF] Bardet | Detecting multiple change-points in general causal time series using penalized quasi-likelihood[END_REF] and Kengne [START_REF] Kengne | Testing for parameter constancy in general causal time-series models[END_REF].

Suppose now that we have observed X 1 , • • • , X n which are available historical data such that there exists

θ * 0 ∈ Θ such as (X 1 , • • • , X n ) belongs to M {1,••• ,n} (M θ * 0 , f θ * 0 )
. Then, we observe new data X n+1 , X n+2 • • • , X k , • • • : the monitoring scheme starts. For each new observation, we would like to know if a change occurs in the parameter θ * 0 . More precisely, we consider the following test :

H 0 : θ * 0 is constant over the observation X 1 , • • • , X n , X n+1 , • • • i.e. the observations X 1 , • • • , X n , X n+1 , • • • belong to M I N (M θ * 0 , f θ * 0 ); H 1 : there exist k * > n, θ * 1 ∈ Θ such that X 1 , • • • , X n , X n+1 , • • • , X k * , X k * +1 , • • • belongs to M {1,••• ,k * } (M θ * 0 , f θ * 0 ) M {k * +1,••• } (M θ * 1 , f θ * 1 )
.

When new data arrive, Chu et al. [START_REF] Chu | Monitoring structural change[END_REF] proposed to compute an estimator of the parameter based on all the observations and to compare it to an estimator based on historical data. A large distance between both these estimators means that new data come from a model with different parameters. Then the null hypothesis H 0 is rejected and the new parameter is considered; otherwise, the monitoring scheme continues. In their procedure, Leisch et al. [START_REF] Leisch | Monitoring structural changes with the generalized fluctuation test[END_REF] suggested to compute the recursive estimators on a moving window with a fixed width. They fixed a monitoring horizon so that, the procedure will stop after a fixed number of steps even if no change is detected. As Chu et al. [START_REF] Chu | Monitoring structural change[END_REF], the recursive estimators computed by Na et al. [START_REF] Na | Monitoring parameter change in time series models[END_REF] are based on all the observations. As we will see in the next sections, their procedure cannot be effective in terms of detection delay or if a small change in the parameter occurs.

For any k ≥ 1, ℓ, ℓ ′ ∈ {1, • • • , k} (with ℓ ≤ ℓ ′ ) let θ(X ℓ , • • • , X ℓ ′ ) be the quasi-maximum likelihood estimator (QMLE in the sequel) of the parameter computed on {ℓ, • • • , ℓ ′ } as it is defined in [START_REF] Basseville | Detection of Abrupt Changes: Theory and Application[END_REF]. When new data arrive at time k ≥ n, we explore the segment {ℓ, ℓ + 1,

• • • , k} with ℓ ∈ {n -v n , n -v n + 1 • • • k -v n } (where (v n ) n∈I N is a fixed sequence of integer numbers) that the distance between θ(X ℓ , • • • , X k ) and θ(X 1 , • • • , X n ) is the largest. If the norm θ(X ℓ , • • • , X k ) -θ(X 1 , • • • , X n ) is
greater than a suitable critical value, then H 0 is rejected and a model with a new parameter is considered; otherwise, the monitoring scheme continues. More precisely, we construct a detector that takes into account the distance between θ(X ℓ , • • • , X k ) and θ(X 1 , • • • , X n ). It is shown that this detector is almost surely finite under the null hypothesis and almost surely diverges to infinity under the alternative. Hence, the consistency of our procedure follows. Finally, Monte-Carlo experiments have been done, comparing our procedure to the ones of Horváth et al. [START_REF] Horváth | Monitoring changes in linear models[END_REF] (see also Aue et al. [START_REF] Aue | Change point monitoring in linear models[END_REF]) and Na et al. [START_REF] Na | Monitoring parameter change in time series models[END_REF]. It appears that our procedure outperforms these other procedures in terms of test power and detection delay in different frames. An application to financial data (Nikkei 225, S&P 500 and FTSE 100 stock index) allows to detect changes in these data in accordance with historical and economic events.

In the forthcoming Section 2 the assumptions and the definition of the quasi-likelihood estimator are provided. In Section 3 we present the monitoring procedure and the asymptotic results. Section 4 is devoted to a simulation study for AR [START_REF] Aue | Break detection in the covariance structure of multivariate time series models[END_REF] and GARCH(1, 1) processes. In Section 5 we apply our procedure to famous financial data. The proofs of the main results are provided in Section 6.

2 Assumptions and definition of the quasi-likelihood estimator 2.1 Assumptions on the class of models M Z (f θ , M θ )

Let θ ∈ IR d and M θ and f θ be numerical functions such that for all (x i ) i∈I N ∈ IR I N , M θ (x i ) i∈I N = 0 and

f θ (x i ) i∈I N ∈ IR. Denote h θ := M 2
θ . We will use the following classical notations: 1. • applied to a vector denotes the Euclidean norm of the vector; 2. for any compact set K ⊆ IR d and for any g :

K -→ IR d ′ , g K = sup θ∈K ( g(θ) ); 3. for any set K ⊆ IR d , • K denotes the interior of K.
Throughout the sequel, we will assume that the functions θ → M θ and θ → f θ are twice continuously differentiable on Θ. Let Ψ θ = f θ , M θ and i = 0, 1, 2, then for any compact set K ⊂ Θ define Assumption A i (Ψ θ , K): Assume that ∂ i Ψ θ (0)/∂θ i Θ < ∞ and there exists a sequence of non-negative real numbers (α

(i) j (Ψ θ , K)) j≥1 such that ∞ j=1 α (i) j (Ψ θ , |) < ∞ and ∂ i Ψ θ (x) ∂θ i - ∂ i Ψ θ (y) ∂θ i K ≤ ∞ j=1 α (i) j (Ψ θ , K)|x j -y j | for all x, y ∈ IR I N .
In the sequel we refer to the particular case called "ARCH-type process" if f θ = 0 and if the following assumption holds with h θ = M 2 θ :

Assumption A i (h θ , K): Assume that ∂ i h θ (0)/∂θ i Θ <
∞ and there exists a sequence of non-negative real numbers (α

(i) j (h θ , K)) j≥1 such as ∞ j=1 α (i) j (h θ , K) < ∞ and ∂ i h θ (x) ∂θ i - ∂ i h θ (y) ∂θ i K ≤ ∞ j=1 α (i) j (h θ , K)|x 2 j -y 2 j | for all x, y ∈ IR I N .
The Lipschitz-type hypothesis A i (Ψ θ , K) are classical when studying the existence of solutions of the general model (see for instance [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF]). Using a result of [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], for each model M Z (M θ , f θ ) it is interesting to define the following set:

Θ(r) := θ ∈ Θ, A 0 (f θ , {θ}) and A 0 (M θ , {θ}) hold with j≥1 α (0) j (f θ , {θ})+(E |ξ 0 | r ) 1/r j≥1 α (0) j (M θ , {θ}) < 1 θ ∈ Θ, f θ = 0 and A 0 (h θ , {θ}) holds with (E |ξ 0 | r ) 2/r j≥1 α (0) j (h θ , {θ}) < 1 .
Then, if θ ∈ Θ(r) the existence of a unique causal, stationary and ergodic solution

X = (X t ) t∈Z ∈ M Z (f θ , M θ )
is ensured (see more details in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]). The subset Θ(r) is defined as a union to consider accurately general causal models and ARCH-type models simultaneously.

Here there are assumptions required for studying QMLE asymptotic properties:

Assumption D(Θ): ∃h > 0 such that inf θ∈Θ (|h θ (x)|) ≥ h for all x ∈ IR I N . Assumption Id(Θ): For all (θ, θ ′ ) ∈ Θ 2 , f θ (X 0 , X -1 , • • • ) = f θ ′ (X 0 , X -1 , • • • ) and h θ (X 0 , X -1 , • • • ) = h θ ′ (X 0 , X -1 , • • • ) a.s. ⇒ θ = θ ′ .
Assumption Var(Θ): For all θ ∈ Θ, one of the families

∂f θ ∂θ i (X 0 , X -1 , • • • ) 1≤i≤d or ∂h θ ∂θ i (X 0 , X -1 , • • • ) 1≤i≤d is a.s. linearly independent. Assumption K(f θ , M θ , Θ): for i= 0, 1, 2, A i (f θ , Θ) and A i (M θ , Θ) (or A i (h θ , Θ)) hold and there exists ℓ > 2 such that α (i) j (f θ , Θ) + α (i) j (M θ , Θ) + α (i) j (h θ , Θ) = O(j -ℓ ) for j ∈ IN .
Note that in this last assumption, as in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], we use the convention that if A i (M θ , Θ) holds then α

(i) ℓ (h θ , Θ) = 0 and if A i (h θ , Θ) holds then α (i) ℓ (M θ , Θ) = 0.

Two first examples

1. ARMA(p, q) processes.

Consider the ARMA(p, q) process defined by:

X t + p i=1 a * i X t-i = q j=0 b * j ξ t-j , t ∈ Z (2) with b * 0 = 0, θ * 0 = (a * 1 , • • • , a * p , b * 0 , • • • , b * q ) ∈ Θ ⊂ IR p+q+1
and (ξ t ) a white noise such as E (ξ 2 0 ) = 1. When q j=0 b * j X j = 0 and 1 + p i=0 a * i X i = 0 for all |X| ≤ 1, this process can be also written as:

X t = b * 0 ξ t + ∞ j=1 φ j (θ * 0 ) X t-i , t ∈ Z
where θ ∈ Θ → φ j (θ) are functions only depending on θ and decreasing exponentially fast to 0 (j → ∞). The process (2) belongs to the class

M Z (M θ * 0 , f θ * 0 ) where f θ (x 1 , • • • ) = j≥1 φ j (θ)x j and M θ ≡ b * 0 for all θ ∈ Θ. Then Assumptions D(Θ), A 0 (f θ , Θ), A 0 (M θ , Θ) hold with h = |b * 0 | > 0 and α (0) j (f θ , Θ) = φ j (θ) Θ while α (0) j (M θ , Θ) = 0 for j ∈ IN * . Assumption K(f θ , M θ , Θ)
holds since there exists c > 0 and C > 0 such as |φ j | ≤ C e -cj for j ∈ IN . Moreover, if (ξ t ) is a sequence of non-degenerate random variables (i.e. ξ t is not equal to a constant), Assumptions Id(Θ) and Var(Θ) hold. Finally, for any r ≥ 1 such that

E |ξ 0 | r < ∞, then Θ(r) = θ ∈ IR p+q+1 , j≥1 |φ j (θ)| < 1 .
Note that if θ ∈ Θ(r) with r ≥ 1 then the previous conditions of stationarity q j=0 b j X j = 0 and 1 + p i=0 a i X i = 0 for all |X| ≤ 1 are satisfied.

2. GARCH(p, q) processes.

Consider the GARCH(p, q) process defined by:

X t = σ t ξ t , σ 2 t = α * 0 + p j=1 α * j X 2 t-j + q j=1 β * j σ 2 t-j , t ∈ Z (3) with E (ξ 2 0 ) = 1 and θ * 0 := (α * 0 , • • • , α * p , β * 1 , • • • , β * q ) ∈ Θ where Θ is a compact subset of ]0, ∞[×[0, ∞[ p+q such that p j=1 α j + q j=1 β j < 1 for all θ ∈ Θ.
Then there exists (see Bollerslev [START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF] or Nelson and Cao [START_REF] Nelson | Inequality Constraints in the Univariate GARCH Model[END_REF]) a nonnegative sequence (ψ j (θ * 0 )) j≥0 such that

σ 2 t = ψ 0 (θ * 0 ) + j≥1 ψ j (θ * 0 )X 2 t-j with ψ 0 (θ * 0 ) = α * 0 /(1 - q j=1 β * j ). This process belongs to the class M Z (M θ * 0 , f θ * 0 ) where f θ ≡ 0 and M θ (x 1 , • • • ) = ψ 0 (θ) + j≥1 ψ j (θ)x 2 j
for all θ ∈ Θ. Assumption D(Θ) holds with h = inf θ∈Θ (ψ 0 (θ)) > 0. If there exists 0 < ρ 0 < 1 such that for any θ ∈ Θ, q j=1 α j + p j=1 β j ≤ ρ 0 then the sequences ( ψ j (θ) Θ ) j≥1 , ( ψ ′ j (θ) Θ ) j≥1 and ( ψ ′′ j (θ) Θ ) j≥1 decay exponentially fast (see Berkes et al. [START_REF] Berkes | GARCH processes: structure and estimation[END_REF]) and Assumption K(f θ , M θ , Θ) holds. Moreover, (ξ 2 t ) is a sequence of non-degenerate random variables (i.e. ξ 2 t is not equal to a constant), Assumptions Id(Θ) and Var(Θ) hold. Finally for r ≥ 2 we obtain

Θ(r) = θ ∈ Θ ; (E |ξ 0 | r ) 2/r ∞ j=1 φ j (θ) < 1 .

The quasi-maximum likelihood estimator

Let k ≥ n ≥ 2, if (X 1 , • • • , X k ) ∈ M {1,••• ,k} (M θ , f θ ), then for T ⊂ {1, • • • ,
k}, the conditional quasi-(log)likelihood computed on T is given by:

L(T, θ) := -θ(T ) := argmax θ∈Θ ( L(T, θ)). (6) 
In Bardet and Wintenberger [4] it was established that if

(X 1 , • • • , X n ) is an observed trajectory of X ⊂ M Z (f θ * 0 , M θ * 0 ) with θ * 0 ∈ • Θ(4) and if Θ is a compact set such as Assumptions A i (f θ , M θ , Θ) (or A i (h θ , Θ))
hold for i = 0, 1, 2 and under Assumptions D(Θ), Id(Θ), Var(Θ), K(f θ , M θ , Θ), then

√ n θ(T 1,n ) -θ * 0 D -→ n→∞ N 0 , F G -1 F , (7) 
with

G := E ∂q 0 (θ * 0 ) ∂θ ∂q 0 (θ * 0 ) ∂θ ′ and F := E ∂ 2 q 0 (θ * 0 ) ∂θ∂θ ′ , (8) 
where ′ denotes the transpose and with q 0 defined in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]. Note that under assumptions D(Θ) and Var(Θ), G is symmetric positive definite (see [START_REF] Kengne | Testing for parameter constancy in general causal time-series models[END_REF]) and F is non-singular (see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]). Also define the matrix

G(T ) := 1 Card(T ) t∈T ∂ q t ( θ(T )) ∂θ ∂ q t ( θ(T )) ∂θ ′ and F (T ) := - 2 Card(T ) ∂ 2 L m (T, θ(T )) ∂θ∂θ ′ . ( 9 
)
Under the previous assumptions, G(T 1,n ) and F (T 1,n ) converge almost surely to G and F respectively. Hence,

√ n G(T 1,n ) -1/2 F (T 1,n ) θ(T 1,n ) -θ * 0 D -→ n→∞ N 0 , I d (10) 
with I d the identity matrix. This result will be the starting point of the following monitoring procedure.

3 The monitoring procedure and asymptotic results

The monitoring procedure

In the sequel, (X 1 , • • • , X n ) is supposed to be the historical available observations belonging to the class

M {1,••• ,n} (f θ * 0 , M θ * 0 ). For 1 ≤ ℓ ≤ ℓ ′ , denote T ℓ,ℓ ′ := {ℓ, ℓ + 1, • • • , ℓ ′ }.
At a monitoring instant k, our procedure evaluates the difference between θ(T ℓ,k ) and θ(T 1,n ) for any ℓ = n, • • • , k. More precisely, from [START_REF] Billingsley | Convergence of Probability Measures[END_REF], for any k > n define the statistic (called the detector)

C k,ℓ := √ n k -ℓ k G(T 1,n ) -1/2 F (T 1,n ) θ(T ℓ,k ) -θ(T 1,n ) for ℓ = n, • • • , k. Since the matrix G(T 1,n
) is asymptotically symmetric and positive definite (see [START_REF] Kengne | Testing for parameter constancy in general causal time-series models[END_REF]), G(T 1,n ) -1/2 exists for n large enough and C k,ℓ is well defined. At the beginning of the monitoring scheme and when ℓ is close to k, the length of T ℓ,k is too small, therefore the numerical algorithm used to compute θ(T ℓ,k ) cannot converge. This can introduce a large distortion in the procedure. To avoid this, we introduce a sequence of integer numbers (v n ) n∈I N with v n << n and compute

C k,ℓ for ℓ ∈ {n -v n , n -v n + 1, • • • , k -v n }. Thus, for any k > n denote Π n,k := {n -v n , n -v n + 1, • • • , k -v n }.
For technical reasons, assume that,

v n → ∞ and v n / √ n → 0 (n → ∞).
According to Remark 1 of [START_REF] Kengne | Testing for parameter constancy in general causal time-series models[END_REF], we can choose

v n = [(log n) δ ] with δ > 1.
Note that, if change does not occur at time k > n, for any ℓ ∈ Π n,k , the two estimators θ(T ℓ,k ) and θ(T 1,n ) are close and the detector C k,ℓ is not too large. Hence, the monitoring scheme rejects H 0 at the first time k > n where there exists ℓ ∈ Π n,k satisfying C k,ℓ > c for a fixed constant c > 0. To be more general, we will use a b : (0, ∞) → (0, ∞), called a boundary function satisfying:

Assumption B: b : (0, ∞) → (0, ∞) is a non-increasing and continuous function such as Inf 0<t<∞ b(t) > 0.
Then the monitoring scheme rejects H 0 at the first time k > n such as there exists ℓ ∈ Π n,k satisfying

C k,ℓ > b((k -ℓ)/n).
Hence define the stopping time:

τ (n) := Inf k > n / ∃ℓ ∈ Π n,k , C k,ℓ > b((k -ℓ)/n) = Inf k > n / max ℓ∈Π n,k C k,ℓ b((k -ℓ)/n) > 1 .
Therefore, we have

P {τ (n) < ∞} = P max ℓ∈Π n,k C k,ℓ b((k -ℓ)/n) > 1 for some k > n = P sup k>n max ℓ∈Π n,k C k,ℓ b((k -ℓ)/n) > 1 . ( 11 
)
The challenge is to choose a suitable boundary function b(•) such as for some given α ∈ (0, 1)

lim n→∞ P H0 {τ (n) < ∞} = α and lim n→∞ P H1 {τ (n) < ∞} = 1
where the hypothesis H 0 and H 1 are specified in Section 1.

In the case where b(•) is a constant positive value, b ≡ c with c > 0, these conditions lead to compute a threshold c = c α depending on α. If change is detected under

H 1 i.e. τ (n) < ∞ and τ (n) > k * ,
then the detection delay is defined by

d n = τ (n) -k * .
Using the previous notations, Na et al. [START_REF] Na | Monitoring parameter change in time series models[END_REF] used the following detector

D k := √ n G(T 1,n ) -1/2 F (T 1,n ) θ(T 1,k ) -θ(T 1,n ) .
At the step k of the monitoring scheme, their recursive estimator is based on

X 1 , • • • , X n , • • • , X k .
One can see that this estimator is highly influenced by the historical data. Assume that a change occurs at time k * ≤ k, in the sequel of the procedure, the recursive estimator contents the observations

X 1 , • • • , X n , • • • , X k * -1 which de- pends on θ * 0 . Then, one must wait longer before the difference between θ(X 1 , • • • , X n ) and θ(X 1 , • • • , X n , • • • , X k
) becomes significant at a step k > k * . Therefore, their procedure cannot be effective in terms of detection delay.

Moreover, if n tends to infinity, it is not almost sure that this change will be detected. These are confirmed by the results of simulations (see Section 4). [START_REF] Berkes | Sequential change-point detection in GARCH(p,q) models[END_REF] considered an estimator based on historical data to compute the quasi-likelihood scores. They used the fact that the partial derivatives applied to a vector u is equal to 0 if and only if u is the true parameter of the model. So, when change occurs, their detector growths asymptotically to infinity. Therefore, their procedure is consistent. They proved this result for GARCH(p,q) models.

Asymptotic behaviour under the null hypothesis

Under H 0 , the parameter θ * 0 does not change over the new observations. Thus we have the result [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]. Under the null hypothesis H 0 , then

Theorem 3.1. Assume D(Θ), Id(Θ), Var(Θ), K(f θ , M θ , Θ), B and θ * 0 ∈ • Θ ( 
lim n→∞ P {τ (n) < ∞} = P sup t>1 sup 1<s<t W d (s) -sW d (1)) t b(s) > 1
where W d is a d-dimensional standard Brownian motion.

In the simulations, we will use the most "natural" boundary function b(•) = c with c a positive constant since it satisfies the above assumptions imposed to b(•). In such case, the forthcoming corollary indicates that the asymptotic distribution of Theorem 3.1 can be easily computed:

Corollary 3.1. Assume b(t) = c > 0 for t ≥ 0.
Under the assumptions of Theorem 3.1,

lim n→∞ P {τ (n) < ∞} = P sup t>1 sup 1<s<t 1 t W d (s) -sW d (1)) > c = P {U d > c}
where

U d = sup 0<u<1 f (u) W d (u) with f (u) = √ 9 -u + √ 1 -u √ 9 -u + 3 √ 1 -u 2 3 -u + (9 -u)(1 -u) 1/2 . Remark 3.1.

By the law of the iterated logarithm, it comes that

sup 1<s<t 1 t W d (s) -sW d (1)) a.s. -→ t→∞ W d (1)) .
So, the two distributions sup 1<s<t

1 t W d (s) -sW d (1)) as t → ∞ (resp. t → 1) and f (u) W d (u) as u → 1 (resp. u → 0) are equal. It is easy to show (see proof of Corollary 3.1) that sup t>1 sup 1<s<t 1 t W d (s) -sW d (1)) D = sup 0<u<1 f (u) W d (u) .

Under the null hypothesis, it holds that θ(T

-→ n→∞ θ * 0 (see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]). Thus denote

C (0) k,ℓ := √ n k -ℓ k G(T 1,n ) -1/2 F (T 1,n ) θ(T ℓ,k ) -θ * 0 .
Under the assumptions of Theorem 3.1, one can easily show that

sup k>n max ℓ∈Π n,k 1 b((k -ℓ)/n) C k,ℓ -C (0) k,ℓ = o P (1) as n → ∞.
Thus, the Theorem 3.1 still holds if the stopping time τ (n) is computed by using the detector C (0) k,ℓ . Hence, if the parameter θ * 0 of the historical observations is known, then use the detector

C (0) k,ℓ instead of C k,ℓ . But let us note that this situation is infrequent in practice.
Therefore, at a nominal level α ∈ (0, 1), take c = c(α) be the (1α)-quantile of the distribution of U d = sup 0<u<1 f (u) W d (u) which can be computed through Monte-Carlo simulations. Table 1 shows the (1α)quantile of this distribution for α = 0.01, 0.05, 0. 10 andd 

= 1, • • • , 5. d = 1 d = 2 d = 3 d = 4 d = 5 α = 0.

Asymptotic behaviour under the alternative hypothesis

Under the alternative H 1 , the parameter changes from θ * 0 to θ * 1 at k * > n, where θ * 1 ∈ Θ and

θ * 0 = θ * 1 . Then Theorem 3.2. Assume D(Θ), Id(Θ),Var(Θ), K(f θ , M θ , Θ) and B. Under the alternative H 1 , if θ * 1 = θ * 0 and θ * 0 , θ * 1 ∈ • Θ(4) then for k * = k * (n) such as lim sup n→∞ k * (n)/n < ∞ and k n = k * (n) + n δ with δ ∈ (1/2, 1), max ℓ∈Π n,kn C kn,ℓ b((k n -ℓ)/n) a.s. -→ n→∞ ∞.
The forthcoming Corollary 3.2 can be immediately deduced from the relation [START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF].

Corollary 3.2. Under assumptions of Theorem 3.2,

lim n→∞ P {τ (n) < ∞} = 1.
Remark 3.2. We know that the monitoring scheme rejects H 0 at the first time k where

max ℓ∈Π n,k C k,ℓ b((k -ℓ)/n) > 1.
Therefore, it follows from Theorem 3.2 that under the hypothesis H 1 , the detection delay d n of the procedure can be bounded by O P (n 1/2+ε ) for any ε > 0 (or even by O P √ n(log n) a with a > 0 using the same kind of proof ).

Examples

AR(∞) processes

Consider the generalization of ARMA(p, q) processes defined in (2) i.e. a AR(∞) processes defined by:

X t = φ 0 (θ * 0 ) + j≥1 φ j (θ * 0 )X t-j + ξ t , t ∈ Z (12) 
with θ * 0 ∈

• Θ, where we can chose Θ as a compact subset of Θ(4) ⊂ IR d where

Θ(4) = θ ∈ IR d ; j≥1 |φ j (θ)| < 1 .
This process belongs to the class

M Z (M θ * 0 , f θ * 0 ) where f θ (x 1 , • • • ) = j≥1 φ j (θ)x j and M θ ≡ φ 0 (θ) for all θ ∈ Θ and therefore α (0) j (f θ , Θ) = φ j (θ) Θ and α (0) j (M θ , Θ) = 0 for j ∈ IN * . Then • Assumption D(Θ) holds if h = inf θ∈Θ (|φ 0 (θ)|) > 0; • Assumption K(f θ , M θ , Θ) holds if there exists ℓ > 2 and and if θ → φ j (θ) are twice differentiable functions satisfying max ψ j (θ) Θ , φ ′ j (θ) Θ , φ ′′ j (θ) Θ = O(j -ℓ ) for j ∈ IN .
• if (ξ t ) is a sequence of non-degenerate random variables, Assumptions Id(Θ) and Var(Θ) hold.

Case of AR(p) process

Assume that

X t = φ * 0 + p j=1 φ * j X t-j + ξ t with p ∈ IN * .
The true parameter of the model is denoted by

θ * 0 = (φ * 0 , φ * 1 , • • • , φ * p ) ∈ Θ where Θ = {θ = (φ 0 , φ 1 , • • • , φ p ) ∈ IR p+1 / p j=1 |φ j | < 1}. Then, Θ(r) = Θ for any r ≥ 1. Assume that a trajectory (X 1 , • • • , X k ) has been observed, for any t = 1, • • • , k and θ ∈ Θ we have, q t (θ) = X t -φ 0 - p j=1 φ j X t-j 2 , ∂ q t (θ) ∂θ = -2 X t -φ 0 - p j=1 φ j X t-j • (1, X t-1 , X t-2 , • • • , X t-p ). Moreover, ∂ 2 q t (θ) ∂φ 0 ∂φ 0 = 2, for j = 1, • • • , p, ∂ 2 q t (θ) ∂φ 0 ∂φ j = 2X t-j and for 1 ≤ i, j ≤ p, ∂ 2 q t (θ) ∂φ i ∂φ j = 2X t-i X t-j .

ARCH(∞) processes

Consider the generalization GARCH(p, q) processes defined in (3) i.e. a ARCH(∞) processes defined by:

X t = σ t ξ t and σ 2 t = ψ 0 (θ * 0 ) + ∞ j=1 ψ j (θ * 0 )X 2 t-j , t ∈ Z (13) 
with θ * 0 ∈

• Θ, where we can chose Θ as a compact subset of Θ(4) ⊂ IR d where

Θ(4) = θ ∈ IR d ; (E |ξ 0 | 4 ) 1/2 ∞ j=1 |φ j (θ)| < 1 .
This process, introduced by Robinson [START_REF] Robinson | Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression[END_REF], belongs to the class

M Z (f θ * 0 , M θ * 0 , ) where f θ (x 1 , • • • ) ≡ 0 and M 2 θ (x 1 , • • • ) = ψ 0 (θ) + j≥1 ψ j (θ)x 2 j for all θ ∈ Θ and therefore α (0) j (f θ , Θ) = 0 and α (0) j (h θ , Θ) = φ j (θ) Θ for j ∈ IN * (X is of course a ARCH-type process). Then • Assumption D(Θ) holds if h = inf θ∈Θ (ψ 0 (θ)) > 0;
• Assumption K(f θ , M θ , Θ) holds if there exists ℓ > 2 and and if θ → φ j (θ) are twice differentiable functions satisfying max

ψ j (θ) Θ , ψ ′ j (θ) Θ , ψ ′′ j (θ) Θ = O(j -ℓ ) for j ∈ IN . • if (ξ 2 t
) is a sequence of non-degenerate random variables, Assumptions Id(Θ) and Var(Θ) hold.

Case of GARCH(1, 1) process Assume that

X t = σ t ξ t with σ 2 t = α * 0 + α * 1 X 2 t-1 + β * 1 σ 2 t-1 with θ * 0 = (α * 0 , α * 1 , β * 1 ) ∈ Θ ⊂]0, ∞[×[0, ∞[ 2 and satisfying α * 1 + β * 1 < 1. The ARCH(∞) representation is σ 2 t = α * 0 /(1 -β * 1 ) + α * 1 j≥1 (β * 1 ) j-1 X 2 t-j . If a trajectory (X 1 , • • • , X k ) has been observed, for any t = 1, • • • , k and θ ∈ Θ we have, h t θ = α 0 /(1 -β 1 ) + α 1 X 2 t-1 + α 1 t j=2 β j-1 1 X 2 t-j and q t (θ) = X 2 t / h t θ + log( h t θ ).
Thus, it follows that

∂ q t (θ) ∂θ = 1 h t θ 1 - X 2 t h t θ ∂ h t θ ∂α 0 , ∂ h t θ ∂α 1 , ∂ h t θ ∂β 1 with ∂ h t θ ∂α 1 = X 2 t-1 + t j=2 β j-1 1 X 2 t-j ∂ h t θ ∂α 0 = 1/(1 -β 1 )
, and

∂ h t θ ∂β 1 = α 0 /(1 -β 1 ) 2 + α 1 X 2 t-2 + α 1 t j=3 (j -1)β j-2 1 X 2 t-k . Let θ = (α 0 , α 1 , β 1 ) = (θ 1 , θ 2 , θ 3 ) ∈ Θ, for 1 ≤ i, j ≤ 3, we have ∂ 2 q t (θ) ∂θ i ∂θ j = 1 ( h t θ ) 2 2X 2 t h t θ -1 ∂ h t θ ∂θ i ∂ h t θ ∂θ j + 1 h t θ 1 - X 2 t h t θ ∂ 2 h t θ ∂θ i ∂θ j with ∂ 2 h t θ ∂α 2 0 = 0, ∂ 2 h t θ ∂α 0 ∂α 1 = 0, ∂ 2 h t θ ∂α 2 1 = 0, ∂ 2 h t θ ∂α 1 ∂β 1 = X 2 t-2 + t j=3 (j -1)β j-2 1 X 2 t-j , ∂ 2 h t θ ∂α 0 ∂β 1 = 1/(1 -β 1 ) 2 and ∂ h t θ ∂β 2 1 = 2α 0 /(1 -β 1 ) 3 + 2α 1 X 2 t-3 + α 1 t j=4 (j -1)(j -2)β j-3 1 X 2 t-j .

TARCH(∞) processes

The process X is called Threshold ARCH(∞) (TARCH(∞) in the sequel) if it satisfies

X t = σ t ξ t and σ t = b 0 (θ * 0 ) + ∞ j=1 b + j (θ * 0 ) max(X t-j , 0) -b - j (θ * 0 ) min(X t-j , 0) , t ∈ Z ( 14 
)
where the parameters b 0 (θ), b + j (θ) and b - j (θ) are assumed to be non negative real numbers and θ ∈

• Θ where Θ is a compact subset of Θ(4) where

Θ(4) = θ ∈ IR d E |ξ 0 | 4 1/4 ∞ j=1 max b - j (θ), b + j (θ) < 1 since α (0) j (M, {θ}) = max b - j (θ), b + j (θ)
. This class of processes is a generalization of the class of TGARCH(p,q) processes (introduced by Rabemananjara and Zakoïan [START_REF] Rabemananjara | Threshold ARCH models and asymmetries in volatility[END_REF]). Then,

• Assumption D(Θ) holds if h = inf θ∈Θ b 0 (θ) > 0;
• Assumption K(f θ , M θ , Θ) holds if there exists ℓ > 2 and and if θ → b - j (θ) and θ → b + j (θ) are twice differentiable functions satisfying

max b - j (θ) Θ , b + j (θ) Θ , ∂ ∂θ b - j (θ) Θ , ∂ ∂θ b + j (θ) Θ , ∂ 2 ∂θ 2 b - j (θ) Θ , ∂ 2 ∂θ 2 b + j (θ) Θ = O(j -ℓ ) for j ∈ IN.
Unfortunately, for TARCH(∞) it is not possible to provide simple conditions for obtaining Assumptions Id(Θ)

and Var(Θ) as for AR(∞) or ARCH(∞) processes.

Some simulation and numerical experiments

First remark that, at a time k > n, we need to compute C k,ℓ for all ℓ ∈ Π n,k to test whether change occurs or not. On can see that, the computational time is very long and increases with k. To reduce it, we introduce an integer sequence (u n ) (satisfying

u n / √ n → 0 as n → ∞; typically u n = [ln(n)]) and compute C k,ℓ only for ℓ ∈ Π 0 n,k := {n -v n , n -v n + u n , n -v n + 2u n , • • • , k -v n }.
We have Π 0 n,k ⊂ Π n,k and for any t = ℓ n with ℓ ∈ Π n,k , we can find an integer j ℓ such that n -

v n + j ℓ u n ∈ Π 0 n,k
and nv n + j ℓ u n ≤ ℓ ≤ nv n + (j ℓ + 1)u n . This implies that n-vn+j ℓ un n ≤ t ≤ n-vn+j ℓ un n + un n . Thus, we have asymptotically (as n → ∞), t ∼ n-vn+j ℓ un n . It shows that the previous asymptotic results still hold by computing C k,ℓ for ℓ ∈ Π 0 n,k . The condition u n / √ n → 0 ensures that the Theorem 3.2 still holds by choosing k n = k * (n) + n δ with δ ∈ (1/2, 1). In practice, the use of Π 0 n,k can introduce a distortion in the detection delay. But, the new detection delay must be between d n and d n + u n (where d n is the detection delay obtained by using Π n,k ). In the sequel, we use

u n = [ln(n)].
Moreover, if b ≡ c > 0 is a constant function, according to [START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF], we have

P {τ (n) < ∞} = P sup k>n max ℓ∈Π 0 n,k C k,ℓ > c . (15) 
Thus, denote

C k = max ℓ∈Π 0 n,k C k,ℓ for any k > n.
The procedure is monitored from

k = n + 1 to k = n + 500. The set {n + 1, • • • , n + 500} is called monitoring period. According to the Remark 1 of [20], v n = [(log n) δ ] (with 1 ≤ δ ≤ 3) is chosen.
We evaluated the performance of the procedure with 

v n = [log n], [(log n) 3/2 ], [(log n) 2 ], [(log n) 3

An illustration

We consider a GARCH(1,1) process :

X t = σ t ξ t with σ 2 t = α * 0 + α * 1 X 2 t-1 + β * 1 σ 2 t-1 . Thus, the parameter of the model is θ * 0 = (α * 0 , α * 1 , β * 1 )
. The historical available data are X 1 , • • • , X 500 (therefore n = 500) and the monitoring period is {501, • • • , 1000}. At the nominal level α = 0.05, the critical values of the procedure is C α = 2.760. The Figure 1 is a typical realization of the statistic ( C k ) 500<k≤1000 . We consider a scenario without change (Figure 1 Figure 1 a-) shows that the detector C k is under the horizontal line which represents the limit of the critical region. On Figure 1 b-) we can see that, before change occurs, C k is under the horizontal line and increases with a high speed after change. Such growth over a long period indicates that something happening in the model.

Monitoring mean shift in times series

Let (X 1 , • • • , X n ) be an (historical) observation of a process X = (X t ) t∈Z . We assume that X satisfy

X t = µ 0 + ǫ t for 1 ≤ t ≤ k * X t = µ 1 + ǫ t for t > k *
with k * > n, µ 0 = µ 1 and (ǫ t ) a zero mean stationary time series belongs to a class M Z (f θ , M θ ). Under H 0 , k * = ∞. The monitoring procedure start at k = n + 1 and the aim is to test mean shift over the new observations X n+1 , X n+2 , • • • . This problem can be seen as monitoring changes in linear model (see Horváth et al. [START_REF] Horváth | Monitoring changes in linear models[END_REF], Aue et al. [START_REF] Aue | Change point monitoring in linear models[END_REF]) with constant regressor. The empirical mean X n = 1 n n i=1 X i is a consistent estimator of µ 0 and the recursive residuals are defined by ǫ k = X k -X n ; for k > n. Horváth et al. [START_REF] Horváth | Monitoring changes in linear models[END_REF] and Aue et al. [START_REF] Aue | Change point monitoring in linear models[END_REF] proposed the 

CUSUM detector

Q k = 1 σ n 1 c √ n( k n )(1 -n k ) γ k i=n+1 ǫ i k > n, c > 0, 0 ≤ γ < 1/2, (16) 
where σ 2 n is a consistent estimator of the long-run variance σ 2 = lim n→∞

1 n Var( n i=1 ǫ i ). If the process (ǫ t )
are uncorrelated (for instance GARCH-type model), empirical variance of the historical data can be used as estimator of σ 2 . If (ǫ t ) are correlated, the popular Bartlett estimator (see [START_REF] Berkes | Almost sure convergence of the Bartlett estimator[END_REF]) can be used. Under some regular conditions, it hold that (see [START_REF] Horváth | Monitoring changes in linear models[END_REF] and [START_REF] Aue | Change point monitoring in linear models[END_REF])

lim n→∞ P {τ (n) < ∞} = P sup 0<s<1 |W 1 (s)| s γ > c .
Hence, at a nominal level α = 0.05, the critical value of the test is the (1α)-quantile of the distribution of sup 0<s<1 W 1 (s) /s γ . When γ = 0, these quantiles are known (see Table 1 of [START_REF] Na | Monitoring parameter change in time series models[END_REF] for values obtained through a Monte Carlo simulation).

We compare our procedure to this CUSUM one (see [START_REF] Horváth | Change in autoregressive processes[END_REF] with γ = 0) in two situations 1. (ǫ t ) is an AR(1) process;

ǫ t = φ * 1 ǫ t-1 + ξ t with φ * 1 = 0.2; 2. (ǫ t ) is a GARCH(1, 1) process; ǫ t = σ t ξ t with σ 2 t = α * 0 + α * 1 ǫ 2 t-1 + β * 1 σ 2 t-1 and (α * 0 , α * 1 , β * 1 ) = (0.01, 0.3, 0.2).
The historical sample size are n = 500 and n = 1000. These procedures are evaluated at times k = n + 100, n + 200, n + 300, n + 400, n + 500, while the change occurs at k * = n + 50 or k * = n + 250. Tables 2 and3 indicate the empirical levels and the empirical powers based of 200 replications. The elementary statistics of the empirical detection delay are reported in Tables 4.

The results of Table 2 and Table 3 show that both the procedures based on detectors C k and Q k are conservative. One can also see that the larger n (length of historical data) the smaller the distortion size of these procedures. This is due to the fact that the length of monitoring period is fixed and does not increase with n. Under H 1 , the change has been detected before the monitoring time k = n + 500. But, as we mentioned above, the challenge of this problem is to minimize the detection delay. For this criteria, it can be seen in Table 4 that in the case of the mean shift in AR process, our procedure works well as Horváth et al.'s procedure when the change occurs at the beginning of the monitoring (k * = n + 50); but our procedure is a little more accurate when the change occurs a long time after the beginning of the monitoring (k * = n + 250). For the case of the mean shift in GARCH process, our test procedure outperforms the Horváth et al.'s test in terms of mean and quantiles of the detection delay.

Monitoring parameter changes in AR(1) and GARCH(1,1) processes

In this subsection, we present some simulations results for monitoring parameter changes in AR(1) and GARCH(1,1) models and compare our procedure to the one proposed by Na et al. [START_REF] Na | Monitoring parameter change in time series models[END_REF]. If the boundary 

d n Mean SD Min Q 1 Med Q 3 Max AR ( 
D k > c = P sup 0<s<1 W d (s) > c ,
where

D k := √ n G(T 1,n ) -1/2 F (T 1,n ) θ(T 1,k ) -θ(T 1,n ) .
Hence, at a nominal level α, the critical value of their procedure is the ( 

= (α * 0 , α * 1 , β * 1 ) = (0.01, 0.3, 0.
2) is constant (hypothesis H 0 ) and the empirical powers are computed when θ 0 = (0.01, 0.3, 0.2) changes to θ 1 = (0.05, 0.5, 0.2) (hypothesis H 1 ). this mean is not estimated. For AR model, it appears in Table 5 that both procedures based on detector C k and D k are conservative. This is not the case for GARCH model (Table 6). The high size distortions when n = 500 is due to the difficulty to estimate the parameter of GARCH model. This size distortion decreases when n increases and Corollary 3.1 ensures that with infinite monitoring period, the empirical level tends to the nominal one as n → ∞.

For both the cases of AR and GARCH processes, the procedure based on detector C k,ℓ detects the change before the monitoring time k = n + 500. Unlike Na et al. [START_REF] Na | Monitoring parameter change in time series models[END_REF], we consider a scenario of GARCH model with moderate change in parameter and it can be seen in Table 6 that the procedure based on detector D k provides unsatisfactory results. At the monitoring time k = n + 500, it is not sure that the change must be detected even when k * = n + 50. This is not surprising according to the comment of subsection 3.1.

Table 7 indicates the distribution of the detection delay d n . We can see in Table 7 (even in Table 4) that for our procedure, the relation d 1000 ≤ 1000/500 d 500 is globally satisfied (from Theorem 3.2, we deduced that d n = O P n 1/2 log n when n is large enough). Moreover, elementary statistics (mean and quantiles) show that the detection delay using our procedure is shorter than using the Na et al.'s one. The results of Table 5, 6 and 7 show that, our test is uniformly better and the procedure based on detector C k could be recommended in this frame.

Real-Data Applications

We consider the returns of the daily closing values of the Nikkei 225 stock index (from January 2, 1995 to October 19, 1998), S&P 500 and FTSE 100 (from January 2, 2004 to June 11, 2012). These data are available on Yahoo! Finance at http://finance.yahoo.com/. They are represented on Figure 2 and Figure 6. These series are known to represent ARCH effect and GARCH(1,2) (resp. GARCH(1,1)) can be used to capture it in returns of Nikkei 225 (resp. S&P 500 and FTSE 100), see the book of Francq and Zakoïan 2010.

d n Mean SD Min Q 1 Med Q 3 Max AR ( 
Consider the observations going from January 2, 1995 to December 31, 1996 (resp. January 2, 2004 to December 30, 2005) as the historical data for the Nikkei 225 (resp. S&P 500 and FTSE 100) stock index.

These periods are known to be stable in the financial community. To verify it, we apply three procedures to test for parameter change in the historical observations. The null hypothesis is that the parameter is constant over the observations against the parameter changes alternative.

• The first test is proposed by Kengne [START_REF] Kengne | Testing for parameter constancy in general causal time-series models[END_REF]. Define the asymptotic covariance matrix (which take into account the change possibility) of the estimator

θ n (T 1,n ) by Σ n,k := k n F n (T 1,k ) G n (T 1,k ) -1 F n (T 1,k )1 det( Gn(T 1,k )) =0 + n -k n F n (T k,n ) G n (T k,n ) -1 F n (T k,n )1 det( Gn(T k,n )) =0 .
The test is based on the statistic

Q n := max Q (1) n , Q (2) 
n where

Q (1) n := max vn≤k≤n-vn Q (1) n,k with Q (1) 
n,k :=

k 2 n θ n (T 1,k ) -θ n (T n ) ′ Σ n,k θ n (T k ) -θ n (T n ) , Q (2) n := max vn≤k≤n-vn Q (2) n,k with Q (2) n,k : 
= (n -k) 2 n θ n (T k,n ) -θ n (T 1,n ) ′ Σ n,k θ n (T k,n ) -θ n (T k,n ) .
This test is applied with v n = (log n) δ where 2 ≤ δ ≤ 5/2.

• The second test (see Lee and Song [START_REF] Lee | Test parameter change in ARMA models with GARCH innovations[END_REF]) is based on the statistic

Q (0) n := max vn≤k≤n-vn k 2 n θ n (T 1,k ) -θ n (T 1,n ) ′ Σ n,n θ n (T 1,k ) -θ n (T 1,n ) with v n = (log n) 2 .
• The third procedure is the CUSUM test see Kulperger and Yu [START_REF] Kulperger | High moment partial sum processes of residuals in GARCH models and their applications[END_REF].

At a nominal level α ∈ (0, 1), each of these procedure rejects null hypothesis if the test statistic is greater than a critical value C α . Table 8 provides the results of these tests to the historical data that we have chosen. Note that, these series are very closed to a nonstationary process, in the sense that q j=1 α j + p j=1 β j ≃ 1 (see [START_REF] Aue | Delay times of sequential procedures for multiple time series regression models[END_REF]). Therefore, it would be difficult to compute the estimator θ n (T k,l ) (1 ≤ k < l ≤ n). For the statistics Q n and Q (0) n , we consider only the time k that the computation of θ n (T 1,k ) and θ n (T k,n ) converges. This 1. For the Nikkei 225, from January 2, 1995 to October 19, 1998 ; break is detected at • t N ≃ 17 September 1997 which correspond to the turmoil period of the Asian financial crisis (1997)(1998).

Q n Q 0 n CUSUM Nikkei 225 3.
See also Figure 2.

2. For the S&P 500 and FTSE 100, from January 2, 2004 to June 11, 2012 ; break are detected at ( t S,i and t F,i are referred to the breakpoint in the S&P 500 and FTSE 100 respectively) See also Figure 6. 

• t S,

Breaks detection in the S&P 500

Returns S&P 500 -0. Recall that (X

1 , • • • , X n ) is an observed trajectory of a process M Z (M θ * 0 , f θ * 0 ). Let k ≥ n ≥ 2 and T 1,n = {1, • • • , n}, T ℓ,k = {ℓ, ℓ + 1, • • • , k} with ℓ ∈ Π n,k = {v n , v n + 1, • • • , k -v n }, and define C k,ℓ := √ n k -ℓ k G -1/2 F • θ(T ℓ,k ) -θ(T 1,n ) ,
with θ defined in [START_REF] Basseville | Detection of Abrupt Changes: Theory and Application[END_REF].

Lemma 6.1. Under the assumptions of Theorem 3.1,

sup k>n max ℓ∈Π n,k 1 b((k -ℓ)/n) C k,ℓ -C k,ℓ = o P (1) as n → ∞.
Proof. For any n ≥ 1, we have sup

k>n max ℓ∈Π n,k 1 b((k -ℓ)/n) C k,ℓ -C k,ℓ = 1 inf s>0 b(s) sup k>n max ℓ∈Π n,k C k,ℓ -C k,ℓ .
Now, proceed similarly as in the proof of Lemma 3 of [START_REF] Kengne | Testing for parameter constancy in general causal time-series models[END_REF].

Lemma 6.2. Under the assumptions of Theorem 3.1

sup k>n max ℓ∈Π n,k 1 b((k -ℓ)/n) √ n k (k -ℓ)F • θ(T ℓ,k ) -θ(T 1,n ) -2 ∂ ∂θ L(T ℓ,k , θ * 0 ) - k -ℓ n ∂ ∂θ L(T 1,n , θ * 0 ) = o P (1) as n → ∞.
Proof. Let k ≥ n and T ⊂ {1, • • • , k}. By applying the Taylor expansion to the coordinates of ∂ L(T, •)/∂θ, and using the fact that ∂ L(T, θ(T ))/∂θ = 0 we have 2 Card(T )

∂ ∂θ L(T, θ * 0 ) = F (T ) • ( θ(T ) -θ * 0 ) where F (T ) = -2 1 Card(T ) ∂ 2 L(T, θ i (T )) ∂θ∂θ i 1≤i≤d
for some θ i (T ) between θ(T ) and θ * 0 . Hence for any ℓ ∈ Π n,k

F ( θ(T ℓ,k ) -θ * 0 ) = 2 k -ℓ ∂ ∂θ L(T ℓ,k , θ * 0 ) + F -F (T ℓ,k ) θ(T ℓ,k ) -θ * 0 + 2 k -ℓ ∂ ∂θ L(T ℓ,k , θ * 0 ) - ∂ ∂θ L(T ℓ,k , θ * 0 ) . and 
F ( θ(T 1,n ) -θ * 0 ) = 2 n ∂ ∂θ L(T 1,n , θ * 0 ) + F -F (T 1,n ) θ(T 1,n ) -θ * 0 + 2 n ∂ ∂θ L(T 1,n , θ * 0 ) - ∂ ∂θ L(T 1,n , θ * 0 ) . Therefore, for any ℓ ∈ Π n,k √ n k (k -ℓ)F θ(T ℓ,k ) -θ(T 1,n ) -2 ∂ ∂θ L(T ℓ,k , θ * 0 ) - k -ℓ n ∂ ∂θ L(T 1,n , θ * 0 ) = √ n k -ℓ k F -F (T ℓ,k ) θ(T ℓ,k ) -θ * 0 + 2 √ n k ∂ ∂θ L(T ℓ,k , θ * 0 ) - ∂ ∂θ L(T ℓ,k , θ * 0 ) - √ n k -ℓ k F -F (T 1,n ) θ(T 1,n ) -θ * 0 -2 k -ℓ k 1 √ n ∂ ∂θ L(T 1,n , θ * 0 ) - ∂ ∂θ L(T 1,n , θ * 0 ) . ( 17 
)
For k > n and with some ℓ k ∈ Π n,k , we have max

ℓ∈Π n,k 1 b((k -ℓ)/n) √ n k -ℓ k F -F (T ℓ,k ) θ(T ℓ,k ) -θ * 0 ≤ 1 Inf s>0 b(s) k -ℓ k F -F (T ℓ k ,k ) θ(T ℓ k ,k ) -θ * 0 .
According to [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] and [START_REF] Bardet | Detecting multiple change-points in general causal time series using penalized quasi-likelihood[END_REF],

F -F (T ℓ k ,k ) = o P (1) and θ(T ℓ k ,k ) -θ * 0 = O P (1/ √ k -ℓ k ) as k -ℓ k → ∞. Hence sup k>n max ℓ∈Π n,k 1 b((k -ℓ)/n) √ n k -ℓ k F -F (T ℓ,k ) θ(T ℓ,k ) -θ * 0 = o P (1) as n → ∞. (18) 
Similar arguments imply that sup

k>n max ℓ∈Π n,k 1 b((k -ℓ)/n) √ n k -ℓ k F -F (T 1,n ) θ(T 1,n ) -θ * 0 = o P (1) as n → ∞. (19) 
For k > n and for some ℓ k ∈ Π n,k , we have max

ℓ∈Π n,k 1 b((k -ℓ)/n) √ n k ∂ ∂θ L(T ℓ,k , θ * 0 ) - ∂ ∂θ L(T ℓ,k , θ * 0 ) ≤ 1 Inf s>0 b(s) 1 √ k -ℓ k ∂ ∂θ L(T ℓ k ,k , θ * 0 ) - ∂ ∂θ L(T ℓ k ,k , θ * 0 ) . According to [4], 1 √ k -ℓ k ∂ ∂θ L(T ℓ k ,k , •) - ∂ ∂θ L(T ℓ k ,k , •) Θ = o P (1) as k -ℓ k → ∞. Hence sup k>n max ℓ∈Π n,k 1 b((k -ℓ)/n) √ n k ∂ ∂θ L(T ℓ,k , θ * 0 ) - ∂ ∂θ L(T ℓ,k , θ * 0 ) = o P (1) as n → ∞. (20) 
Similar arguments show that sup

k>n max ℓ∈Π n,k 1 b((k -ℓ)/n) k -ℓ k 1 √ n ∂ ∂θ L(T 1,n , θ * 0 ) - ∂ ∂θ L(T 1,n , θ * 0 ) = o P (1) as n → ∞. (21) 
Thus, Lemma 6.2 follows from ( 17), ( 18), ( 19), ( 20) and ( 21).

Lemma 6.3. Under the assumptions of Theorem 3.1

sup k>n max ℓ∈Π n,k 1 b((k -ℓ)/n) √ n k -ℓ k F • θ(T ℓ,k ) -θ(T 1,n ) D -→ n→∞ sup t>1 sup 0<s<t W G (s) -sW G (1) t b(s) where W G is a d-dimensional Gaussian centered process with covariance matrix E (W G (s)W G (τ ) ′ ) = min(s, τ )G.
Proof. We are going to apply Lemma 6.2 for specifying the asymptotic behaviour of θ(T ℓ,k )θ(T 1,n ).

For k > n and ℓ ∈ Π n,k , we have

2 √ n k ∂ ∂θ L(T ℓ,k , θ * 0 ) - k -ℓ n ∂ ∂θ L(T 1,n , θ * 0 ) = - n k 1 √ n k i=ℓ+1 ∂q i (θ * 0 ) ∂θ - k -ℓ n n i=1 ∂q i (θ * 0 ) ∂θ .
Now we are going to proceed in two steps.

Step 1. Let T > 1. We have

max n<k<nT max ℓ∈Π n,k 1 b((k -ℓ)/n) 2 √ n k ∂ ∂θ L(T ℓ,k , θ * 0 ) - k -ℓ n ∂ ∂θ L(T 1,n , θ * 0 ) = max n<k<nT max ℓ∈Π n,k 1 b((k -ℓ)/n) √ n k k i=ℓ ∂q i (θ * 0 ) ∂θ - k -ℓ n n i=1 ∂q i (θ * 0 ) ∂θ = max t∈{1,1+ 1 n ,••• ,T } max s∈{1-vn n ,2-vn n ,••• ,t-vn n } 1 b(([nt] -[ns])/n) n [nt] 1 √ n [nt] i=[ns]+1 ∂q i (θ * 0 ) ∂θ - [nt] -[ns] n n i=1 ∂q i (θ * 0 ) ∂θ . Define the set S := {(t, s) ∈ [1, T ] × [1, T ]/ s < t}.
According to [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], ∂q i (θ * 0 ) ∂θ t∈Z is a stationary ergodic martingale difference sequence with covariance matrix G. By Cramér-Wold device (see [START_REF] Billingsley | Convergence of Probability Measures[END_REF] 

p. 206), it holds that 1 √ n [nt] i=[ns]+1 ∂q i (θ * 0 ) ∂θ D(S) -→ n→∞ W G (t -s).
√ n [nt] i=[ns]+1 ∂q i (θ * 0 ) ∂θ - [nt] -[ns] n n i=1 ∂q i (θ * 0 ) ∂θ D(S) -→ n→∞ W G (t -s) -(t -s)W G (1). Therefore max n<k<nT max ℓ∈Π n,k 1 b((k -ℓ)/n) 2 √ n k ∂ ∂θ L(T ℓ,k , θ * 0 ) - k -ℓ n ∂ ∂θ L(T 1,n , θ * 0 ) D -→ n→∞ sup 1<t<T sup 1<s<t W G (t -s) -(t -s)W G (1) t b(t -s) D -→ n→∞ sup 1<t<T sup 1<s<t W G (s) -s W G (1) t b(s) . (22) 
Step 2. We will show that the limit distribution (as n, T → ∞) of

sup k>nT max ℓ∈Π n,k 1 b((k -ℓ)/n) 2 √ n k ∂ ∂θ L(T ℓ,k , θ * 0 ) - k -ℓ n ∂ ∂θ L(T 1,n , θ * 0 )
exists and is equal to the limit distribution (as

T → ∞) of sup t>T sup 1<s<t W G (s) -s W G (1) t b(s) . Let k > nT . We have max ℓ∈Π n,k 1 b((k -ℓ)/n) √ n k ∂ ∂θ L(T ℓ,k , θ * 0 ) ≤ 1 Inf s>0 b(s) √ n k k i=ℓ k +1 ∂q i (θ * 0 ) ∂θ for some ℓ k ∈ Π n,k .
It comes from the Hájek-Rényi-Chow inequality (see [START_REF] Chow | A martingale inequality and the law of large numbers[END_REF]) that, for any ε > 0 lim

T →∞ lim n→∞ P sup k>nT √ n k k i=ℓ k +1 ∂q i (θ * 0 ) ∂θ > ε = 0. Hence sup k>nT max ℓ∈Π n,k 1 b((k -ℓ)/n) 2 √ n k ∂ ∂θ L(T ℓ,k , θ * 0 ) = o P (1) as T, n → ∞. (23) 
Moreover, since the function b(•) is non-increasing, for any n, T > 1, we have:

sup k>nT max ℓ∈Π n,k 1 b((k -ℓ)/n) 2 √ n k k -ℓ n ∂ ∂θ L(T 1,n , θ * 0 ) = 1 √ n n i=1 ∂q i (θ * 0 ) ∂θ × sup k>nT max ℓ∈Π n,k 1 b((k -ℓ)/n) k -ℓ k = 1 √ n n i=1 ∂q i (θ * 0 ) ∂θ × sup k>nT 1 b((k -v n )/n) k -v n k = 1 Inf s>0 b(s) 1 √ n n i=1 ∂q i (θ * 0 ) ∂θ D -→ n→∞ 1 Inf s>0 b(s) W G (1) , (24) 
using again the Cramèr-Wold device. It comes from ( 23) and ( 24 

It comes from ( 26) and ( 27) that the limit of ( 22) satisfies when T → ∞, . Therefore with u = u ′ v, 

sup 0<v<1 sup 0<u<v 1 -v 1 -u W d (u) = sup 0<v<1 sup 0<u ′ <1 (1 -v)v 1/2 1 -u ′ v W d (u ′ ) .
D = sup 0<u ′ <1 f (u ′ ) W d (u ′ ) with f (u ′ ) = √ 9 -u ′ + √ 1 -u ′ √ 9 -u ′ + 3 √ 1 -u ′
1 b((k n -ℓ)/n) √ n k n -ℓ k n G(T 1,n ) -1/2 F (T 1,n ) • θ kn (T ℓ,kn ) -θ(T 1,n ) ≥ 1 b((k n -k * )/n) √ n k n -k * k n G(T 1,n ) -1/2 F (T 1,n ) • θ kn (T k * ,kn ) -θ(T 1,n ) ≥ c √ n n δ k * + n δ G(T 1,n ) -1/2 F (T 1,n ) θ kn (T k * ,kn ) -θ(T 1,n ) ≥ c n 1/2+δ c 0 n + n δ G(T 1,n ) -1/2 F (T 1,n ) θ kn (T k * ,kn ) -θ(T 1,n ) ≥ c n δ-1/2 (c 0 + 1) G(T 1,n ) -1/2 F (T 1,n ) θ kn (T k * ,kn ) -θ(T 1,n ) . (30) 
According to [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] and [START_REF] Kengne | Testing for parameter constancy in general causal time-series models[END_REF], G(T 

  ] and we recommend to use v n = [(log n) 3/2 ] for linear model and v n = [(log n) 2 ] for ARCH-type model. The nominal level used in the sequel is α = 0.05.

  a-)) and a scenario with change at k * = n + 250 = 750 (Figure 1 b-)).

Figure 1 :

 1 Figure 1: Typical realization of the statistics C k for GARCH(1,1), n = 500 and k = 501, • • • , 1000. a-) The parameter θ * 0 = (0.01, 0.3, 0.2) is constant ; b-) the parameter θ * 0 = (0.01, 0.3, 0.2) changes to θ * 1 = (0.05, 0.5, 0.2) at k * = 750. The horizontal solid line represents the limit of the critical region, the vertical dotted line indicates where the change occurs and the vertical solid line indicates the time where the monitoring procedure detecting the change.

Figure 2 :

 2 Figure 2: The top figure is a realization of the statistics C k with k going from January 2, 1995 to October 19, 1998 for Nikkei 225 data; the historical data considered are the series going from January 2, 1995 to December 31, 1996. The horizontal solid line represents the limit of the critical region, the vertical dotted line indicates the date of the beginning of the Asian financial crisis (1997-1998) and the vertical solid line indicates the time where the monitoring procedure will stop. The bottom figure is the returns of Nikkei 225 data from January 2, 1995 to October 19, 1998; the vertical solid line indicates the date where break have been detected using retrospective test after the monitoring stops.

Figure 4 :

 4 Figure 4: Realization of the statistics C k for S&P 500 and FTSE 100 data; the historical data are the series going from June 18, 2007 to November 16, 2007 (for S&P 500 data) and July 6, 2007 to September 4, 2007 (for FTSE 100 data). The horizontal solid line represents the limit of the critical region, the vertical dotted line indicates the date of the Lehman Brothers Crisis and the vertical solid line indicates the time where the monitoring procedure stopped.

Figure 6 :

 6 Figure 6: Break detection in the returns of S&P 500 and FTSE 100 data using monitoring procedure based on C k . The verticals lines indicate the dates where breaks have been detected.

  convergence on the Skorohod space D(S). Hence 1

  the coordinates of W G are Brownian motions, by the law of the iterated logarithm there exists t 0 > exp(1) such ass > t 0 ⇒ W G (s) ≤ √ s log(s) almost surely.Thus, for any t > t 0 , we obtain almost surelysup 1<s<t W G (s) ≤ sup 1<s<t0 W G (s) + √ t log(t).Therefore, for T large enough, we have sup b(•) is non-increasing, for any T > 1, we have sup

From Step 1 andW 2 .G

 12 Step 2 (the relations[START_REF] Kokoszka | Leipus Testing for parameter changes in ARCH models[END_REF],[START_REF] Lai | Efficient Recursive Algorithms for Detection of Abrupt Changes in Signals and Control Systems[END_REF] and[START_REF] Mei | Sequential change-point detection when unknown parameters are present in the pre-change distribution[END_REF]), it comes that sup k>nT maxℓ∈Π n,k 1 b((kℓ)/n) 2 √ n k ∂ ∂θ L(T ℓ,k , θ * 0 ) -kℓ n ∂ ∂θ L(T 1,n , θ * 0 ) G (s) -sW G (1) t b(s) .Hence, Lemma 6.3 follows from Lemma 6.Proof of Theorem 3.1We know thatP {τ (n) < ∞} = P sup 1,n ) -1/2 F (T 1,n ) • θ(T ℓ,k )θ(T 1,n ) > 1 . Since G(T 1,n ) 1,n ) -1/2 F (T 1,n ) • θ(T ℓ,k )θ(T 1,n ) -1/2 (W G (s) -sW G (1)) t b(s) .Since the covariance matrix of {W G (s) ; s ≥ 0}, is min(s, τ )G, the covariance matrix of{G -1/2 W G (s) ; s ≥ 0}is min(s, τ )I d (where I d is the d-dimensional identity matrix). Hence Theorem 3.1 follows. Proof of Corollary 3.1 Since b ≡ c a positive constant, it follows immediately from Theorem 3.1 that lim n→∞ P {τ (n) < ∞} = P sup t>1 sup 1<s<t 1 t W d (s) -sW d (1)) > c . Now, it suffices to show that sup

It remains to compute sup 0<v<1 ( 1 -

 0<v<11 v)v 1/2 1u ′ v. Classical computations show that this supremum is obtained byv = 2 3u ′ + (9u ′ )(1u ′ ) s) -sW d (1))

2 3 - 2 . 2

 322 u ′ + (9u ′ )(1u ′ ) 1/Denote k n = k * +n δ for δ ∈ (1/2, 1). For n large enough, we have v n < n δ and thus k n -v n = k * +n δ -v n ≥ k * . Moreover, since k * > n then k * ∈ Π n,k for n large enough.In addition, since k * = k * (n) ≥ n and lim sup n→∞ k * (n)/n < ∞, there exists c 0 > 1 such that k * ≤ c 0 n for n large enough. Hence, according to assumption B, there exists a constant c > 0 such that max ℓ∈Π n,knC kn,ℓ b((k nℓ)/n) = max ℓ∈Π n,kn

1 .

 1 θ kn (T k * ,kn) ) Since G is symmetric positive definite, F is invertible, θ * 0 = θ * 1 and δ > 1/2 , then(30)implies that max ℓ∈Π n,kn C kn,ℓ b((k nℓ)/n)

Table 1 :

 1 Empirical (1 -α)-quantile of the distribution of U

	01 2.583 3.035 3.335 3.631 3.914
	α = 0.05 1.954 2.432 2.760 3.073 3.334
	α = 0.10 1.652 2.156 2.486 2.784 3.028

d , for d = 1, • • • , 5.

Table 4 :

 4 Elementary statistics of the empirical detection delay for monitoring mean shift in AR(1) and GARCH(1,1). function b(•) ≡ c > 0 with a real number c > 0, Na et al. show that under H 0 , lim

	1)	n = 500 ; k * = n + 50	C k 54.74 14.95	18	44	54	64	103
			Q k 53.78 14.72	16	43	54	63	102
		n = 500 ; k * = n + 250	C k 63.14 23.18	12	45	61	77	135
			Q k 72.70 21.47	7	56 71.5 90	139
		n = 1000 ; k * = n + 50	C k 75.84 14.19	37	66	75	83	114
			Q k 72.60 13.23	41	63	73	82	111
		n = 1000 ; k * = n + 250	C k 76.24 19.15	23	60	76	89	140
			Q k 86.82 22.57	27	70	85	100 151
	GARCH(1,1)	n = 500 ; k * = n + 50	C k 20.21	6.15	1	16	20	24	35
			Q k 27.06	4.52	16	24	27	30	44
		n = 500 ; k * = n + 250	C k 25.53	8.04	3	20	25	31	50
			Q k 35.40 10.01	13	28	35	41	62
		n = 1000 ; k * = n + 50	C k 28.43	7.41	6	24	28	33	51
			Q k 36.98	5.09	21	33	37	40	48
		n = 1000 ; k * = n + 250	C k 31.16	8.52	4	26	33	39	53
			Q k 44.35 10.04	14	37	45	50	71

n→∞ P {τ (n) < ∞} = lim n→∞ P sup k>n

Table 6 :

 6 Empirical levels and powers for monitoring parameter change in GARCH(1,1) process. The empirical levels are computed when θ 0

	1 -α)-quantile of the distribution of

Table 7 :

 7 Elementary statistics of the empirical detection delay for monitoring parameter change in AR(1) and GARCH(1,1).

	1)	n = 500 ; k * = n + 50	C k	55.36 18.75	9	42	56	67	121
			D k	71.54 38.44	2	52.75	69	89	167
		n = 500 ; k * = n + 250	C k	66.81 25.27	5	49	65	83	149
			D k	97.80 39.42	21	68	89	123 222
		n = 1000 ; k * = n + 50	C k	75.13 19.87	24	62	74	90	147
			D k	87.70 28.72	14	66	85	109 195
		n = 1000 ; k * = n + 250	C k	76.89 26.16	15	56	77	96	172
			D k 101.20 37.97	20	75	96	129 245
	GARCH(1,1)	n = 500 ; k * = n + 50	C k	29.41 15.84	4	22	31	40	98
			D k	86.05 90.50	2	36	61	99	416
		n = 500 ; k * = n + 250	C k	38.02 19.33	5	27	37	44	113
			D k	87.72 50.96	1	49.25	79	112 236
		n = 1000 ; k * = n + 50	C k	41.96 13.93	3	32	41	48	94
			D k	71.29 37.12	6	46	66	88	287
		n = 1000 ; k * = n + 250	C k	44.99 17.16	5	35	41	52	117
			D k	75.78 35.10	7	52	71	95	198

Table 8 :

 8 Results of test for parameter changes in the historical data of Nikkei 225 (from January 2, 1995 to December 31, 1996), S&P 500 and FTSE 100 (from January 2, 2004 to December 30, 2005). Figures in brackets the critical values of the procedure at the nominal level α = 0.05.

		35 (3.98) 2.31 (3.45) 0.98 (1.36)
	S&P 500	2.13 (3.47) 2.01 (3.06) 0.93 (1.36)
	FTSE 100 1.95 (3.47) 2.31 (3.06) 1.13 (1.36)

  1 ≃ 18 June 2007 and t F,1 ≃ 6 July 2007 which correspond to the beginning of the Subprime Crisis in US; • t S,2 ≃ 14 August 2008 and t F,2 ≃ 17 September 2008 which correspond to the Lehman Brothers Bankruptcy; • t S,3 ≃ 5 January 2009 and t F,3 ≃ 29 December 2008 which correspond worldwide governments intervention to solve the financial crisis; • t S,4 ≃ 26 June 2009, t S,5 ≃ 5 April 2010, t S,6 ≃ 27 September 2010, t S,7 ≃ 19 July 2011, t S,8 ≃ 11 January 2012 and t F,4 ≃ 30 June 2009, t F,5 ≃ 27 July 2011, t F,6 ≃ 21 December 2011. These breaks indicates the turmoils periods in the 2010 -2012 + Greece and European debt crisis.
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Table 3: Empirical levels and powers for monitoring means shift in GARCH(1,1) with (α * 0 , α * 1 , β * 1 ) = (0.01, 0.3, 0.2). The empirical levels are computed when µ 0 = 0 and the empirical powers are computed when the mean µ 0 = 0 changes to µ 1 = 0.3. W d (s) which can be found in Table 1 of [START_REF] Na | Monitoring parameter change in time series models[END_REF].

The comparisons between their procedure based on D k and ours based on C k,ℓ are made in the following situations:

1. For AR(1) model :

The sizes of historical samples are n = 500 and n = 1000. The procedures are evaluated at times k = n + 100, n + 200, n + 300, n + 400, n + 500, while the change occurs at k * = n + 50 or k * = n + 250. Tables 5 and6 

2 is constant and the empirical powers are computed when θ 0 = 0.2 changes to θ 1 = -0.5.

The considered AR and GARCH processes have zero mean. Contrary to the mean shift studied above, certainly introduces distortions on these tests. On the other hand, the CUSUM procedure needs to compute only the estimator θ n (T 1,n ) which convergence is obtained. According to these results, we conclude that the parameter does not change over these historical observations.

For Nikkei 225 data, monitoring starting at January 2, 1997. Figure 2 shows the realization of the sequence ( C k ) for k going from January 2, 1997 to October 19, 1998. Monitoring procedure stops at October 27, 1997.

Recall that, the monitoring scheme can be used as an alarm system. When it triggered, we need to apply retrospective test to estimate the breakpoint. According to Kengne [START_REF] Kengne | Testing for parameter constancy in general causal time-series models[END_REF], the test based on Q n and Q (0) n are more powerful than the CUSUM test. Thus, in the retrospective procedure, we applied these two tests and considered the one which provides more significant result (in terms of p-value).

Retrospective procedure is applied to the observations going from January 2, 1995 to October 27, 1997 and break is detected at t N ≃ September 17, 1997; see Figure 2. This change corresponds to the Asian financial crisis (1997)(1998) where the turmoil period started at July 1997.

We are going to see for S&P 500 and FTSE 100 data how multiple changes can be monitored. For these series, monitoring starts at January 2, 2006. Figure 3 After monitored the first change, we need to update the procedure. The new historical data are the series going from t S,1 to November 16, 2007 (for S&P 500 data) and the series going from t F,1 to September 4, 2007 (for FTSE 100 data). Therefore, monitoring continues at November 19, 2007 (for S&P 500 data) and at September 5, 2007 (for FTSE 100 data). Figure 4 shows the curve of the sequence ( C k ). The monitoring stops at October 17, 2008 and November 10, 2008 for S&P 500 and FTSE 100 data respectively. The retrospective test is applied and the break point estimation are t S,2 ≃ August 14, 2008 and t F,2 ≃ September 17, 2008 respectively for these two series; see Figure 6. These breaks correspond to the Lehman Brothers Bankruptcy which affects the worldwide financial system.

After that, the procedure is updated and monitoring continues at October 20, 2008 andNovember 11, 2008 for S&P 500 and FTSE 100 data. Figure 5 shows the sequence ( C k ). 

Summary of the real-data applications

Both monitoring procedure (based on detector C k ) and retrospective test have been applied to detect breaks in the Nikkei 225, S&P 500 and FTSE 100 stock index. The following results are obtained :