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Abstract
This paper is devoted to the construction of a stochastic reduced-order model for dynamical structures having
a high modal density in the low-frequency range, such as an automotive vehicle. This type of structure is
characterized by the fact that it exhibits, in the low-frequency range, not only the classical global elastic
modes but also numerous local elastic modes which cannot easily be separated from the global elastic modes.
To solve this difficult problem, an approach has recently been proposed for constructing a reduced-order
computational dynamical model adapted to the low-frequency range. First, the domain of the structure is
decomposed into subdomains. Then an adapted generalized eigenvalue problem is constructed using such a
decomposition and allows an adapted vector basis of the global displacements space to be computed. This
basis is then used to construct the reduced-order model. Model uncertainties induced by modeling errors
in the computational model are taken into account using the nonparametric probabilistic approach. The
methodology is applied on a complex computational model of an automotive vehicle.

1 INTRODUCTION

This work is performed in the context of the dynamic analysis of automotive vehicles. An automotive ve-
hicle is made up of stiff parts and flexible components. In the low-frequency range, this type of structure is
characterized by the fact that it exhibits, not only the classical global elastic modes, but also numerous local
elastic modes in the same low-frequency band. With such a complex heterogeneous structure, the global
elastic modes cannot clearly be separated from the local elastic modes because there are many small contri-
butions of the local deformations in the deformations of the global elastic modes and conversely. Since there
are local elastic modes in the low-frequency band, a part of the mechanical energy is transferred from the
global elastic modes to the local elastic modes which store a part of mechanical energy and then this induces
an apparent damping for the global coordinates. In order to construct a reduced-order model for the low-
frequency band, which allows a good approximation of the global displacements to be predicted and then,
if needed, to take into account the effects of the local displacements in the total response, a new approach
[1] has recently been proposed. This method allows a basis of the global displacements space and a basis of
the local displacements space to be calculated by solving two separated eigenvalue problems. This method
that requires to decompose the computational model in subdomains for which the sizes are controlled. In
this paper, we propose to use the Fast Marching Method for the construction of such subdomains. We con-
struct a reduced-order model using only the basis of global displacements space. In addition, we introduce a
stochastic reduced-order model in order to take into account the irreducible errors introduced by neglecting



the local displacements. In a first part, we present the construction of the stochastic reduced-order model.
Then, we present the Fast Marching Method (see [2]). Finally, we apply the methodology for a complex
Finite Element (FE) model of an automotive vehicle.

2 DESCRIPTION OF THE METHOD

In this section, we summarize the method introduced in [1]. This method allows a basis of the global
displacements space and a basis of the local displacements space to be constructed by solving two separated
eigenvalue problems. It should be noted that these two bases are not made up of the usual elastic modes.
The method is based on the construction of a projection operator which reduces the kinetic energy while the
elastic energy remains exact. This method is applied to the structural part of the vibroacoustic system we are
interested in.

2.1 Reference computational model

We are interested in predicting the frequency response functions of a vibroacoustic damped structure occupy-
ing a domainΩ, in the frequency band of analysisB = [ωmin, ωmax] with 0 < ωmin. LetU(ω) be the complex
vector of them DOF of the structural part of the vibroacoustic computational model constructed by the finite
element method. Let[M] and [K] be the mass and stiffness matrices which are positive-definite symmetric
(m × m) real matrices. The eigenfrequenciesλ and the elastic modesϕ in R

m of the conservative part of
the dynamical computational model of the structure are the solution of the following eigenvalue problem,

[K]ϕ = λ [M]ϕ . (1)

Then an approximationUn(ω) at ordern of U(ω) can be written as

Un(ω) =
n∑

α=1

qα(ω)ϕα = [Φ] q(ω) , (2)

in which q(ω) = (q1(ω), . . . , qn(ω)) is the complex vector of then generalized coordinates and where

[Φ] = [ϕ1 . . .ϕn] is the(m× n) real matrix of the elastic modes associated with then first eigenvalues.

2.2 Decomposition of the domain for kinematic energy reduction.

In this section, we introduce a decomposition of the domain of the structure which allows a kinematic reduc-
tion of the kinetic energy to be performed. We then obtained an associated mass matrix which is adapted to
the calculation of the global basis in the low-frequency band of analysis. The details of the methodology for
the the continuous and the discrete cases are presented in [1].

2.2.1 Decomposition of the domain Ω

The domainΩ is partitioned intonJ subdomainsΩj such that, forj andk in {1, . . . , nJ},

Ω =

nJ⋃

j=1

Ωj , Ωj ∩ Ωk = ∅ . (3)

The choice of the length of subdomains is related to the smallest ”wavelength” of the global vector basis that

we want to extract in presence of numerous local modes. The construction of the subdomains are presented
in Section 3.



2.2.2 Projection operator

Let u �→ hr(u) be the linear operator defined by

{hr(u)}(x) =

nJ∑

j=1

IΩj
(x)

1

mj

∫

Ωj

ρ(x′)u(x′) dx′ , (4)

in which x �→ IΩj
(x) = 1 if x is in Ωj and equal to0 otherwise. The local massmj is defined, for allj

in {1, . . . , nJ}, by mj =
∫
Ωj

ρ(x) dx, wherex �→ ρ(x) is the mass density. Letu �→ hc(u) be the linear
operator defined by

hc(u) = u− hr(u) . (5)

Functionhr(u) will also be denoted byur and functionhc(u) byuc. We then haveu = hr(u)+hc(u) that

is to say,u = ur + uc. Let [Hr] be the(m ×m) matrix relative to the finite element discretization of the
projection operatorhr defined by Eq. (4). Therefore, the finite element discretizationU of u can be written
asU = Ur + Uc, in which

U
r = [Hr]U

and
U
c = [Hc]U = U− U

r ,

which shows that[Hc] = [Im]− [Hr]. Then, the projected(m×m) mass matrix[Mr] is such that

[Mr] = [Hr]T [M][Hr] ,

and the complementary(m×m) mass matrix[Mc] is such that

[Mc] = [Hc]T [M][Hc] .

Using the properties of the projection operator defined by Eq. (4), it can be shown [1] that

[Mc] = [M]− [Mr] .

It should be noted that the rank of matrix[Mr] is 3nJ , and the rank of matrix[Mc] is m− 3nJ .

2.3 Global and local displacements bases

There are two methods to calculate the global displacements basis and the local displacements basis. The first
one is the direct method that will be used to reduce the matrix equation. In such a method, the basis of the
global displacements space and the basis of the local displacements space are directly calculated using matrix
[Mr]. The second one, is the double projection. This method is less intrusive with respect to the commercial
software and less time-consuming than the direct method. The global displacements eigenvectorsφg in R

m

are solution of the following generalized eigenvalue problem

[K]φg = λg[Mr]φg . (6)

The local displacements eigenvectorsφℓ in R
m are solution of the following generalized eigenvalue problem

[K]φℓ = λℓ[Mc]φℓ . (7)

The solutions of the generalized eigenvalue problems defined by Eqs. (6) and (7) are then written, forn

sufficiently large, as

φg = [Φ] φ̃
g

, φℓ = [Φ] φ̃
ℓ
, (8)



in which [Φ], defined in Eq. (2), is the matrix of the elastic modes. The global displacements eigenvectors

are the solutions of the generalized eigenvalue problem

[K̃] φ̃
g
= λg [M̃ r] φ̃

g
, (9)

in which [M̃ r] = [Φr]T [M] [Φr] and [K̃] = [Φ]T [K] [Φ], and where the(m × n) real matrix[Φr] is such

that [Φr] = [Hr] [Φ]. The local displacements eigenvectors are the solutions of the generalized eigenvalue
problem

[K̃] φ̃
ℓ
= λℓ[M̃ c] φ̃

ℓ
, (10)

in which [M̃ c] = [Φc]T [M] [Φc] and where the(m × n) real matrix[Φc] is such that[Φc] = [Hc] [Φ] =

[Φ]− [Φr]. It is proven in [1] that the family{φg
1, . . . ,φ

g
3nJ

,φℓ
1, . . . ,φ

ℓ
m−3nJ

} is a basis ofRm. The mean

reduced matrix model is obtained by the projection ofU(ω) on the family{φg
1
, . . . ,φg

ng
,φℓ

1, . . . ,φ
ℓ
nℓ
} of

real vectors associated with theng first global displacements eigenvectors such thatng ≤ 3nJ < m and with
thenℓ first local displacements eigenvectors such thatnℓ < m− 3nJ . It should be noted that, if the double
projection method is used, then we must haveng + nℓ ≤ n. Then, the approximationUng,nℓ

(ω) of U(ω) at
order(ng, nℓ) is written as

Ung,nℓ
(ω) =

ng∑

α=1

qgα(ω)φ
g
α +

nℓ∑

β=1

qℓβ(ω)φ
ℓ
β . (11)

This decomposition is then used to construct the generalized mass, stiffness and damping matrices which
can be written in a block representation as

[M] =

(
Mgg Mgl

M lg M ll

)
, [D] =

(
Dgg Dgl

Dlg Dll

)
, [K] =

(
Kgg Kgl

K lg K ll

)
. (12)

2.4 Mean reduced model adapted to the low-frequency range

The objective of this work is to construct a reduced-order model adapted to the low-frequency range in which
the synthesis of the frequency responses is obtained using only the global displacements eigenvectors. So
the new approximationUng(ω) of U(ω) at orderng is written as

Ung(ω) =

ng∑

α=1

qgα(ω)φ
g
α . (13)

The corresponding reduced-order matrix equation is than written as

(−ω2[Mgg] + iω[Dgg] + [Kgg])qg = f g . (14)

Since a part of the mechanical energy is transferred from the global coordinates to the local coordinates and
which induces an apparent damping, we propose to replace the generalized damping matrix[Dgg] by a modi-
fied damping matrix[Dgg

mod] which is calculated by minimizing the distance between the frequency responses
computed with the proposed reduced-order model and the frequency responses given by the reference model.

2.5 Probabilistic model of uncertainties

A probabilistic model of uncertainties is introduced in the reduced-order computational model in order to
take into account the system-parameter uncertainties and the model uncertainties induced by modeling errors
in the reference model from which the reduced-order model has been deduced. We also have to take into



account uncertainties induced by the irreducible errors introduced by neglecting the contribution of the local
displacements in the constructed reduced-order model. To take into account all these sources of uncertainties,
we use the nonparametric probabilistic approach (see [4]) which consists in replacing, in the reduced-order
computational model, the deterministic generalized mass, damping and stiffness matrices by random matri-
ces. In this work, the uncertainties are not taken into account on the modified generalized damping matrix
(it has previously been proven that the random frequency responses are not sensitive to the statistical fluctu-
ations of the damping matrix in the framework of the nonparametric probabilistic approach). Therefore the
matrices[Mgg] and [Kgg] are replaced by the random matrices[Mgg] and [Kgg] for which the probability
density functions (PDF) and the generator of independent realizations are given in [4]. The PDF of these two
random matrices depend on two dispersion parameters (δMgg andδKgg ) which have to be identified using the
random frequency response of the stochastic reference model and the maximum likelihood method. There-
fore, the random frequency response of the stochastic reduced-order model,Ug(ω; δMgg ; δKgg ), is solution
of the equation

Ug(ω; δMgg ; δKgg) =

ng∑

α=1

Qα(ω; δMgg ; δKgg)φα , (15)

(−ω2[M gg(δMgg )] + iω[Dgg
mod] + [Kgg(δKgg )])Qg(ω; δMgg ; δKgg) = f g . (16)

3 CONSTRUCTION OF THE SUBDOMAINS

For the computational model of a complex structure such as an automotive vehicle, the decomposition of
the domain is not easy to be carried out because the geometry is very complex and curved. The method we
propose for this decomposition is based on the Fast Marching Methods (FMM) introduced in [2] which gives
a way to propagate a front (the notion of front will be defined below) on connected parts from a starting
point. In this section, the FMM is summarized and then we explain how to construct the subdomains using
the FMM.

3.1 Presentation of the Fast Marching Method (FMM)

Let x be the generic point inR3 belonging to the complex geometryΩ. Let x0 be a fixed point belonging to
Ω. Let U(x) be a geodesic distance adapted to the geometry, betweenx andx0. It should be noted that for
a simple 3D volume domain, such a geodesic distance would be the Euclidean distance‖x − x0‖ in which
‖.‖ is the Euclidean norm. The front related tox0 is defined as the subset of all thex such thatU(x) has a
fixed value. The FMM [2] allows the front to be propagated from starting pointx0. We then have to calculate
U(x) verifying the following nonlinear Eikonal equation

‖∇U(x)‖ = F (x) , x ∈ Ω , (17)

with ∇ the gradient with respect tox, in whichF (x) is a given arbitrary positive-valued function and for
which the boundary condition is written asU(x) = 0 onΓ0 which is a curved line or a surface containingx0.
Introducing the finite element mesh ofΩ, Eq. (17) is discretized using anupwind approximation (forward
finite difference) for the gradient (see [2]). For the particular case of a rectangular regular finite element
mesh for which the mesh size ish and for which the nodes arexij, we have to findUij = U(xij) as the
solution of the following equation

{max(Uij − Ui−1,j, Uij − Ui+1,j , 0)}
2

+ {max(Uij − Ui,j−1, Uij − Ui,j+1, 0)}
2 = h2F 2

ij .
(18)



Since the information in Eq. (18) propagates in a unique way, this equation allows the front to be propagated
from the starting point. The use of the wordFast in FMM is due to the fact that the nodes associated with
Uij and identified by Eq. (18) belong to a small domain which is called the Narrow Band (NB).

In the FMM, the algorithm introduces three groups of nodes:

(1) alive nodes for which the value ofUij is fixed and does not change,

(2) trial nodes for which the value ofUij is given but has to be updated until they becomealive and these
nodes constitute the Narrow Band,

(3) far nodes which have not been reached by the front and therefore are such thatUij = +∞.

The front is propagated using the following algorithm:

Initialization

• Choose a starting nodex0 rewritten asx0,0, which isalive and setU0,0 = U(x0,0) = 0.

• The4 neighboring nodes ofx0,0 becometrial nodes and the associated value ofU is set tohFij .

• All the other nodes arefar nodes with associated value ofU equal to infinity.

Loop

• Search amongtrial nodes, the nodexij with the smallest value ofU .

• Removexij from trial nodes and addxij to alive nodes.

• For each neighboring node ofxij, there are two possible cases:

– if the neighboring node is afar node, add it to thetrial nodes and its value ofU is set toUij+hFij .

– if the neighboring node is atrial node, its value ofU is updated solving Eq. (18).

The loop is repeated until all the node arealive. For triangular meshes, the algorithm described above is
unchanged but Eq. (18) must be adapted (see [3]).

3.2 Construction of the subdomains

The subdomains{Ωj , j = 1, . . . , nJ} of Ω are constructed using the FMM. This construction has two steps.
The first one consists in choosing the centers of the subdomains. The second one consists in generating the
subdomains using these centers as starting points.

(i) Selection of the subdomains centers
The subdomains centers are chosen on the stiff parts of the computational model and are uniformly dis-
tributed on the stiff parts.

(ii) Computation of the subdomains
To construct the subdomains{Ωj, j = 1, . . . , nJ} for which the subdomains centers have previously been
chosen, we simultaneously propagate a front starting from each center until all the nodes becomealive nodes
with respect to one of the front. Then, the boundaries of the subdomains correspond to the meeting lines of
the fronts.
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Exc 1

Exc 2

Figure 1: The Finite Element model of an automotive vehicule

Figure 2: Centers of the subdomains (left) and subdomains (right)

4 APPLICATION

In this section, we present an application of the methodology presented in the previous sections for a complex
real automotive model.

4.1 Presentation

The application is done for a computational model (FE Model) of an automotive vehicle. Such a FE model
has250 000 nodes and contains various types of finite elements such as volume finite elements, surface
finite elements and beam elements. The frequency band of analysis isB =]0 , 120]Hz. The structure has
1, 462, 698 DOF.

4.1.1 Decompostion of the domain

The FMM method presented in Section 3 is applied to the mesh of the structure of the automotive model.
The centers of the subdomains and the subdomains obtained from these centers are represented in Fig. 2.



Figure 3: First elastic mode (left) and third elastic mode (right).

Figure 4: Fourth global displacements eigenvector (left) and corresponding eleventh elastic mode (right).

4.1.2 Elastic modes, global and local displacements eigenvectors

In a first step, the elastic modes are calculated with the finite element model. There are160 eigenfrequencies
in the frequency band of analysisB. The first elastic modeφ1 and the third elastic modeφ3 are displayed in
Fig. 3 which shows thatφ1 is a local elastic mode whileφ11 is a global elastic mode with an important local
displacement (see Fig. 4). In a second step, the global and local displacements eigenvectors are constructed
using the double projection method. In frequency band]0 , 120] Hz, there areng = 36 global displace-
ments eigenvectors andnℓ = 124 local displacements eigenvectors. To see the good separation obtained
between the global displacements eigenvectors and the local displacements eigenvectors, Fig. 4 displays the
eleventh elastic mode (right figure) for which there are local displacements and the corresponding fourth
global displacements eigenvector (left figure) for which the local displacements have been filtered.

4.2 Frequency response functions

For allω ∈ B, the structure is subjected to an external point load equal to1 N applied to two nodes, Exc1
and Exc2, located in the stiff part of the structure. The frequency response is calculated at two observation
points, Obs1 and Obs2, which are located in the stiff part (see Fig. 1). The frequency responses are calculated
for different projections associated with the different bases: for the elastic modes (n = 160), for global
displacements eigenvectors (ng = 36 andnℓ = 0) and finally, for global displacements eigenvectors with
the modification of the damping matrix (ng = 36 andnℓ = 0) and for global and local displacements
eigenvectors (ng = 36 andnℓ = 124). The modulus, in log scale, of the frequency response function
is displayed in Fig. 5. It can be seen that the responses calculated using global and local displacements
eigenvectors are exactly the same that the response calculated using the elastic modes. In the Fig. 5, we can
see that for each observation node, the response calculate with the global displacement eigenvector gives a
good approximation of the response calculate with the elastic modes. Moreover, the response calculated with
the modified damping matrix gives a better result.
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Figure 5: Modulus, in log scale, of the frequency response function for Obs1 (a) and Obs2 (b). Comparisons
between different projection bases: elastic modes (black solid thick line), global displacements eigenvectors
only (red solid thick line), global displacements eigenvectors with modification of the damping matrix (ma-
genta solid thick line), global and local displacements eigenvectors (solid thin line superimposed to the solid
thick line).

4.3 Random frequency response

The stochastic reference computational model is thus constructed with the reference computational model
presented in Section 2.1, using the nonparametric probabilistic approach of uncertainties as explained in [5].
The values of the dispersion parametersδ

ref
M

(for the random matrixM) andδref
K

(for the random matrixK)
are those identified in [5]. All the calculations are carried out with the Monte Carlo simulation method for
which 1, 000 independent realizations are used. The confidence regions corresponding to a probability level
Pc = 0.95 is plotted in Fig. 6(a) and Fig. 6(b) (dark grey regions).

We then have calculated the random frequency responses using the stochastic reduced-order model. All the
calculations are carried out with the Monte Carlo simulation method for which1, 000 independent realiza-
tions are used. The first step consists in calculating the optimal values of the dispersion parametersδ

opt
Mgg

(for the random matrixMgg) andδoptKgg (for the random matrixKgg) using the maximum likelihood method.
For these optimal values of the dispersions parameters, the confidence regions corresponding to a probabil-
ity level Pc = 0.95 are plotted in Fig. 6(a) and Fig. 6(b) (magenta regions) for Obs1 and Obs2. For each
observation points, the confidence region calculated with the reference computational model is included in
the confidence region calculated with the stochastic reduced-order model. The amplitude of the confidence
region calculated with the stochastic reduced-order model is larger than the one calculated with the stochastic
reference computational model. This is due to the fact that the first one takes into account both the model
uncertainties and the uncertainties induced by the construction of the reduced-order model adapted to the
low-frequency range for which the local contributions have been removed, while the second one only takes
into account the model uncertainties and for which the local contributions have not been removed.

5 CONCLUSION

In this work, we have applied a new methodology allowing a reduced-order computational dynamical model
to be constructed for the low-frequency domain in which there are simultaneously global and local elastic
modes which cannot easily be separated with usual methods. Moreover, we have used the Fast Marching
Method which is adapted to complex geometry for constructing the subdomains and the adapted reduced-
order computational model. An associated stochastic reduced-order model has then been introduced to take
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Figure 6: Modulus, in log scale, of the random frequency response function for Obs1 (a) et Obs2 (b). Con-
fidence region (dark gray region) computed with the reference computational model. Confidence region
(magenta region) computed with the stochatic reduced-order model. Deterministic response calculate the
elastic modes (black solid thick line)

into account uncertainties in the adapted reduced-order model. The results obtained are good with respect to
the objectives fixed in this work consisting in constructing a reduced-order model with a very low dimension,
which has the capability to predict the frequency responses of the stiff part, in the low-frequency range.
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