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Abstract

This research is devoted to the construction of a reducger@omputational model for nonlinear dynamical
structures which are characterized by the presence of musidocal elastic modes in the low-frequency
band. Therefore these structures have a high modal densiheilow-frequency band and the use of the
classical modal analysis method is not suited here. We gmpmconstruct a reduced-order computational
model using a small-dimension basis of a space of globalatispents, which is constructedpriori by
solving an unusual eigenvalue problem. Then the reducdge@omputational model allows the nonlinear
dynamical response to be predicted with a good accuracyesstithpart of the structure. The methodology is
applied to a complex industrial structure which is made ua afw of seven fuel assemblies with possibility
of collisions between grids and which is submitted to a seidoading.

1 Introduction

This paper is devoted to the construction of a reduced-ambetel for nonlinear dynamical structures having
numerous local elastic modes in the low-frequency (LF) earichis paper focuses specifically on localized
non-linearities such as elastic stops. We are interestégtinonlinear response of structures which are made
up of a rigid master structure (the stiff part) coupled wigheral flexible substructures. Such structures are
characterized by the fact that they present in the LF bartth, dlassical global elastic modes but also many
local elastic modes. Moreover, the structure we considenasleled with a large finite element model
and has several localized nonlinearities (such as elasfis}s As a consequence, the non-linear transient
response has to be constructed using a small time step fintéggation scheme in order to correctly capture
the nonlinear effects in the non-linear transient resporideen, the direct construction of the non-linear
transient response is a very challenging issue and thertéffercomputational model has to be reduced. Due
to the high modal density of the structures under considgrathe classical reduction consisting in using
the elastic modes of the underlying linear part of the na@amdynamical system is not suited here. Since
we want to construct a small-dimension reduced-order céatipnal model which has the capability to
predict the nonlinear dynamical responses on the stifffoasvhich the local displacements are negligible,
we have to construct the reduced-order computational megief) a basis adapted to the prediction of the
global displacements and therefore, we have to filter thal ldisplacements in the construction of the basis.
To achieve this objective, most of previous researches haea based on a spatial filtering of the short
wavelengths. Concerning numerical methods, most of thetgaes are based on the lumped mass methods.
In the Guyan method [5], the masses are lumped at few nodetharidertia forces of the other nodes are
neglected. It should be noted that the choice of conceolratoints is not obvious to perform for complex



structures. The convergence properties of the soluticaimdd using the lumped mass method have been
studied [3, 7, 2]. In [10], the authors propose to construgasis of the global displacements space using a
rough finite element model. For slender dynamical strustus@other method consists in the construction
of an equivalent beam or plate model [12, 13]. The Properd@adhal Decomposition (POD) method (see
[9, 11]) allows in some cases to extract an accurate smalltsasis in order to construct a reduced-order
computational model of a nonlinear dynamical system, bist lasis has to be constructedposteriori
which means that a sufficiently rich nonlinear response did®tconstructed. Moreover, the POD basis is
only optimal for a given external load (or imposed displaeath

Recently, a new method has been proposed to construct aecduder computational model in linear struc-
tural dynamics for structures having numerous local elastbdes in the low-frequency band [14]. In this
method, a basis of the global displacements space and adbésislocal displacements space are calculated
by solving two unusual eigenvalues problems. The elemdrisese two bases are not constituted of the
usual elastic modes. The eigenvalue problem, allowing & lodishe global displacements space to be con-
structed, is constructed by introducing a kinematic redador the kinetic energy while the elastic energy
is kept exact. In this paper, this method will be used to consta basis of the global displacements space
and then to deduce the reduced-order computational mode¢ afonlinear dynamical structure. Therefore,
the contributions of the local displacements of the stmgctubserved on the stiff part are neglected in the
research presented here.

In Section 2, the method developed in [14] is summarized hadtonstruction of the reduced-order com-
putational model is presented. In Section 3, an industgplieation is given. This application concerns the
nonlinear transient response of a row of fuel assemblies.

2 Construction of the reduced-order computational model

In this Section, we first summarize the method introducedL#] {vhich allows a reduced-order computa-
tional model to be constructed for structures having a higdahdensity in the low-frequency range.Although
this method allows both a basis of the global displacemgratsesand a basis of the local displacements space
to be constructed, we will only summarize the constructibiine basis of the global displacements space (as
previously explained, the contributions of the local disgiments of the structure observed on the stiff part
are neglected).

2.1 Reference non-linear computational model

We are interested in predicting the transient responsesiuiea-dimensional nonlinear damped structure,
with localized nonlinearities, and occupying a bounded @iorf2. The real-valued vectdd(¢) of them de-
grees of freedom (DOFs) of the computational model conduwith the finite element method, is solution
of the following matrix equation,

MU (¢) + DJU() + [KU(t) + FN-(U(#), U(2)) = F(t) ¢ €]0,T], @
with the initial conditions
U(0)=0(0)=0 |, (2

in which [M], [D] and [K] are respectively thém x m) positive-definite symmetric real mass, damping
and stiffness matrices, wheR'-(U(t), U(t)) is the vector of the nonlinear forces induced by the locellize
nonlinearities and wher&(t) is relative to the discretization of the external forcesually, the nonlinear
matrix equation (1) is reduced using the elastic modes dfttear part of Eq. (1). These modes are therefore
such that([K] — \[M]) = 0. Since it is assumed that there are numerous local elastitesnand since
there are nonlinear forces, one would need to calculatetarhignber of elastic modes in order to obtain a
good convergence for the nonlinear dynamical responseeitoth-frequency range. The use of a basis of
the global displacements space circumvents this difficulty



2.2 Kinematic reduction of the kinetic energy

The methodology proposed in [14] consists in introducingrefatic reduction of the structural kinetic
energy. In a first step, the domaihis partitioned inton ; disjoint subdomain$?;. In a second step, this
decomposition is used to construct the projection line@raipru — A" (u) such thath” (A" (u)) = h"(u)
and defined by

njy 1
h(u)}(x) = 1o, () — ) u(x)dx’, 3
{<>}<>j§jlgj<>mj/ﬂjp<><> ©
inwhichz — 1q, (z) = 1if zisin Q; and= 0 otherwise, wheren; is the total mass of subdomaity and
wherep(x) is the mass density. This operator carries out an averadee aigplacements with respect to the
mass density in each subdomain (kinematic reduction). \&e ititroduce thém x m) matrix [H"] relative
to the finite element discretization of the projection opara” defined by Eq. (3), such d&l"]?> = [H"].
Then, the(m x m) projected mass matrifM"] is constructed such thav1"] = [H"]7[M][H"] with the
following property

M") = [M][H"] = [H"]"[M] . (4)

The rank of mass matrigVl"| is 3n ;.

2.3 Basis of the global displacements space.

The basis of the global displacements space is made up obli@as Y in R™ of the generalized eigen-
value problem
[K]op? = M[M']e?, (5)

in which the stiffness matrix is kept exact while the massrixwas projected. This generalized eigen-
value problem admits an increasing sequencarof positive global eigenvalued < \{ < ... < )\gm,
associated with the finite family of algebraically independeigenvectorgf, ..., %4, }. The family
{pf,..., <p§m} spans a subspace of dimensimn; defined as the global displacements space. In general,
this family is not made up of elastic modes. The computatibthe eigenvectors is carried out using an
adapted subspace iteration algorithm. This algorithmdatiee assembly of matrigvl"] which is a full ma-

trix. If needed, a basis of the local displacements spacealsanbe constructed and complete the basis of

global displacements (see [14]).

2.4 Reduced-order computational model

The reduced-order computational model is obtained usiagptbjection ofU(¢) on the subspace d&™
spanned by the familf?, ..., ¢, } of real vectors associated with the first eigenvalues) < A{ <
... < A, suchthan, < 3n; < m. Let[®9] = [¢]...¢n,] be the(m x ny) real matrix whose columns
are the vectorg?, . .., @7, . Then, then,-order approximatior,,, (¢) of U(t) is written as

Un, (t) = Z ©iq;7(t) = [29]¢?(t) (6)
j=1

inwhichg9(t) = (¢](¢), ..., q,(t)). The vectorg?(t) is solution of the following nonlinear reduced matrix
equation
[M]qo(t) + [Dlg?(t) + [K]g?(t) + fM" (a7 (t), ¢ (1)) = f(t) .t €)0.T], @)

with the initial conditions

q’(0) = ¢9(0) =0 , (8)



in which [M], [D] and K] are the(n, x ny) generalized mass, damping and stiffness matrices defined by
[M] = [®@9]TM][@]9, [D] = [@9]T[D][®])9 and[K] = [®9]T [K][®)9, wheref(t) = [®9]TF(t) is the vector

of the generalized forces and whef8-(q9(t), q9(t)) = [®9]TFN-([®]9¢9(t), [®]9q9(t)) is the vector of

the generalized nonlinear forces. The dynamical systemargvaterested in this paper are made up of few
eigenvectors of global displacements. Consequently,ifieecs the nonlinear reduced-order computational
model defined by Egs. (6) to (8) is very small.

3 Application

In this Section, we present an industrial application of miethodology which consists in the dynamical
analysis of a row of seven fuel assemblies with possibilitgallisions between grids and submitted to a
seismic loading.

3.1 Reference computational model

(i)-Fuel assembly

A fuel assembly is a slender structure which is made up6dfflexible fuel rods,25 stiff guide tubes and
10 stiff grids which hold the tubes in position (see the finitereént mesh in Fig. 1). The guide tubes are
soldered to the grids while the fuel rods are fixed to the dridsprings. The longitudinal (vertical) direction
is denoted byz. The transverse directions are denotedrbgndy. The fuel rods and the guide tubes are

Figure 1: Finite element mesh of a fuel assembly: Grids l|dael rods (blue) and guide tubes (red). Left
figure: Complete fuel assembly. Right figure: Grids and gtithes only.

modeled by Timoshenko beams and the grids are modeled iy edelinents. The end of guide tubes are
fixed to the containment building. All the displacementddi@ing y-direction are set to zero. For a single
fuel assembly, the finite element model hids844 elements and49, 580 DOFs. There ar&, 364 elastic
modes in the banf,400] Hz. The eight first elastic modes are ensemble modes (allithetisre moves

in phase), the corresponding eigenfrequencies3&®Hz, 6.31 Hz, 9.78 Hz, 13.5 Hz, 17.6 Hz, 22.2 Hz,
27.3 Hz and32.7 Hz. Beyond these ensemble modes, there are numerous last ehodes (only a part
of the structure moves) and a few global elastic modes (alktructure moves but not in phase). Tié
elastic mode (global) and tl®" elastic mode (local) are plotted in Fig. 2.

(i)-Row of assemblies

Concerning the linear part, the row of assemblies is madé sgven fuel assemblies. The fuel assemblies are
linked each to the others by the rigid containment buildingunich an homogeneous seismic displacement
is imposed. The gap between two assembliex(8 x 1072 m. The gap between the leftmost assembly

and the containment building9 x 10~3 m. The gap between the rightmost assembly and the containmen



mode 2 mode 20

Figure 2: Left:2"d elastic mode (global). Rigt20*™" elastic mode (local).

building 1.9 x 10~2 m. The mesh of the finite element model is plotted in Fig. 3. fiinée element model

Figure 3: Finite element mesh of a row of fuel assembliesd&tblue) and guide tubes (red). The fuel rods
are not plotted.

has313,908 elements and, 147,060 DOFs and there argl, 548 elastic modes in the barld, 400] Hz
(each mode of a single fuel assembly is reproduced seves)time

The possible contact grid/grid and grid/containment akenianto account by introducing60 elastic stops.
Each grid has a left elastic stop and a right elastic stopcdhéainment building hat) elastic stops face to
rightmost assembly grids and elastic stops face to leftmost assembly grids.

3.2 Construction and validation of the reduced-order computational model

In this section, a single fuel assembly is considered. Tlsedtep consists in the construction of the sub-
domains(; introduced in Section 2.2. Since we want to filter the locahsverse displacements, the sub-
domains are chosen &80 slides of equal thickness. The eigenvectqafjsare then computed following the



method introduced in Section 2.3. In the frequency biind00] Hz, there are35 eigenvectors. The'™"
eigenvector is plotted in Fig. 4. In the baftd400] Hz, the number of eigenvector3s is much lower than

mode 9

Figure 4:9'" eigenvector.

the number of elastic mode%,864). The accuracy of the reduced-order computational modmlldhbe
analyzed by comparison with the reference computationaethdiowever, the nonlinear transient response
of the reference computational model is very difficult toccddte (the presence of localized nonlinearities
requires the use of a very small time step for the integrasiciheme). Consequently, the accuracy analy-
sis is carried out by comparing the linear frequency respdmsctions of the reduced-order computational
model without localized nonlinearities, with the frequgmesponse functions of the reference computational
model without localized nonlinearities. Neverthelesspravergence analysis of the nonlinear responses with
respect to the number of global eigenvectors will be caroietin Section 3.3. A Rayleigh damping model
is used and is constructed for the frequend&é$z and400 Hz with a damping rati@.04. A point load is
applied to the nodé .y which is located at the middle of tHg" grid (from bottom to top). This load is
equal tol N in the frequency banf , 400] Hz following x-direction. The containment building is fixed. The
measurement nodB,,s is located at the middle of th&é" grid. The frequency response functions at points
Pops and Peyc are plotted in Figs. 5 and 6. These figures show a very goodawcwof the reduced-order
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Figure 5: Modulus of the frequency response function of tbeekeration inz-direction at pointPyps
reduced-order computational model (solid line) and refeeecomputational model (dashed line).



10 ¢

=
o
s
;

,_\
ol
&

Acceleration

-4

10

0 50 100 150 200 250 300 350 400
Frequency (Hz)

Figure 6: Modulus of the frequency response function of tbeekeration inz-direction at pointPeyc:
reduced-order computational model (solid line) and refeeecomputational model (dashed line).

computational model in the frequency bdifd 100] Hz. In the frequency band00 , 300] Hz, the accuracy
of the reduced-order computational model is less. Thesd dmaations are due to the local contributions
in the neighborhood of the observation points, which ardatan into account when the basis of the global
displacements space is used to construct the reducedemuagrutational model.

3.3 Nonlinear transient response of a row of fuel assemblies

Each fuel assembly of the row is decomposed @6 slices yielding700 subdomains. For the band
[0,400] Hz, the reduced-order computational model is construcigu245 eigenvectors (instead 61, 548
elastic modes which would be required with a classical madalysis). The displacement of the contain-
ment building followingz-direction is imposed and is denoted by(t). We are interested in the nonlinear
transient relative displacement of the row of assemblidse damping ratio is oveld.3 for the seven first
eigenmodes and the damping ratio is aroQridfor the other eigenmodes. The relative displacement vector
is solution of Egs. (6) to (8) withf (t) = —[®9]7 [M][W]i,(t) in which [W] is a vector whose components
are equal tal for all the DOFs corresponding to the displacements folhgui-direction and are equal to
zero for the other DOFs. The functiagn— (¢) is plotted in Figs. 7. The nonlinear relative response is
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Figure 7: Functiort — Z(t).



calculated in the interval timf@ , 19.48] s using an explicit Euler integration scheme with an intégnetime

stepl0—> s. The observation poir?, belongs to thast assembly (from left to right), and is located at the
middle of6'" grid (from bottom to top). For poinP;, the relative transient displacements is plotted in Fig. 8.
The convergence of the contact forces between grids (remliforces) with respect to the size of the global
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Figure 8: Relative transient displacement followinglirection for observation poing;.

basis are analyzed for each elastic stop through the funatjo— fOT Fy (t;ng)?dt in which Fy (t,n,) is

the transient normal force calculated usingglobal eigenvectors. The convergence function for péint

is plotted on Fig. 9. From this figure, it can be seen that a gmowergence of the nonlinear response is
reached.
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Figure 9: Convergence of the contact force for observatmntP;.

4 Conclusions

We have presented the construction a reduced-order cotigmatamodel for nonlinear dynamical structures
in presence of many local elastic modes in the low-frequeaoge. This method is based on the use of a



basis of the global displacements space. The constructikedted-order computational model has a small
dimension and allows the displacement of the stiff part efdtructure to be predicted with a good accuracy.
The methodology has successfully been applied to a complistrial dynamical system for which the
computational model has millions of degrees of freedom amdarous localized nonlinearities. The results
show that the nonlinear dynamical response can be calduldte a good accuracy and a good convergence
using only245 eigenvectors.
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