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Abstract
This research is devoted to the construction of a reduced-order computational model for nonlinear dynamical
structures which are characterized by the presence of numerous local elastic modes in the low-frequency
band. Therefore these structures have a high modal density in the low-frequency band and the use of the
classical modal analysis method is not suited here. We propose to construct a reduced-order computational
model using a small-dimension basis of a space of global displacements, which is constructeda priori by
solving an unusual eigenvalue problem. Then the reduced-order computational model allows the nonlinear
dynamical response to be predicted with a good accuracy on the stiff part of the structure. The methodology is
applied to a complex industrial structure which is made up ofa row of seven fuel assemblies with possibility
of collisions between grids and which is submitted to a seismic loading.

1 Introduction

This paper is devoted to the construction of a reduced-ordermodel for nonlinear dynamical structures having
numerous local elastic modes in the low-frequency (LF) range. This paper focuses specifically on localized
non-linearities such as elastic stops. We are interested inthe nonlinear response of structures which are made
up of a rigid master structure (the stiff part) coupled with several flexible substructures. Such structures are
characterized by the fact that they present in the LF band, both classical global elastic modes but also many
local elastic modes. Moreover, the structure we consider ismodeled with a large finite element model
and has several localized nonlinearities (such as elastic stops). As a consequence, the non-linear transient
response has to be constructed using a small time step for theintegration scheme in order to correctly capture
the nonlinear effects in the non-linear transient response. Then, the direct construction of the non-linear
transient response is a very challenging issue and therefore the computational model has to be reduced. Due
to the high modal density of the structures under consideration, the classical reduction consisting in using
the elastic modes of the underlying linear part of the nonlinear dynamical system is not suited here. Since
we want to construct a small-dimension reduced-order computational model which has the capability to
predict the nonlinear dynamical responses on the stiff partfor which the local displacements are negligible,
we have to construct the reduced-order computational modelusing a basis adapted to the prediction of the
global displacements and therefore, we have to filter the local displacements in the construction of the basis.
To achieve this objective, most of previous researches havebeen based on a spatial filtering of the short
wavelengths. Concerning numerical methods, most of the techniques are based on the lumped mass methods.
In the Guyan method [5], the masses are lumped at few nodes andthe inertia forces of the other nodes are
neglected. It should be noted that the choice of concentration points is not obvious to perform for complex



structures. The convergence properties of the solution obtained using the lumped mass method have been
studied [3, 7, 2]. In [10], the authors propose to construct abasis of the global displacements space using a
rough finite element model. For slender dynamical structures, another method consists in the construction
of an equivalent beam or plate model [12, 13]. The Proper Orthogonal Decomposition (POD) method (see
[9, 11]) allows in some cases to extract an accurate small size basis in order to construct a reduced-order
computational model of a nonlinear dynamical system, but this basis has to be constructeda posteriori,
which means that a sufficiently rich nonlinear response has to be constructed. Moreover, the POD basis is
only optimal for a given external load (or imposed displacement).

Recently, a new method has been proposed to construct a reduced-order computational model in linear struc-
tural dynamics for structures having numerous local elastic modes in the low-frequency band [14]. In this
method, a basis of the global displacements space and a basisof the local displacements space are calculated
by solving two unusual eigenvalues problems. The elements of these two bases are not constituted of the
usual elastic modes. The eigenvalue problem, allowing a basis of the global displacements space to be con-
structed, is constructed by introducing a kinematic reduction for the kinetic energy while the elastic energy
is kept exact. In this paper, this method will be used to construct a basis of the global displacements space
and then to deduce the reduced-order computational model ofthe nonlinear dynamical structure. Therefore,
the contributions of the local displacements of the structure observed on the stiff part are neglected in the
research presented here.

In Section 2, the method developed in [14] is summarized and the construction of the reduced-order com-
putational model is presented. In Section 3, an industrial application is given. This application concerns the
nonlinear transient response of a row of fuel assemblies.

2 Construction of the reduced-order computational model

In this Section, we first summarize the method introduced in [14] which allows a reduced-order computa-
tional model to be constructed for structures having a high modal density in the low-frequency range.Although
this method allows both a basis of the global displacements space and a basis of the local displacements space
to be constructed, we will only summarize the construction of the basis of the global displacements space (as
previously explained, the contributions of the local displacements of the structure observed on the stiff part
are neglected).

2.1 Reference non-linear computational model

We are interested in predicting the transient responses of athree-dimensional nonlinear damped structure,
with localized nonlinearities, and occupying a bounded domainΩ. The real-valued vectorU(t) of them de-
grees of freedom (DOFs) of the computational model constructed with the finite element method, is solution
of the following matrix equation,

[M]Ü(t) + [D]U̇(t) + [K]U(t) + F
NL(U(t), U̇(t)) = F(t) , t ∈]0 , T ] , (1)

with the initial conditions

U(0) = U̇(0) = 0 , (2)

in which [M], [D] and [K] are respectively the(m × m) positive-definite symmetric real mass, damping
and stiffness matrices, whereFNL(U(t), U̇(t)) is the vector of the nonlinear forces induced by the localized
nonlinearities and whereF(t) is relative to the discretization of the external forces. Usually, the nonlinear
matrix equation (1) is reduced using the elastic modes of thelinear part of Eq. (1). These modes are therefore
such that([K] − λ[M])ϕ = 0. Since it is assumed that there are numerous local elastic modes and since
there are nonlinear forces, one would need to calculate a high number of elastic modes in order to obtain a
good convergence for the nonlinear dynamical response in the low-frequency range. The use of a basis of
the global displacements space circumvents this difficulty.



2.2 Kinematic reduction of the kinetic energy

The methodology proposed in [14] consists in introducing a kinematic reduction of the structural kinetic
energy. In a first step, the domainΩ is partitioned intonJ disjoint subdomainsΩj . In a second step, this
decomposition is used to construct the projection linear operatoru 7→ hr(u) such thathr(hr(u)) = hr(u)
and defined by

{hr(u)}(x) =

nJ∑
j=1

1lΩj
(x)

1

mj

∫
Ωj

ρ(x′)u(x′) dx′ , (3)

in whichx 7→ 1lΩj
(x) = 1 if x is inΩj and= 0 otherwise, wheremj is the total mass of subdomainΩj and

whereρ(x) is the mass density. This operator carries out an average of the displacements with respect to the
mass density in each subdomain (kinematic reduction). We then introduce the(m×m) matrix [Hr] relative
to the finite element discretization of the projection operator hr defined by Eq. (3), such as[Hr]2 = [Hr].
Then, the(m × m) projected mass matrix[Mr] is constructed such that[Mr] = [Hr]T [M][Hr] with the
following property

[Mr] = [M][Hr] = [Hr]T [M] . (4)

The rank of mass matrix[Mr] is 3nJ .

2.3 Basis of the global displacements space.

The basis of the global displacements space is made up of the solutionsϕg in R
m of the generalized eigen-

value problem
[K]ϕg = λg[Mr]ϕg , (5)

in which the stiffness matrix is kept exact while the mass matrix is projected. This generalized eigen-
value problem admits an increasing sequence of3nJ positive global eigenvalues0 < λ

g
1
≤ . . . ≤ λ

g
3nJ

,
associated with the finite family of algebraically independent eigenvectors{ϕg

1
, . . . ,ϕ

g
3nJ

}. The family
{ϕg

1
, . . . ,ϕ

g
3nJ

} spans a subspace of dimension3nJ defined as the global displacements space. In general,
this family is not made up of elastic modes. The computation of the eigenvectors is carried out using an
adapted subspace iteration algorithm. This algorithm avoid the assembly of matrix[Mr] which is a full ma-
trix. If needed, a basis of the local displacements space canalso be constructed and complete the basis of
global displacements (see [14]).

2.4 Reduced-order computational model

The reduced-order computational model is obtained using the projection ofU(t) on the subspace ofRm

spanned by the family{ϕg
1
, . . . ,ϕ

g
ng} of real vectors associated with theng first eigenvalues0 < λ

g
1
≤

. . . ≤ λ
g
ng , such thatng ≤ 3nJ ≤ m. Let [Φg] = [ϕg

1
. . .ϕ

g
ng ] be the(m × ng) real matrix whose columns

are the vectorsϕg
1
, . . . ,ϕ

g
ng . Then, theng-order approximationUng(t) of U(t) is written as

Ung(t) =

ng∑
j=1

ϕ
g
j qj

g(t) = [Φg]qg(t) , (6)

in whichqg(t) = (qg
1
(t), . . . , qgng(t)). The vectorqg(t) is solution of the following nonlinear reduced matrix

equation
[M ]q̈g(t) + [D]q̇g(t) + [K]qg(t) + fNL(qg(t), q̇g(t)) = f(t) , t ∈]0 , T ] , (7)

with the initial conditions

qg(0) = q̇g(0) = 0 , (8)



in which [M ], [D] and[K] are the(ng × ng) generalized mass, damping and stiffness matrices defined by
[M ] = [Φg]T [M][Φ]g, [D] = [Φg]T [D][Φ]g and[K] = [Φg]T [K][Φ]g, wheref(t) = [Φg]TF(t) is the vector
of the generalized forces and wherefNL(qg(t), q̇g(t)) = [Φg]TFNL([Φ]gqg(t), [Φ]g q̇g(t)) is the vector of
the generalized nonlinear forces. The dynamical systems weare interested in this paper are made up of few
eigenvectors of global displacements. Consequently, the size of the nonlinear reduced-order computational
model defined by Eqs. (6) to (8) is very small.

3 Application

In this Section, we present an industrial application of themethodology which consists in the dynamical
analysis of a row of seven fuel assemblies with possibility of collisions between grids and submitted to a
seismic loading.

3.1 Reference computational model

(i)-Fuel assembly

A fuel assembly is a slender structure which is made up of264 flexible fuel rods,25 stiff guide tubes and
10 stiff grids which hold the tubes in position (see the finite element mesh in Fig. 1). The guide tubes are
soldered to the grids while the fuel rods are fixed to the gridsby springs. The longitudinal (vertical) direction
is denoted byz. The transverse directions are denoted byx andy. The fuel rods and the guide tubes are

Figure 1: Finite element mesh of a fuel assembly: Grids (black), fuel rods (blue) and guide tubes (red). Left
figure: Complete fuel assembly. Right figure: Grids and guidetubes only.

modeled by Timoshenko beams and the grids are modeled by solid elements. The end of guide tubes are
fixed to the containment building. All the displacements following y-direction are set to zero. For a single
fuel assembly, the finite element model has44, 844 elements and449, 580 DOFs. There are7, 364 elastic
modes in the band[0 , 400] Hz. The eight first elastic modes are ensemble modes (all the structure moves
in phase), the corresponding eigenfrequencies are3.09 Hz, 6.31 Hz, 9.78 Hz, 13.5 Hz, 17.6 Hz, 22.2 Hz,
27.3 Hz and32.7 Hz. Beyond these ensemble modes, there are numerous local elastic modes (only a part
of the structure moves) and a few global elastic modes (all the structure moves but not in phase). The2nd

elastic mode (global) and the20th elastic mode (local) are plotted in Fig. 2.

(ii)-Row of assemblies

Concerning the linear part, the row of assemblies is made up of seven fuel assemblies. The fuel assemblies are
linked each to the others by the rigid containment building on which an homogeneous seismic displacement
is imposed. The gap between two assemblies is2.09 × 10−3 m. The gap between the leftmost assembly
and the containment building1.9 × 10−3 m. The gap between the rightmost assembly and the containment



Figure 2: Left:2nd elastic mode (global). Rigth:20th elastic mode (local).

building 1.9 × 10−3 m. The mesh of the finite element model is plotted in Fig. 3. Thefinite element model

Figure 3: Finite element mesh of a row of fuel assemblies: Grids (blue) and guide tubes (red). The fuel rods
are not plotted.

has313, 908 elements and3, 147, 060 DOFs and there are51, 548 elastic modes in the band[0 , 400] Hz
(each mode of a single fuel assembly is reproduced seven times).

The possible contact grid/grid and grid/containment are taken into account by introducing160 elastic stops.
Each grid has a left elastic stop and a right elastic stop, thecontainment building has10 elastic stops face to
rightmost assembly grids and10 elastic stops face to leftmost assembly grids.

3.2 Construction and validation of the reduced-order computational model

In this section, a single fuel assembly is considered. The first step consists in the construction of the sub-
domainsΩj introduced in Section 2.2. Since we want to filter the local transverse displacements, the sub-
domains are chosen as100 slides of equal thickness. The eigenvectorsϕ

g
j are then computed following the



method introduced in Section 2.3. In the frequency band[0 , 400] Hz, there are35 eigenvectors. The9th

eigenvector is plotted in Fig. 4. In the band[0, 400] Hz, the number of eigenvectors (35) is much lower than

Figure 4:9th eigenvector.

the number of elastic modes (7, 364). The accuracy of the reduced-order computational model should be
analyzed by comparison with the reference computational model. However, the nonlinear transient response
of the reference computational model is very difficult to calculate (the presence of localized nonlinearities
requires the use of a very small time step for the integrationscheme). Consequently, the accuracy analy-
sis is carried out by comparing the linear frequency response functions of the reduced-order computational
model without localized nonlinearities, with the frequency response functions of the reference computational
model without localized nonlinearities. Nevertheless, a convergence analysis of the nonlinear responses with
respect to the number of global eigenvectors will be carriedout in Section 3.3. A Rayleigh damping model
is used and is constructed for the frequencies3 Hz and400 Hz with a damping ratio0.04. A point load is
applied to the nodePexc which is located at the middle of the9th grid (from bottom to top). This load is
equal to1 N in the frequency band[0 , 400] Hz followingx-direction. The containment building is fixed. The
measurement nodePobs is located at the middle of the4th grid. The frequency response functions at points
Pobs andPexc are plotted in Figs. 5 and 6. These figures show a very good accuracy of the reduced-order

0 50 100 150 200 250 300 350 400

10
−4

10
−3

10
−2

10
−1

Frequency (Hz)

A
cc

el
er

at
io

n

Figure 5: Modulus of the frequency response function of the acceleration inx-direction at pointPobs:
reduced-order computational model (solid line) and reference computational model (dashed line).
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Figure 6: Modulus of the frequency response function of the acceleration inx-direction at pointPexc:
reduced-order computational model (solid line) and reference computational model (dashed line).

computational model in the frequency band[0 , 100] Hz. In the frequency band[100 , 300] Hz, the accuracy
of the reduced-order computational model is less. These small deviations are due to the local contributions
in the neighborhood of the observation points, which are nottaken into account when the basis of the global
displacements space is used to construct the reduced-ordercomputational model.

3.3 Nonlinear transient response of a row of fuel assemblies

Each fuel assembly of the row is decomposed into100 slices yielding700 subdomains. For the band
[0 , 400] Hz, the reduced-order computational model is constructed with 245 eigenvectors (instead of51, 548
elastic modes which would be required with a classical modalanalysis). The displacement of the contain-
ment building followingx-direction is imposed and is denoted byxs(t). We are interested in the nonlinear
transient relative displacement of the row of assemblies. The damping ratio is over0.3 for the seven first
eigenmodes and the damping ratio is around0.1 for the other eigenmodes. The relative displacement vector
is solution of Eqs. (6) to (8) withf(t) = −[Φg]T [M][W ]ẍs(t) in which [W ] is a vector whose components
are equal to1 for all the DOFs corresponding to the displacements following x-direction and are equal to
zero for the other DOFs. The functiont 7→ ẍs(t) is plotted in Figs. 7. The nonlinear relative response is
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Figure 7: Functiont 7→ ẍs(t).



calculated in the interval time[0 , 19.48] s using an explicit Euler integration scheme with an integration time
step10−5 s. The observation pointP1 belongs to the1st assembly (from left to right), and is located at the
middle of6th grid (from bottom to top). For pointP1, the relative transient displacements is plotted in Fig. 8.
The convergence of the contact forces between grids (nonlinear forces) with respect to the size of the global
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Figure 8: Relative transient displacement followingx-direction for observation pointP1.

basis are analyzed for each elastic stop through the function ng 7→
∫ T

0
FN (t;ng)

2
dt in whichFN (t, ng) is

the transient normal force calculated usingng global eigenvectors. The convergence function for pointP1
is plotted on Fig. 9. From this figure, it can be seen that a goodconvergence of the nonlinear response is
reached.
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Figure 9: Convergence of the contact force for observation point P1.

4 Conclusions

We have presented the construction a reduced-order computational model for nonlinear dynamical structures
in presence of many local elastic modes in the low-frequencyrange. This method is based on the use of a



basis of the global displacements space. The constructed reduced-order computational model has a small
dimension and allows the displacement of the stiff part of the structure to be predicted with a good accuracy.
The methodology has successfully been applied to a complex industrial dynamical system for which the
computational model has millions of degrees of freedom and numerous localized nonlinearities. The results
show that the nonlinear dynamical response can be calculated with a good accuracy and a good convergence
using only245 eigenvectors.
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