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Abstract

This paper is devoted to the construction of a stochastic reduced-order model for dynamical structures having
a high modal density in the low-frequency range, such as an automotive vehicle. This type of structure is
characterized by the fact that it exhibits, in the low-frequency range, not only the classical global elastic
modes but also numerous local elastic modes which cannot easily be separated from the global elastic modes.
To solve this difficult problem, an approach has recently been proposed for constructing a reduced-order
computational dynamical model adapted to the low-frequency range. First, the domain of the structure is
decomposed into subdomains. Then an adapted generalized eigenvalue problem is constructed using such a
decomposition and allows an adapted vector basis of the global displacements space to be computed. This
basis is then used to construct the reduced-order model. Model uncertainties induced by modeling errors
in the computational model are taken into account using the nonparametric probabilistic approach. The
methodology is applied on a complex computational model of an automotive vehicle.

1 INTRODUCTION

This work is performed in the context of the dynamic analysis of automotive vehicles. An automotive ve-
hicle is made up of stiff parts and flexible components. In the low-frequency range, this type of structure is
characterized by the fact that it exhibits, not only the classical global elastic modes, but also numerous local
elastic modes in the same low-frequency band. With such a complex heterogeneous structure, the global
elastic modes cannot clearly be separated from the local elastic modes because there are many small contri-
butions of the local deformations in the deformations of the global elastic modes and conversely. Since there
are local elastic modes in the low-frequency band, a part of the mechanical energy is transferred from the
global elastic modes to the local elastic modes which store a part of mechanical energy and then this induces
an apparent damping for the global coordinates. In order to construct a reduced-order model for the low-
frequency band, which allows a good approximation of the global displacements to be predicted and then,
if needed, to take into account the effects of the local displacements in the total response, a new approach
[1] has recently been proposed. This method allows a basis of the global displacements space and a basis of
the local displacements space to be calculated by solving two separated eigenvalue problems. This method
that requires to decompose the computational model in subdomains for which the sizes are controlled. In
this paper, we propose to use the Fast Marching Method for the construction of such subdomains. We con-
struct a reduced-order model using only the basis of global displacements space. In addition, we introduce a
stochastic reduced-order model in order to take into account the irreducible errors introduced by neglecting



the local displacements. In a first part, we present the construction of the stochastic reduced-order model.
Then, we present the Fast Marching Method (see [2]). Finally, we apply the methodology for a complex
Finite Element (FE) model of an automotive vehicle.

2 DESCRIPTION OF THE METHOD

In this section, we summarize the method introduced in [1]. This method allows a basis of the global
displacements space and a basis of the local displacements space to be constructed by solving two separated
eigenvalue problems. It should be noted that these two bases are not made up of the usual elastic modes.
The method is based on the construction of a projection operator which reduces the kinetic energy while the
elastic energy remains exact. This method is applied to the structural part of the vibroacoustic system we are
interested in.

2.1 Reference computational model

We are interested in predicting the frequency response functions of a vibroacoustic damped structure occupy-
ing a domairt?, in the frequency band of analyds= [wmin, wmax] With 0 < wmin. LetU(w) be the complex

vector of them DOF of the structural part of the vibroacoustic computational model constructed by the finite
element method. LeM] and [K] be the mass and stiffness matrices which are positive-definite symmetric

(m x m) real matrices. The eigenfrequenciesnd the elastic modes in R™ of the conservative part of

the dynamical computational model of the structure are the solution of the following eigenvalue problem,

Kl =AM]¢e. )

Then an approximatiof),, (w) at ordern of U(w) can be written as

Un(w) =) da(w) po =[P qw), )
a=1
in which g(w) = (q1(w),...,qn(w)) is the complex vector of the generalized coordinates and where

[®] = [, ... ,] Is the(m x n) real matrix of the elastic modes associated withritfest eigenvalues.

2.2 Decomposition of the domain for kinematic energy reduction.

In this section, we introduce a decomposition of the domain of the structure which allows a kinematic reduc-
tion of the kinetic energy to be performed. We then obtained an associated mass matrix which is adapted to
the calculation of the global basis in the low-frequency band of analysis. The details of the methodology for
the the continuous and the discrete cases are presented in [1].

2.2.1 Decomposition of the domain

The domairt2 is partitioned inton; subdomaing?; such that, forj andk in {1,...,n,},
ng
=9 . 4nQ=0. 3
j=1

The choice of the length of subdomains is related to the smallest "wavelength” of the global vector basis that

we want to extract in presence of numerous local modes. The construction of the subdomains are presented
in Section 3.



2.2.2 Projection operator

Letu — h"(u) be the linear operator defined by
ngy 1
@) = Y Toy (@) o [ pla’) ula) da @
j=1 IR

in whichz > Ig,(z) = 1if z isin ; and equal td) otherwise. The local mass; is defined, for allj

in{1,...,ns}, bym; = fﬂj p(x) dz, wherex — p(x) is the mass density. Let — h°(u) be the linear
operator defined by
hé(u) =u—h"(u). (5)

Functionh” (u) will also be denoted by and functionh®(u) by u¢. We then haves = A" (u) + h¢(u) that

is to say,u = u” + u®. Let[H"] be the(m x m) matrix relative to the finite element discretization of the
projection operatoh” defined by Eq. (4). Therefore, the finite element discretizatiasf « can be written
asU = U" 4 U¢, in which

U" =[H"|U

and
U¢=[H]U=U-U" |,

which shows thatH¢] = [I,,,] — [H"]. Then, the projecte@in x m) mass matri{M’] is such that
M) = [H]T[M[HT]
and the complementaryn x m) mass matriYM‘| is such that
[M€] = [HeT M][H]
Using the properties of the projection operator defined by Eq. (4), it can be shown [1] that
M€] = [M] — ]

It should be noted that the rank of matfM'] is 3 n s, and the rank of matrifM¢| ism — 3n.

2.3 Global and local displacements bases

There are two methods to calculate the global displacements basis and the local displacements basis. The first
one is the direct method that will be used to reduce the matrix equation. In such a method, the basis of the
global displacements space and the basis of the local displacements space are directly calculated using matrix
[M"]. The second one, is the double projection. This method is less intrusive with respect to the commercial
software and less time-consuming than the direct method. The global displacements eigegiattirs

are solution of the following generalized eigenvalue problem

[K]g? = A[M"]¢7 . (6)
The local displacements eigenvectgfsn R™ are solution of the following generalized eigenvalue problem
[Klg" = X' [M<Jg" . )

The solutions of the generalized eigenvalue problems defined by Egs. (6) and (7) are then written, for
sufficiently large, as

o' =[0¢ , ¢'=[0), ®)



in which [®], defined in Eq. (2), is the matrix of the elastic modes. The global displacements eigenvectors

are the solutions of the generalized eigenvalue problem
K19 = X [M"] ¢’ €)

in which [M"] = [®"]7 [M] [#"] and[K] = [®] [K] [®], and where thém x n) real matrix[®"] is such

that[®"] = [H"] [®]. The local displacements eigenvectors are the solutions of the generalized eigenvalue
problem

K] = N[V, (10)
in which [M<] = [®°]T [M] [®¢] and where thém x n) real matrix[®°] is such tha{®‘] = [H¢] [®] =

[@] — [@"]. Itis proven in [1] that the family{¢, ..., #%, . #1..... %, 3,,} is abasis oR™. The mean
reduced matrix model is obtained by the projectioriigfs) on the family{g, ... ,¢gg,¢‘{, .., ¢k} of
real vectors associated with thgfirst global displacements eigenvectors suchthat 3n; < m and with
then, first local displacements eigenvectors such that m — 3n ;. It should be noted that, if the double
projection method is used, then we must haye- n, < n. Then, the approximatiob,,, ,,(w) of U(w) at
order(ng, ng) is written as

Unyne @) = 3 @) % + 3 db(w) 85 (11)
a=1 B=1

This decomposition is then used to construct the generalized mass, stiffness and damping matrices which
can be written in a block representation as

M99 M9 D99 D9l K99 K9l
[M] = <Mlg Mll> ’ [D] = <Dlg Dll> ’ [K] = <Klg Kll) . (12)
2.4 Mean reduced model adapted to the low-frequency range

The objective of this work is to construct a reduced-order model adapted to the low-frequency range in which
the synthesis of the frequency responses is obtained using only the global displacements eigenvectors. So
the new approximatioft),,, (w) of U(w) at ordern, is written as

Upy(w) = ¢S(w) . (13)
a=1

The corresponding reduced-order matrix equation is than written as
(—w’[M99] +iw[D¥] + [K9])q? = £ . (14)

Since a part of the mechanical energy is transferred from the global coordinates to the local coordinates and
which induces an apparent damping, we propose to replace the generalized damping/#iatrixa modi-

fied damping matrixD?? ] which is calculated by minimizing the distance between the frequency responses
computed with the proposed reduced-order model and the frequency responses given by the reference model.

2.5 Probabilistic model of uncertainties

A probabilistic model of uncertainties is introduced in the reduced-order computational model in order to
take into account the system-parameter uncertainties and the model uncertainties induced by modeling errors
in the reference model from which the reduced-order model has been deduced. We also have to take into



account uncertainties induced by the irreducible errors introduced by neglecting the contribution of the local
displacements in the constructed reduced-order model. To take into account all these sources of uncertainties,
we use the nonparametric probabilistic approach (see [4]) which consists in replacing, in the reduced-order
computational model, the deterministic generalized mass, damping and stiffness matrices by random matri-
ces. In this work, the uncertainties are not taken into account on the modified generalized damping matrix
(it has previously been proven that the random frequency responses are not sensitive to the statistical fluctu-
ations of the damping matrix in the framework of the nonparametric probabilistic approach). Therefore the
matrices[M99] and [K97] are replaced by the random matridd4?9] and [K99] for which the probability

density functions (PDF) and the generator of independent realizations are given in [4]. The PDF of these two
random matrices depend on two dispersion parameiges &nddx+s) which have to be identified using the
random frequency response of the stochastic reference model and the maximum likelihood method. There-
fore, the random frequency response of the stochastic reduced-order fddeliysqs; 6 x99), is Solution

of the equation

g
Ug(w;5Mgg;5Kgg) = ZQa(w;5Mgg;5Kgg)¢a, (15)

a=1

(—wQ[M 99(Opr99)] + iw[Dgg | + [K99(0k99)]) QY (w; Ongas; Ocaa) = £9. (16)

mod

3 CONSTRUCTION OF THE SUBDOMAINS

For the computational model of a complex structure such as an automotive vehicle, the decomposition of
the domain is not easy to be carried out because the geometry is very complex and curved. The method we
propose for this decomposition is based on the Fast Marching Methods (FMM) introduced in [2] which gives

a way to propagate a front (the notion of front will be defined below) on connected parts from a starting
point. In this section, the FMM is summarized and then we explain how to construct the subdomains using
the FMM.

3.1 Presentation of the Fast Marching Method (FMM)

Let x be the generic point if®3 belonging to the complex geometf} Letx, be a fixed point belonging to
Q. LetU(x) be a geodesic distance adapted to the geometry, betwaerd. It should be noted that for
a simple 3D volume domain, such a geodesic distance would be the Euclidean djstanag| in which
||.]| is the Euclidean norm. The front relatedxpis defined as the subset of all tkesuch that/(x) has a
fixed value. The FMM [2] allows the front to be propagated from starting pgint/e then have to calculate
U (x) verifying the following nonlinear Eikonal equation

IVUX)|| = F(x) , xeQ |, (17)

with V the gradient with respect to, in which F'(x) is a given arbitrary positive-valued function and for
which the boundary condition is written &fx) = 0 on I}y which is a curved line or a surface containigg
Introducing the finite element mesh 9f Eq. (17) is discretized using ampwind approximation (forward

finite difference) for the gradient (see [2]). For the particular case of a rectangular regular finite element
mesh for which the mesh size isand for which the nodes asg;, we have to findJ;; = U(x;;) as the
solution of the following equation

{max(Ui; — Ui—1;,Uij — Uis1,, 0)}?

+ Amax(Uij — Ui j-1,Uij — Ui j41,0)}* = B2 F7. (19)



Since the information in Eq. (18) propagates in a unique way, this equation allows the front to be propagated
from the starting point. The use of the waFthst in FMM is due to the fact that the nodes associated with
U;; and identified by Eq. (18) belong to a small domain which is called the Narrow Band (NB).

In the FMM, the algorithm introduces three groups of nodes:
(1) alive nodes for which the value df;; is fixed and does not change,

(2) trial nodes for which the value df;; is given but has to be updated until they becaatige and these
nodes constitute the Narrow Band,

(3) far nodes which have not been reached by the front and therefore are suth that co.
The front is propagated using the following algorithm:
Initialization

e Choose a starting nodg rewritten asx, o, which isalive and sety o = U(Xo,0) = 0.

e The4 neighboring nodes of, o becometrial nodes and the associated valud/ois set tohF;.

¢ All the other nodes arfar nodes with associated value @fequal to infinity.
Loop

e Search amongial nodes, the nodg; with the smallest value df.
e Removex;; fromtrial nodes and adg;; to alive nodes.
e For each neighboring node gf;, there are two possible cases:

— if the neighboring node isfar node, add itto thé&rial nodes and its value @f is set tol]; +hF;;.
— if the neighboring node is &ial node, its value ot/ is updated solving Eqg. (18).

The loop is repeated until all the node aléve. For triangular meshes, the algorithm described above is
unchanged but Eq. (18) must be adapted (see [3]).

3.2 Construction of the subdomains

The subdomaing);, j = 1,...,n;} of  are constructed using the FMM. This construction has two steps.
The first one consists in choosing the centers of the subdomains. The second one consists in generating the
subdomains using these centers as starting points.

(i) Selection of the subdomains centers
The subdomains centers are chosen on the stiff parts of the computational model and are uniformly dis-
tributed on the stiff parts.

(ii) Computation of the subdomains

To construct the subdomaif$?;, j = 1,...,n;} for which the subdomains centers have previously been
chosen, we simultaneously propagate a front starting from each center until all the nodes @léeonueles

with respect to one of the front. Then, the boundaries of the subdomains correspond to the meeting lines of
the fronts.
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Figure 2: Centers of the subdomains (left) and subdomains (right)

4 APPLICATION

In this section, we present an application of the methodology presented in the previous sections for a complex
real automotive model.

4.1 Presentation

The application is done for a computational model (FE Model) of an automotive vehicle. Such a FE model
has250 000 nodes and contains various types of finite elements such as volume finite elements, surface
finite elements and beam elements. The frequency band of analy3is-j8,120] Hz. The structure has
1,462, 698 DOF.

4.1.1 Decompostion of the domain

The FMM method presented in Section 3 is applied to the mesh of the structure of the automotive model.
The centers of the subdomains and the subdomains obtained from these centers are represented in Fig. 2.
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Figure 3: First elastic mode (left) and third elastic mode (right).

Figure 4: Fourth global displacements eigenvector (left) and corresponding eleventh elastic mode (right).

4.1.2 Elastic modes, global and local displacements eigenvectors

In a first step, the elastic modes are calculated with the finite element model. Th&6@ aigenfrequencies

in the frequency band of analysis The first elastic modey and the third elastic modg; are displayed in

Fig. 3 which shows thap, is a local elastic mode whilé,; is a global elastic mode with an important local
displacement (see Fig. 4). In a second step, the global and local displacements eigenvectors are constructed
using the double projection method. In frequency bdnd 20] Hz, there aren, = 36 global displace-

ments eigenvectors ang = 124 local displacements eigenvectors. To see the good separation obtained
between the global displacements eigenvectors and the local displacements eigenvectors, Fig. 4 displays the
eleventh elastic mode (right figure) for which there are local displacements and the corresponding fourth
global displacements eigenvector (left figure) for which the local displacements have been filtered.

4.2 Frequency response functions

For allw € B, the structure is subjected to an external point load equalXoapplied to two nodes, Excl

and Exc2, located in the stiff part of the structure. The frequency response is calculated at two observation
points, Obs and Obs, which are located in the stiff part (see Fig. 1). The frequency responses are calculated
for different projections associated with the different bases: for the elastic mades 160), for global
displacements eigenvectors, (= 36 andn, = 0) and finally, for global displacements eigenvectors with

the modification of the damping matrix( = 36 andn, = 0) and for global and local displacements
eigenvectors.{, = 36 andn, = 124). The modulus, in log scale, of the frequency response function

is displayed in Fig. 5. It can be seen that the responses calculated using global and local displacements
eigenvectors are exactly the same that the response calculated using the elastic modes. In the Fig. 5, we can
see that for each observation node, the response calculate with the global displacement eigenvector gives a
good approximation of the response calculate with the elastic modes. Moreover, the response calculated with
the modified damping matrix gives a better result.
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Figure 5: Modulus, in log scale, of the frequency response function fqr(@pand Obs (b). Comparisons
between different projection bases: elastic modes (black solid thick line), global displacements eigenvectors
only (red solid thick line), global displacements eigenvectors with modification of the damping matrix (ma-
genta solid thick line), global and local displacements eigenvectors (solid thin line superimposed to the solid
thick line).

4.3 Random frequency response

The stochastic reference computational model is thus constructed with the reference computational model
presented in Section 2.1, using the nonparametric probabilistic approach of uncertainties as explained in [5].
The values of the dispersion parame@fé (for the random matrixvi) andéﬁ'jf (for the random matrix)

are those identified in [5]. All the calculations are carried out with the Monte Carlo simulation method for
which 1,000 independent realizations are used. The confidence regions corresponding to a probability level
P. =0.95is plotted in Fig. 6(a) and Fig. 6(b) (dark grey regions).

We then have calculated the random frequency responses using the stochastic reduced-order model. All the
calculations are carried out with the Monte Carlo simulation method for whiéh0 independent realiza-

tions are used. The first step consists in calculating the optimal values of the dispersion parﬁ}}b@ters

(for the random matrixi799) andé%’;g (for the random matrix¥<99) using the maximum likelihood method.

For these optimal values of the dispersions parameters, the confidence regions corresponding to a probabil-
ity level P. = 0.95 are plotted in Fig. 6(a) and Fig. 6(b) (magenta regions) fonh @bd Obs. For each
observation points, the confidence region calculated with the reference computational model is included in
the confidence region calculated with the stochastic reduced-order model. The amplitude of the confidence
region calculated with the stochastic reduced-order model is larger than the one calculated with the stochastic
reference computational model. This is due to the fact that the first one takes into account both the model
uncertainties and the uncertainties induced by the construction of the reduced-order model adapted to the
low-frequency range for which the local contributions have been removed, while the second one only takes
into account the model uncertainties and for which the local contributions have not been removed.

5 CONCLUSION

In this work, we have applied a new methodology allowing a reduced-order computational dynamical model
to be constructed for the low-frequency domain in which there are simultaneously global and local elastic
modes which cannot easily be separated with usual methods. Moreover, we have used the Fast Marching
Method which is adapted to complex geometry for constructing the subdomains and the adapted reduced-
order computational model. An associated stochastic reduced-order model has then been introduced to take
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into account uncertainties in the adapted reduced-order model. The results obtained are good with respect to
the objectives fixed in this work consisting in constructing a reduced-order model with a very low dimension,
which has the capability to predict the frequency responses of the stiff part, in the low-frequency range.
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