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ABSTRACT for uncertain rigid bodies in the context of the multibody dy
namics. Concerning the modeling of uncertainties in mattip

This research is devoted to the construction and the idedfnamical system, a very few previous researches have been c
fication of a prior stochastic model for an uncertain RigicdiBo ried out. These researches concerned parameters whiafibdesc
(RB) of a multibody dynamical system (MDS). The methods dthe joints linking each rigid body to the others and the exter
veloped in the context of the multibody dynamics analyses amal sources (sed ]2, 3, 4, 5]), but not rigid bodies themselves.
commonly used in many application fields (Automotive, railn the field of uncertain rigid bodies, a first work has been pro
way vehicles, launch vehicle,) for which the required aacyr posed in 6, 7], in which the authors take into account uncertain
makes the modeling and the quantification of uncertainties uigid bodies for rotor dynamical systems using the nonpatam
avoidable whenever they are not negligible. In some pdaticuric probabilistic approachs] 9] consisting in replacing the mass
cases, rigid bodies can not be considered as determiniic @nd gyroscopic matrices by random matrices.

model of passengers, of a fuel tank,). In_ this context_, We Pro  |n this paper, a general and complete stochastic model is
pose a construction of a random RB using the maximum ef,s4icted for an uncertain rigid body. The mass, the cente
tropy principle. Therefore the mass, the center of mass&d &¢ 255 and the tensor of inertia which describe the rigid/bod
tensor of inertia of thg cIassma[ deterministic rigid bag re- -are modeled by random variables. The prior probabilityrelist
placed by random variables which allows the random dynamiggions of the random variables are constructed using the-ma
response of the MDS to be calculated. The PD_F of th_ese Alim entropy principle10] from Information Theory 11]. The
dom variables depend on some parameters which are identiigfle ator of independent realizations correspondingettior
using experimental responses of the MDS. The methodology i apility distributions of these random quantities aesed-
presented and is validated through an application. oped and presented. Then, several uncertain rigid bodiesea
linked each others in order to calculate the random respoinse
1 INTRODUCTION an uncertainlmultibody dynamical system. The stochastid-mu.
body dynamical equations are solved using the Monte Carle si

This study is devoted to the construction of a probabilistit@tion method.
model of uncertainties for a rigid multibody dynamical gyat Section? is devoted to the construction of the mean model
made up of uncertain rigid bodies. In some cases, the mass fdisthe rigid multibody dynamical system by using the cleaki
tribution inside a rigid body is not perfectly known and mhbst method. In Sectiof3, firstly, we propose a general probability
considered as random (for example, the distribution of grassmodel for an unconstrained uncertain rigid body and segondl
gers inside a vehicle) and therefore, this unknown masstilist the uncertain rigid multibody dynamical system is obtaibgd
tion inside the rigid body induces uncertainties in the made joining this unconstrained uncertain rigid body to the otfigid
this rigid body. Here, we propose a new probabilistic modglibodies. The last section is devoted to an application wiiligi



trates the proposed theory. which produce forces between the bodies. In this paper, only
n. holonomic constraints are considered. Lebe the vector
2 MEAN MODEL FOR THE RIGID MULTIBODY in R®" such thatu = (ry,...,fn,,S1,...,Sy,) in whichs, =
DYNAMICAL SYSTEM (a4, Bs, i) is the rotation vector. The, constraints are given by
n. implicit equations which are globally written ggu, ¢t) = 0.
In this paper, the usual model of a rigid multibody dynanthe (67, x 6n;) mass matriXM| is defined by
ical system for which all the mechanical properties are kmow i,
will be called the mean model (or the nominal model). This sec [M] = [ [M7] OS ] , (4)
tion is devoted to the construction of the mean model for @rig 0 [M*]
mu_lt|body dynamlgal systemj This mean model is construc%ﬂere the(3ny, x 3n,) matricesM"] and[M*] are defined by
asin ([L2, 13]) and is summarized below.
my|Is] - 0 [Ji]--- 0
2.1 Dynamical equationsfor arigid body of themulti- 577 S :  [Mf] = ST (5)

body system 0 - L) 0 - [,

Let RB; be the rigid body occupying a bounded dom@in |

with a given geometry. Let be the generic point of the thred" which[I3] is the(3 x 3) identity matrix. The functiodu(t) , €
dimensional space. Let= (1, z2,z3) be the position vector [0, 77} is then the solution of the following differential equation

of point¢ defined in a fixed inertial fram@ , xo 1, 20,2 , %0,3), see [L3))

such t.h_aix = 52 The rigid body class is then defined by three [ [A1] [, ]7 al q—k ©)
quantities. [ed] (0] AT g [Gedu ]

(1) The first one is the mass; of RB; which is such that

_ with the initial conditions
= o0 W uO) =uy . A0 =vo ™)

wherep(x) is the mass density. in which k(u) is the vector of the Coriolis forces and where

(2) The second quantity is the position veatpof the cen- [#u(U(t), D)l = dpi(u(t),1)/9u;(t) andg, = dp/0t. The
ter of masg;, defined in the fixed inertial frame, by vectorq(u, U, t) is constituted of the applied forces and torques

induced by springs, dampers and actuators. The vextor
is the vector of the Lagrange multipliers. Equati@) ¢an be
solved using an adapted integration algorithm (see foaircst
[14)).

(3) Let (Gi,z;,,7},,2;4) be the local frame for which

the origin isG; and which is deduced from the fixed fram@ STOCHASTIC MODEL FOR THE DYNAMICAL
(0,201 ,%0,2,%0,3) by the translatior(ﬁ and a rotation de- SYSTEM WITH UNCERTAIN RIGID BODIES
fined by the three Euler angles, 3; and~;. The third quantity
is the positive-definite matrik/;] of the tensor of inertia in the
local frame such that

ri—/g;iXp(X)dX . (2)

mg

Firstly, a stochastic model for an uncertain rigid body of
the multibody dynamical system is proposed and seconddy, th
stochastic model for the multibody dynamical system with un

T ) N 3 certain rigid bodies is constructed joining the stochastadel
[ilu= /Q XX up(X)dx ., VueR o (3) of the uncertain rigid bodies.

in which the vectox’ = (}, x5, x;3) of the components of vec-3 1 - gtochastic model for an uncertain rigid body of
torG;¢ are givenin(G; , z; , , @} 5, 77 3). Inthe above equation,  the multibody dynamical system
u x v denotes the cross product between the veat@isdv. } )

The properties of the mean model (or the nominal model)

of the rigid body RB are defined by its mass;, the position
vectorr, ; of its center of masér; at initial timet = 0 and the
matrix [J,;] of its tensor of inertia with respect to the local frame

The rigid multibody dynamical system is made upmef (G, .z}, ,z;,,2}3). The probabilistic model of uncertainties
rigid bodies and ideal joints including rigid joints, jointwith for this rigid body is constructed by replacing these thrae p
given motion (rheonomic constraints) and vanishing jo{frese rameters by the following three random variables: the ramdo
motion). The interactions between the rigid bodies arézedl massM;, the random position vectdr, ; of its random cen-
by these ideal joints but also by springs, dampers or aasiater of massG; at initial time¢ = 0 and the random matrijJ;]

2.2 Matrix model for the rigid multibody dynamical
system



of its random tensor of inertia with respect to the randonaloc

frame (G, , 2}, ,2},,2; ;). The probability density functions(ii) Maximum entropy principle

(PDF) of these three random variables are constructed tisingThe probability density functioa — p, (a) of random vari-

maximum entropy principle (see.f], [10]), that is to say, in ableR, ; is then constructed by maximizing the entropy with the

maximizing the uncertainties in the model under the coirgBa constraints defined by the available information in B]). The

defined by the available information. solution of this optimization problem depends on two parame
ters which are, ; and vector-valued parametey and is such

3.1.1 Construction of the PDF for therandom mass  that

. . . . -h) — —<AX,

(i) Available information Dr, (&h)=1p,m (@ Coe shas 9
Let E{.} be the mathematical expectation. The available infolrhe positive valued parameték, and vector are the unigue
mation for the random mas¥/; is defined as follows. Firstly, o 01 of the equations
the random variablé/; must be positive almost surely. Sec-

ondly, the mean value of the random mass must be equal Co [p,me M da=1 (a)

to the valuem, of the mean (or nominal) model. Thirdly, as Co fDi(h) ae~M>da=r,,; . (b) (10)
it is proven in P], the random mass must verify the inequality

E{M;*} < +oc0in order that a second-order solution exists for

the stochastic dynamical system. In addition, it is alsov@no (iii) Generator of independent realizations

that this constraint can be replaced|}{log M, }| < +oc. The independent realizations of random variaRlg;, must be
(if) Maximum entropy principle generated using the constructed PRF . Such a generator

The probability density function + p,, (1) of the random can be obtained using the Monte Carlo Markov Chain (MCMC)
variable M; is constructed by maximizing the entropy undenethod (Metropolis-Hastings algorithrhg]).

the constraints defined above. The solution of this optimiza

tion problem is the PDF of a gamma random variable defined9n 3 Random matrix [J;] of the random tensor of in-

10, +o0[. This PDF depends on two parameters which are the  grtia.

nominal valuen, and the coefficient of variatiod), of the ran- ) . ]

dom variableV/; suchthat,, = o,, /m, WhereJMf is the stan- In this subsection, the random matfik] of the random
dard deviation of the random variahld;. Therefore, the PDF tensor of inertia with respect {63, , z; , , z; , , 2; ) is defined

of the random mass is completely defined by the mean v&liuea”d an algebraic representation of this random matrix is con
and by the dispersion parameter . ~ structed. The mass distribution around the random center of
’ massG; is uncertain and consequently, the tensor of inertia is
. . also uncertain. This is the reason why the mdt/ix of the ten-
3.1.2 Construction of the PDF for therandom position sor of inertia of the mean (or nominal) model with respect to

Vector Ro,; (G, .z ,2} 5,z 3) is replaced by a random matrj¥;] which
In this subsection, the PDF of the random initial positiofi constructed by using the maximum entropy principle.
vectorR, ; of the center of mass of RBat initial time¢ = 0 is  We introduce the positive-definite matfi¥;] independent of;

constructed. such that

1 [tr([/i])
(i) Availableinformation [Z:] = o {T [£s] = [Ji] ¢ - (11)
The position vector, ; of the center of mas&; at initial time ]
¢ = 0 of the mean (or nominal) model is given. However, thE'€n[/:] can be calculated as a function[af],

real position is not exactly known amg ; only corresponds to a [7:] = mi{tr((Z:) [I3] — [Z]} . (12)
mean position. Consequently, there is an uncertainty atheut _ - o
real position and this is the reason why this position is nretle It can be proven thdtZ;] is positive definite and that each

by the random vectoR, ;. Some geometrical and mechanicdlositive definite matrix.J;] constructed using Eq1g), where
considerations lead us to introduce an admissible dodaiof [Z:] is @ given positive definite matrix, can be interpreted as the
random vectoR, ;. We introduce the vectdr of the parameters Matrix of a tensor of inertia of a physical rigid body for whic
describing the geometry of domaip;. In addition, the mean the mass id (see [L9)).

value of the random vectdR,; must be equal to the value  The probabilistic modeling);] of [J;] consists in introduc-
ry,; of the mean (or nominal) model. Therefore, the availabieg the random matrifZ;] and in using Eq.X2) in whichm; is

information for random variablR, ; can be written as replaced by the random variahlé; and wherg Z;] is replaced
by [Z,]. We then obtain
Ro: € D;(h) a.s. ,
oo . Q 2= o {0 (1) - oy (13
E{Ro} =1y, € Di(h) . (b) M g U3 i



[3:] = M {tr([Z:]) [I5] — [Z4])} - (14) and the symmetric real matrix] is a Lagrange multiplier rela-
tive to the third constraint defined by EQ.9. This probability
density function is a particular case the Kummer-Beta matri

(i) Available information concerning random matrix [Z;] variate distribution (seelf], [17]) for which the lower bound is
Let us introduce (1) the nominal val(i,] of deterministic ma- a zero matrix.

trix [Z;] such thatZ;] = (1/m;){tr([.J;])/2[15] — [J;]} and Parameter€'a,, \;, A\, and matrix[u] are the unique solu-
(2) the upper boundz;™*] of random matrixZ;]. Then, the tion of the equations

available information fofZ;] can be summarized as follows,

. E{lys (G} =1
[Z;] e M3 (R) as. , E{[G:]} = [I5] 3 (19)
{[ZzMe] - 2]} e Mf (R) a.s. | Eflog(det[Gi])} = Cf -,
E{log(det([G7"] = [Gi]))} = CF
E{[zi]} = [z)] (15)
E{log(det[Z:]))} = C! IC!] < +00 For fixed values of\; and\,,, parameter€’s, and[u] can
v ! ’ be estimated using Eql9). In Eq. (19), since the parameters
Eflog(det([Zi™*] = [2:]))} = C} , [C}| <400 . ¢! andC*' have no real physical meaning, the paramelgrs

) ) ) and)\,, are kept as parameters which then allows the "shape” of
For more convenience, random mafd] is normalized as fol- 1,6 ppF to be controlled. If experimental data are availédie

low. Matrix [Z;] being posTitive definite, its Cholesky decomg,e responses of the dynamical system, then the two paresmete
position yields|Z;] = [Lz,]" [Lz,] in which[Ly ] is an upper ) and\, can be identified solving an inverse problem. If
triangular matrix in the setl;(R) of all the (3 3) real matrices. gyparimental data are not available, these two parametevs a
Then, random matrifZ;] can be rewritten as a sensitivity analysis of the solution to be carried out with
respect to the level of uncertainties.
i) = [Ly)" [Gi] L] (16)

I_(iii) Properties for random matrix [J;]

It is proven in [L5] that using Eq. 14) and the available infor-

mation defined by Eq.16), the following important properties

in which the matriXG,] is a random matrix for which the avai
able information is

[Gi] e Mf(R) a.s. |, for random matri{J;] can be deduced,
{[GP**] - [Gi]} e M3 (R) a.s. Cer(3)) 1] — (3]} e M (R) a5,  (a)
E{[Gil} = 5] (17) {{97) - %]} e MF (R) a5, ®
Ellogdet(Gi)} = €', ICY| <400 . BRI} = 1) . @ &
E{log(det([GT*"] — [Gi]))} = O, |C] < 400, (N < =20 < 0} = B{[3]7 "} < +oo, (d)

Max

in which the random matrifJ]"**], which represents a random

; ; U _ ) u o )
inwhichC;” = C; —log(det|Z,]), C}"" = Cif ~log(det[Z;]) and pper bound for random matr4;], is defined by

where the matriG"**] is an upper bound for random matri
(Gi] andis defined b§e7T] = (L")~ [£7] [Lz]™". ) = M (20 [B] - (2]} . (2))

(ii) Maximum entropy principle It should be noted that Eq2@Q-a) implies that each realization
The probability distribution of random matri{G;] is con- of random matrix[J;] corresponds to the matrix of a tensor
structed using the maximum entropy principle under t@ inertia of a physical rigid body. In addition, this equati
constraints defined by the available information given %p“es that random matnx[\]l] is almost sure|y positive
Eq. (17). The probability density functiomc,([¢]) with definite. Eq. 20-b) provides a random upper bound for random
respect to the volume elemel® of random matriXG;] is then matrix [J;]. Eq. 20-c) corresponds to a construction for which

written as the mean value of random matrj¥;] is equal to the nominal
. value[J,]. Finally, Eq. Q0-d) is necessary for that the random
pc)([G]) = IM;(R)([G]) X JIM;(]R)([GTM] —[G]) x Ca: solution of the nonlinear dynamical system be a secondrorde
x (det [G])_M x (det ([GT*] — [G]))_k“ x e~ UMD | stochastic process.
(18)

in which the positive valued paramet€f,;, is a normalization (iv) Generator of independent realizations for random ma-
constant, the real parametevs< 1 and ), < 1 are Lagrange trix [J;]
multipliers relative to the two last constraints defined oy @7) The generator of independent realizations of random matrix



[G;] is based on the Monte Carlo Markov Chain (MCMC4.1 Description of the mean model

(Metropolis-Hastings algorithm1p] with the PDF defined by o ) ] ] o

Eq. (L8). Then, independent realizations of random ma@§ 1 he rigid multibody model is made up of five rigid bod-
are obtained using EqL6). Finally, independent realizations of€S @nd six joints which are described in the fixed frame
random matri¥J;] are obtained using EqL4) and independent (O» Zo,1; Z0,2, %0,3). The plan defined byO, zo,1, z0,2) is iden-

realizations of random masd;. tified below as the "ground”. The gravity forces in thg s-
direction are taken into account.
(i) Rigid bodies

3.2 Stochastic matrix model for a multibody dynami-
cal system with uncertain rigid bodiesand itsran-
dom response

In the initial configuration, the rigid bodie®b1, Rb2, Rb3 and
Rb4 are cylinders for which the axes follow thg s-direction.
In the initial configuration, the rigid bodyrb5 is supposed to
In order to limit the developments, it is assumed that ontye symmetric with respect to the plangs5, z¢ 1, z0,2) and
one of then, rigid bodies denoted by RBof the rigid multi- (G5, x¢,1, z,3) in which G5 is the center of mass dtb5.
body system is uncertain. The extension to several unoeri@i) Joints
rigid bodies is straightforward. Let thén;, random coor- — The jointGround-Rb1 is made up of a prismatic joint follow-
dinates be represented by ti#é ™ -valued stochastic processng z, 3-direction. The displacement following, ;-direction,
U= (Ry,..,Ry,,Si,...,S,,) indexed by[0, T] and let then. denoted byu1(¢), is imposed. Displacementl(¢) is zero in
random Lagrange multipliers be represented byRhe-valued the range[0,1 x 10~3]s, is linearly increasing in the range
stochastic process indexed by[0, T']. The deterministic Eq6) [1 x 1073,6 x 1073]s and is equal tol0~2 m in the range

becomes the following stochastic equation [6 x 1073,3 x 1072]s. The jointGround-Rb2 is a prismatic

T . joint following x 3-direction. The displacement following 3-

[ M] - [e] ] [ U } = [ 4 q—lfi : , (22) direction denoted by:2(t), is imposed. Displacementl(t) is
[S‘ﬂ [0] A TatPr T [E‘Pu] U zero in the rangé0, 1.1 x 10~?]s, is linearly increasing in the

. range[l.1 x 1072,1.6 x 10~2]s and is equal td0~2 m in the

Uuoo)=Ug , UW0)=vy , a.s. (23) rangg1.6x 1072, 3 x 10~2]s. The displacement followingy ;-

in which the vector Uo _ directior_1 i_s unconstrained. _

(Fots e sRous s FomsSots -2 Som) IS random due to _ The joints Rb1-Rb3 and Rb2-Rb4 are constituted of 6D

spring-dampers.

the random vectoR, ;. For all given real vecton, the vector . e . .
K (u) of the Coriolis forces is random due to the random matrix Finally, the joints/tb3-1tb5 and Jtbd- b5 arey »-direction

[J;]. The random mass matrj¥] is defined by revolute joints.

M] = { [N(I) ) [N?S] ] : (24) 4.2 Random response of the stochastic model
in which the (3n, x 3n,) random matrice$M”] and[M]* are Rigid body ib5a is considered as uncertain and is there-
defined by fore modeled by a random rigid body. As explained in Section
3, the elements of inertia of the uncertain rigid Bodih5
m [13] _ 0 are replaced by random quantities. The fluctuation of the
i ' response is controlled by four parametéys , h, A, and A,,.
M"] = : M;[I3) : » (25) A sensitivity analysis is carried out with respect to theserf
0 - - parameters. Statistics on the transient response areadstim
ny

using the Monte Carlo simulation method with0 independent
realizations. The initial velocities and angular velastiare

(Al 0 zero. The observation poift,,, belongs taRb5.
M =1 i 5 ' (26) (i) case 1: M; is random,Rys is deterministic andJs]
0 I o] is deterministic.
ny

We chooseé,, = 0.5. The confidence region, with a probability
Random Egs.42) and @3) are solved using the Monte Carldevel P. = 0.90, of the random acceleration of poift; is

simulation method. plotted in Fig.1. It can be noted that the acceleration is sensitive
to the mass uncertainties.
4 APPLICATION (ii) Case 2:M; is deterministicRy 5 is deterministic ands] is
random.
In this section, we present a numerical application whitkle choose\;, = —5 and A\, = —5 for random matrix[Js].
validates the methodology presented in this paper. The confidence region, with a probability level = 0.90, of
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Figure 2. Random transient acceleration of poifif,;, Case 4: confidence region (upper and lower thin solid lines), ntean
2: confidence region (upper and lower envelopes), mean ggonse (thick solid line) and response of the mean modehédas
sponse and response of the mean model are superimpesed; jine); =z, s-acceleration (left figure) and, ;-angular accelera-
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ure).

and the random tensor of inerfid;).
the random acceleration of poift,; is plotted in Fig.2. We
can remark, as it was expected, that the angular acceleratios CONCL USION
sensitive to uncertainties on the tensor of inertia.
(iii) Case 3: M5 is deterministic,Rg 5 is random andJs] is We have presented a complete and general probabilistic
deterministic. modeling of uncertain rigid bodies taking into account ak t
The domain ofRy 5 is supposed to be a parallelepiped whidknown mechanical and mathematical properties of a rigid/bod
is centered at point0, 0, 0.55) for which its edges are parallelThis probabilistic model of uncertainties is used to camdtthe
to the directionse, 1, o2 andzy 3 and for which the lengths stochastic equations of uncertain multibody dynamicétiesys.
following these three directions are respectivel§, 0.2 and The random dynamical responses can then be calculatede In th
0.02. The confidence region, with a probability level = 0.90, proposed probabilistic model, the mass, the center of mass a
of the random acceleration of poiit,;,s is plotted in Fig.3. the tensor of inertia are modeled by random variables fockvhi
We can remark that the angular acceleration is sensitivethie prior probability density functions are constructethgghe
uncertainties on initial center of mass@b5. maximum entropy principle under the constraints definedlby a
(iv) Case 4:M5, Ry 5 and[Js] are random. the available mathematical, mechanical and design priegert
The values of the parameters of the PDF are those fixed in $everal uncertain rigid bodies can be linked each othersdiero
three previous cases. The confidence region, with a pratyabiio obtain the stochastic dynamical model of the uncertaitimu
level P. = 0.90, of the random acceleration of poift,;s is body dynamical system. The theory proposed has been illus-
plotted in Fig.4. It can be viewed that (1) the randomness drated analyzing a simple example. The results obtaineatlgle
the acceleration is mainly due to the randomness of méss show the role played by uncertainties and the sensitivitthef
(2) the randomness on the angular acceleration is mainlyalueesponses due to uncertainties on (1) the mass (2) the a#nter
the randomness of the initial positiéty 5 of the center of massmass and (3) the tensor of inertia. Such a prior stochastiemo



allows the robustness of the responses to be analyzed with[1@] Schiehlen, W.: Multibody Systems Handbook. Springer-
spect to uncertainties. If experimental data were availainl Verlag: Berlin, 1990.

the responses, then the parameters which control the leual o _ ) )

certainties could be estimated by solving an inverse siithal13] Schiehlen, W.: Multibody system dynamics: roots and
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1997.
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