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This article describes the method of magnetic field topology optimization in an 

axisymmetric three-dimensional finite region. It is assumed that the region of 

interest is surrounded by a cylindrical solenoid with an electrical current. The 

solenoid's inner and outer surfaces are built-up by rotating  plane Bezier curves 

around the symmetry axis. As a global minimizer a genetic algorithm method 
is used. Optimal configurations are provided under given constraints. 
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Topology optimization Synthesis of magnetic field in three-

dimensional finite region  
 

Marcin Ziolkowski 
 

This paper describes the method of magnetic field synthesistopology 

optimization in axisymmetric three-dimensional finite region. It is assumed that 

the region of interest is surrounded by a cylindrical solenoid with electrical 

current. The solenoid's inner and outer surfaces are built-up by rotating of the 
plane Bezier curves around symmetry axis. As a global minimizer a genetic 

algorithm method is used. Optimal configurations are provided under given 

constraints. 

 
Keywords: magnetic field synthesis; topology optimization; nonlinear inverse 

problems; Bezier curves; active shields; genetic algorithms 

 

Introduction 

Magnetic field topology optimization (TO) synthesis problems are well known to the 

engineers, as many different applications require applying a magnetic field of a 

specified distribution. For example, such electromagnetic arrangements are necessary 

in various biomedical imaging problems, in physics when making high sensitivity 

measurements, and in common electrical engineering. The problem is still vast and 

often remains as a topic of contemporary research (Adamiak 1977, Adamiak 1980, Di 

Barba et al. 1995, Di Barba and Savini 1995, Di Barba and Farina 2002, Girdinio and 

Nervi 2001, Gottvald 1992, Guimaraes 2006, Kim et al. 2004, Kim et al. 2007, Kim 

et al. 2010, Lopez et al. 2004). The cited references should only be taken as 

illustrative examples. 

Usually, the sources of the magnetic field are coils' sets of coils and different types of 

solenoids. Another application of such an electromagnetic system can be a 

compensation of harmful external magnetic fields in order to protect sensitive 

electronic apparatus. In such a case, the opposite field must have the same frequency 

and amplitude as the external field. If the incident field presents a wide bandwidth, the 

final aim is to generate an opposite field in the same frequency range or at least in a 

range as large as possible (Celozzi et al. 2008, Sergeant 2003). Such a technique is 

called active shielding. From the theoretical point of view it belongs to , the problem 

belongs to magnetic field synthesis theory (Adamiak 1977, Adamiak 1980, Tikhonov 

et al. 1995) and topology optimization problems (Kim et al. 2007). 

In the past the research activities were mostly focused on the finding of a current 

distribution in a sectional solenoid (Adamiak 1980), a shape of a solenoid which 

generates a uniform magnetic field on its axis or very close to the axis (Adamiak 

1977, Di Barba et al. 1995, Di Barba and Savini 1995, Gottvald 1992). In papers 

(Kim et al. (2004) the authors proposed the Design Sensitivity Analysis (DSA) based 

method in order to optimize the salient pole face shape of a high-temperature 

superconducting synchronous generator. The paperarticle by (Kim et al. (2007) refers 

to the finding an optimum permanent magnet distribution and pole shape design 

problem using DSA combined with commercial EM software. A novel approach 

which utilizes the second-order sensitivity information in order to optimize a SMES 

device has been proposed in , Kim et al. 2007, (Kim et al. 2010) the authors proposed 

a novel approach which utilizes the second-order sensitivity information. In the 
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considered problem the design variable vector consisted of a total of eight design 

parameters (six parameters describing the dimensions of the magnet and two referring 

to the current densities). 

This paperarticle is a continuation of (Adamiak 1977, Adamiak 1980, Ziolkowski and 

Gratkowski 2008, Ziolkowski and Gratkowski 2011, Ziolkowski 2011) and discusses 

a problem of designing a shape of a solenoid, which produces a specified magnetic 

field magnitude in anthe axisymmetric three-dimensional finite region. The 

considered optimization problem takes into account two components of the magnetic 

field intensity vector, and the final objective function is defined with the help of 

magnetic vector potential. The method of finding an optimal shape is based on a 

Genetic Algorithm (GA) coupled with Bezier curves. Exaempleary results along with 

the optimal solenoid's shapes under given constraints are presented. 

 

Problem description 

ALet us assume it is necessarywe need to produce a magnetic field free region in a 

static uniform magnetic field. The external field is in the direction of the z-axis and is 

given by the equation H = – H0 1z. The protected region is in the shape of cylinder of 

radius R and height h with the z-axis as a symmetry axis in a cylindrical coordinate 

system (r, φ, z). The task is to find the shape of a solenoid, so that the magnetic field 

in the protected region is uniform but in the opposite direction to the external field (H 

= H0 1z). The common and very basic sets for generating such a uniform magnetic 

field are well known Helmholtz and Maxwell coils. More complex arrangements have 

been considered in the past as well (Adamiak 1977, Adamiak 1980, Di Barba et al. 

1995), however, the considered shapes and numerical procedures have been defined 

in a different way. Additionally, the considered topology in (Adamiak 1980) could 

lead to difficulties in practical realization (many current sources must be provided). 

The author of thise paperarticle proposes another approach in which it is assumed one 

current source, only is assumed,, and a specified magnetic field distribution is 

obtained by adjusting a solenoid’s winding shape. Moreover, it is required to model 

non-linear shapes described in a simple parametric form represented by mathematical 

formulas for modification purposes. With such an approach it will be possible to write 

an algorithm using CAD built- in language that automatically generates the obtained 

curves. Taking into account the mentioned requirements it is assumed that This paper 

considers much more general case, where the inner and outer surfaces of the solenoid 

are built-up by rotating plane Bezier curves r = f1(z) and r = f2(z) around the z-axis, 

respectively. The solenoid contains a large number of tightly wound turns of wire 

carrying current I, and then there is an eaffective current density J within the solenoid. 

In such a case, the actual solenoid can be replaced by a region carrying a constant 

current density J (the assumption becomes more accurate as the number of turns is 

increased). The considered arrangement is shown in Fig. 1. 
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Figure 1. a) On the left - a definition sketch for an exemplary solenoid with protected region (black 

dots); x, x - f1 and f2 Bezier curves' control points; b) on the right - 3D visualization. 

Magnetic field and magnetic potential vectors 

In cylindrical coordinate system (r, φ, z) a current I flowing in an infinitely thin 

circular loop generates a magnetic field which can be described by a magnetic vector 

potential A (only the φ-component exists) (Shill 2003): 

 

( ) ( ) ( )
1 2 2

0 '
, 1

π 2

c

c c

c

I kr
A r z K k E k

k r
ϕ
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where: 
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+ + −
, K and E are, the complete elliptic integral functions 

of the first and the second kind, respectively, I is the- source current, µ0 is the- 

permeability of free space. 

 

Here, primed variables z' and r' refer to source points within the solenoid, and the 

unprimed variables z and r denote field points in the protected region. The magnetic 

field components are related to the curl of the magnetic vector potential: 
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Substitution of (1) into (2) yields (Shill 2003): 
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Objective function definition 

In the protected region, the field generated by a solenoid must compensate the 

external magnetic field. It means that the magnetic field components must satisfy the 

following conditions: 

 

( ) 0

0

0

1 1

r

z

A
H

z

H rA H
r r

ϕ

ϕµ

∂
= = ∂

 ∂ = =
 ∂

.    (4) 

 

 Using (4) the optimization problem can be formulated to find the “best” vector 

x = [Bezier curves' control points coordinates]
T
 which: 

• minimizes the absolute value of the radial magnetic field component in the 

protected region: |Hr(x)| = min, 

• minimizes the absolute value of the difference between the axial magnetic field 

component and desired magnetic field: |Hz(x) -‒ H0| = min. 

 

 From (4) it is also evident that the magnetic vector potential must be a 

function of one variable r only, Aφ = f (r). Taking this assumption into account the 

optimization problem (4) can be reformulated, and giveswe obtain the differential 

equation: 

 

( ) 0

0

1 1
 

d
r f r H

r drµ
  =  ,    (5) 

 
with the solution for a desired magnetic vector potential Aφ: 

 

( ) 0 0

2

H
A f r rϕ

µ
= = ,     (6) 

where: H0 is the- desired magnetic field. 

 

In the optimization process, the magnetic vector potential is calculated in discrete 

points of protected region (marked by black dots in Fig. 1). The used space grid is 

defined by the following vectors of r and z-coordinates (in cm): 

 

r = [10
-5

  2.5  5  7.5  10] ,    (7) 

z = [-10  -7.5  -5.0  0  5.0  7.5  10]. 

 

In all these points desired and calculated magnetic vector potentials are determined. 

Next, the difference is obtained, and finally the maximal value is minimized. 

Therefore, the objective function F(x) to be minimized is defined as follows: 
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( ) ( )desired, k calculated, k

max min.F A A= − =x     (8) 

where: k relates to a discrete point in protected region, k = 1, ..., N, and N is the- 

number of discrete points. 

 

Bezier curves 

In general the soughtearched optimal shape is absolutely unknown, so it can be of any 

arbitrary form. Bezier curves were publicized in 1962 by the French engineer Pierre 

Bézier, who used them to design automobile bodies. Bezier curves are present in 

almost all CAD software and have been widely used in computer graphics to model 

smooth curves. Such types of curves are flexible, simple to describe, efficient to 

calculate and easily controlled. Bezier curves of practically arbitrary shape can be 

defined entirely by providing few points, only (Internet). Therefore, in the author’s 

opinion they canould be useful in topology and shape optimization problems.they 

have been used as a tool for generating the surfaces of the solenoid. 

The method which is applied for finding the functions f1(z') and f2(z'), couples the 

basic formula (7) with a Genetic Algorithm and Bezier curves. It is assumed that the 

inner and outer surfaces of the solenoid are generated by rotating a plane Bezier 

curves about the z-axis. A plane Bezier curve can be defined by the following 

equation (Piegl 1993): 
 

( )
( ) ( )

0

,

n
i

i n

i i

r p r
B p

z p z=

    
=   

    
∑ ,    (9) 

where: ri, zi are coordinates of Bezier curve control points Ci(ri, zi), Bi,n(p) are– 

Bernstein polynomials and p belongs to the set [0, 1]. 

 

The first few Bernstein polynomials are: 

( )0 0
1

,
B p = , ( )0 1

1
,

B p p= − , ( )1 1,
B p p= , ( ) ( )2

0 2
1

,
B p p= − , ( ) ( )1 2

2 1
,

B p p p= − , 

( ) 2

2 2,
B p p= ,  ( ) ( )3

0 3
1

,
B p p= − , ( ) ( )2

1 3
3 1

,
B p p p= − , ( ) ( ) 2

2 3
3 1

,
B p p p= − ,  

      ( ) 3

3 3,
B p p= .   (10) 

 

 Coordinates ri and zi of the Bezier curve control points Ci are the design 

parameters. The optimization process is a determination of the parameters ri and zi, 

which ensure a minimum of the objective function, which is obtained from the desired 

magnetic potential values and the calculated ones in points of the protected region. It 

is known that in a uniform axi-symmetrical magnetic field only half of the solenoid 

has to be optimized. In this case, only the upper part of the solenoid is considered for 

optimization purposes, while the lower part of the solenoid is built taking into account 

the symmetry plane of the solenoid. 

 

Global minimizer - Genetic Algorithm 

The flowchart of the optimization procedure is shown in Fig. 2. 
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Figure 2. A flowchart of the optimization procedure based on genetic algorithms and Bezier curves. 

 

A modified version of GA presented in (Haupt and Haupt, 2004) has been 

implemented in MATLAB. At the beginning of the optimization process, GA 

parameters, requirements of the magnetic potential vector, objective function F, and 

constraints of the solenoid and protected region are defined. Next, the initial 

population is randomly generated. Cost functions are calculated for all the candidates. 

A selection process then takes place. It is based on roulette-wheel selection. In all the 

cases, the selection coefficient is equal to 0.5, which means that half of the population 

size goes to the crossover process. After the crossover process, mutation takes place. 

This corresponds to random changes in candidates. The aim of the mutation is to 

improve candidates, taking them into better solutions. The mutation coefficient should 

not be very high and in all the cases has been set to 0.3. Best candidates go to the next 

generation and become a new set of candidate solutions. This process repeats until it 

stops after reaching a maximum number of iterations. 

 There are two Bezier curves in the current optimization problem. It is assumed 

that each Bezier curve is built from six control points Ci (ri, zi), i = 0, 1, 2, 3, 4, 5. 

ThisIt means that the total number of optimized parameters is equal to 24. Possible 

values (the search space) of the parameters for the f1 curve and f2 curve are the same 

and have been shown in Table. 1. The population size was equal to 32, and the total 

number of generations was equal to 500. 
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Table 1. Search space (minimal and maximal values of all parameters under consideration) 
 

Parameter Minimal value [cm] Maximal value [cm] 

C0 
r0 2 25 

z0 7.5 15 

C1 
r1 2 25 

z1 6 10.5 

C2 
r2 2 25 

z2 4.5 9 

C3 
r3 2 25 

z3 3 7.5 

C4 
r4 2 25 

z4 1.5 6 

C5 
r5 2 25 

z5 0 4.5 

 

 It is known that for bigger coils' diameter the field homogeneity increases, 

however, the total field intensity value decreases (taking into account constant current 

density). Additionally, for extremely largebig diameters the resultinged arrangement 

can be impractical. 

 For practical reasons, it is assumed that the optimal shape of the solenoid must 

be close to the protected region and as small as possible (i.e.i.e. the solenoid must be 

possible to build) and assure the generation magnetic field of high intensity values. In 

order to satisfy such conditions the maximal possible values of ri and z0 coordinates 

have been set to 25 cm and to 15 cm, respectively (Table 1). 

Results 

Figures 3-10 show exaempleary results after five hundred generations of GA for the 

successive desired magnetic field H0 equal to 35 kA/m, 45 kA/m 55 kA/m, 70 kA/m, 

respectively. In each case a constant current density J equal to 10 A/mm
2
 was 

assumed (e.g. I = 10 A is the- constant current in one turn for a wire of cross section 

equal to 1 mm
2
). Figures 3, 5, 7 and 9 on the left, show the optimal shapes of the 

solenoids for each desired H0, and on the right the objective function values F after 

succeeding generations of AGA. Optimal positions of the Bezier curve control points 

are marked by blue and red cross. In figures 4, 6, 8 and 10 on the left, relative errors δ 

[%] for desired magnetic field are presented. The relative error δ is defined as follows: 

 

[ ] calculated 0

0

% 100.
H H

H
δ

−
= ⋅     (11) 

 

Distribution for the magnetic field radial component Hr [kA/m] has been presented in 

the same figures, on the right. 
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Figure 3. a) On the left - optimal shape of the solenoid for desired H0 = 35 kA/m, R = 10 cm, 

h = 20 cm; b) on the right - objective function F values after succeeding generations of GA. 

 

 

 

 

 

 

 
Figure 4. a) On the left - relative error δ [%] for desired (H0 = 35 kA/m) and calculated magnetic field; 

b) on the right - distribution for the magnetic field radial component Hr [kA/m]. 
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Figure 5. a) On the left - optimal shape of the solenoid for desired H0 = 45 kA/m, R = 10 cm, 

h = 20 cm; b) on the right - objective function F values after succeeding generations of GA. 

 

 

 

 

 

 

 
Figure 6. a) On the left - relative error δ [%] for desired (H0 = 45 kA/m) and calculated magnetic field; 

b) on the right - distribution for the magnetic field radial component Hr [kA/m]. 
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Figure 7. a) On the left - optimal shape of the solenoid for desired H0 = 55 kA/m, R = 10 cm, 

h = 20 cm; b) on the right - objective function F values after succeeding generations of GA. 

 

 

 

 

 

 

 
Figure 8. a) On the left - relative error δ [%] for desired (H0 = 55 kA/m) and calculated magnetic field; 

b) on the right - distribution for the magnetic field radial component Hr [kA/m]. 
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Figure 9. a) On the left - optimal shape of the solenoid for desired H0 = 70 kA/m, R = 10 cm, 

h = 20 cm; b) on the right - objective function F values after succeeding generations of GA. 

 

 

 

 

 

 

 
Figure 10. a) On the left - relative error δ [%] for desired (H0 = 70 kA/m) and calculated magnetic 

field; b) on the right - distribution for the magnetic field radial component Hr [kA/m]. 

 

 

Mean values of relative errors δ (in the whole protected region as well as on the 

solenoid's axis) for each desired magnetic field values have been summarized in Table 

2. 
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Table 2. Summarized results of optimization 
 

Desired magnetic 

field Hz [kA/m] 

Mean error δ [%] 

on solenoid's axis 

Mean error δ [%] in 

whole protected region 

35 1.85 2.22 

45 1.79 2.07 

55 1.87 1.77 

70 1.63 1.60 

85 2.14 2.38 

 

 

Manufacturing process of the solenoid 

As has been statedtold already, the resultinged solenoids consist of wires of cross 

section equal to 1 mm
2
 with current I = 10 A. Fig. 11 a) shows the optimal shape of 

the solenoid for desired H0 = 45 kA/m, and Fig. 11 b) shows the magnified upper part 

of the same solenoid. 

 

 
Figure 11. a) On the left - optimal shape of the solenoid for desired H0 = 45 kA/m,; b) on the right - 

magnified upper part of the solenoid; black points represent middle of the wires with current equal to 

10 A. 
 

Influence of manufacturing process’s accuracy on relative error δ 

TIn this section it is examinesd how manufacturing process’s accuracy influences on 

the relative error δ in the protected region. To perform the investigation the 

exaempleary shape obtained for desired magnetic field H0 = 45 kA/m has been chosen 

(Fig. 11 a). In order to study such an effect the optimal values of the Bezier curve 

control points r-coordinates have been changed by η equal to 5 % of their optimal 

value. Two cases have been considered. In the first case the change was done 

randomly (Fig. 12 a), and in the second case all r-coordinates’ values have been 

increased by η (Fig. 12 b). 
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Figure 12. a) On the left - shape of the solenoid in which the optimal values of the Bezier curve control 

points r-coordinates have been changed randomly by η; b) on the right - shape of the solenoid in which 

all the optimal values of the Bezier curve control points r-coordinates have been increased by η. 

 

The results of investigations have been summarized in Table 3. 

 
Table 3. Influence of the manufacturing process’s accuracy on the relative error δ  
 

Relative error 

δ [%] 

Optimal shape 

(Fig. 5a) 

Exemplary shape 

(Fig. 11 a) 

Exemplary shape 

(Fig. 11 b) 

Minimal value 0.0964 0.2392 0.9744 

Maximal value 6.0786 6.2925 11.856 

Mean value 2.4393 2.5192 6.072 

Median value 1.8684 2.0951 6.372 

 

Conclusions 

In this paperarticle the synthesis of athe uniform magnetic field in anthe axisymmetric 

finite three-dimensional region has been performed. The proposed optimization 

method utilizes genetic algorithm as a global minimizer and rotated Bezier curves as 

inner and outer surfaces of the solenoid. For given constraints optimal shapes of the 

solenoid are presented. The obtained solenoids can also shield external magnetic 

fields of the same magnitude but opposite direction. 
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