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Abstract. At its building, the theoretical new railway line is suppdge be made of perfect
straight lines and curves. This track geometry is howevadgally damaged and regularly
subjected to maintenance operations. The analysis of tinesleirregularities is a key issue
as the dynamic behaviour of the trains is mainly induced leytthck geometry. In this con-
text, this work is devoted to the development of a stochasiaeling of the track geometry
and its identification with experimental measurements.eBam a spatial and statistical de-
composition, this model allows the spatial and statistizliability and dependency of the
track geometry to be taken into account. Moreover, it alldesgeneration of realistic track
geometries that are representative of a whole railway netwd hese tracks can be used in
any deterministic railway dynamic software to charactetize dynamic behavior of the train.

Keywords: Karhunen-Loéve Reduction, Polynomial Chaos Expansiond®a fields, Rail-
way Track Geometry.

1. INTRODUCTION

High speed trains are currently meant to run faster and ty ¢egavier loads, while
being less energy consuming and still respecting the dg@md comfort certification criteria.
To face these new challenges, a better understanding ofitdw&action between the dynamic
train behavior and the track geometry is of great concern.

The track-vehicle system being strongly non-linear, tiyisainic interaction has there-
fore to be analyzed not only on a few track portions, but ontrobshe running conditions
that, during its lifecycle, the train should be confronted t



In reply to these expectations, the measurement train IR0Bh&s been running con-
tinuously since 2007 over the French railway network, meaguand recording the track
geometry of the main national lines. Based on these expataheneasurements, this pa-
per develops a methodology to parameterize the physicpkepties as well as the variability
of the track geometry. This modeling allows the numericalegation of track geometries
that are physically realistic and statistically reprea@mé of a whole railway network. These
tracks can be used as the input of a deterministic railwawpnhya software to characterize the
stochastic dynamic behavior of the train.

2. STOCHASTIC MODELING OF THE TRACK GEOMETRY

This section is devoted to the description of the track gepmmeodeling.

2.1. Track parametrization

Let Ry = (O, Xo, Yo, Zo) be the inertial reference frame. A railway trafk of total
length S, is built up of two rails, which can be modeled Ry as two parallel curves. Let
Ot be the mean position of the new track (without irregulasitjevhich allows us to define
the track curvilinear abscissa< s < S*t, such that:

Stot
St = / V11Oxe(s) s, 1)

As it has been presented in Section 1, a double scale paraatiein is adopted in
this paper to characterize the track geometry. Each raitiposR,,,. (¢ refers to the left
rail whereas- refers to the right rail) is written as the sum of a mean posifiZ,,,, which
only depends on the curvilinear abscissjahe track gaugé”, the vertical and horizontal
curvaturescy, and cy and the track superelevatien, and a deviation towards this mean
positionI,,,, which only depends on the track irregularities vecxor

RE/T(S) IM[/T (S>+If/r (8) (2)

The irregularities appearing during the track lifecycle af four types (see Figute 1):
lateral and vertical alignment irregularitie§ and.X, on the one hand, cant deficienci&s
and gauge irregularitie¥, on the other hand, such that:

My, (s) = Onr(s) £ %N(s), (3)
Ly (s) = {Xo(s) £ X(s)} B(s) + {Xi(s) + Xa(s)} N (s), (4)

where(Oxr(s), T(s), N(s), B(s)) is the Frenet frame. As the mean line description is chosen
at the building of a new railway line for economical and poét reasons, the present work
focus on the description of the modeling of track irregtiasivectorX = (X, X, X3, Xy).
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Figure 1. Parametrization of the track irregularities @ach rail, the mean position is repre-
sented in black, whereas the real position is in grey).

2.2. Theoretical frame

Let(©,C, P) be a probability space. L&t be the space of all the second-order random
variables defined of®, C, P) with values inR*, equipped with the inner produ¢t .), such
that for allU andV in H,

(U, V) = /@ U (0)v(0)dr) = E{U"V}, (5)

whereF {.} is the mathematical expectation.

In this paper, a local-global approach is introduced, wimigblies that the whole track
geometry7 of lengthS*™" can be seen as the concatenationdf independent track portions
of same lengtt, such thatS*™* = P S. The lengthS plays thus a key role in the modeling
procedure and has to be carefully chosen.

Therefore, we consider in this paper that track irregu&siectorX can be modelled
by a second-ordeéR?-valued stochastic proces6 = (X1, X,, X3, X,), indexed bys € 2 =
[0, S], whose realisations are almost surely in the Hilbert sga¢€, R*) equipped with the
inner product.., .):

(u,v) = /QuT(s)'u(s)ds, Vu,v € L*(,RY). (6)

It is assumed thaX is mean-square continuous, and that its mean vAIY& (s)}
is zero. From the experimental measuremerits, track portions{wl, e ,:r;”exp} of same
length S are extracted, which defines the maximum available infaondbr the stochastic
modeling. It has to be noticed that gathering all the irragtiés in the same vectaX, and
adopting a vectorial approach certifies that the inner deégecies between different irregu-
larity fields are accurately taken into account.



2.3. Truncated Karhunen-Loéve expansion

For all (s,s') € Q2 let [Rxx(s,s')] = E{X(s)X"(s")} be the autocorrelation
matrix of random fieldX. Under the asumptions abovig&x x| is continuous o) x ,
positive-definite and can be written as:

T
[Rxx(s,s')] = Z Mt (s) b (s), (7)
where ()., u*) is an orthonormal basis df?(Q2, R*) solution of the Fredholm equation (see
[1] and [2] for further details). The valuég are non-negative, and can be arranged in decreas-
ing order:\; > X\, > --- — 0. The truncated Karhunen-Loeve expansion of the stochastic
processX is then:

N,
X(s) ~ X(s) = Y VA (s)m, (8)

k=1
= (X, u) (9)

Vi
whereN,, is related to a chosen value of the normalized mean-squeme er
T v Ek Ak

2B X -X,X-X)} ==k 2 10
‘ {( ’ >} E{(X,X)} (10)

Equations[(I7) and {8) imply that, far< k£, ¢ < N,:

E{nene} = ore. (11)

For a given value ofV,, it can be shown that projection bas{ia’“, 1<k< Nx} is
optimal in the sense that it minimizes errdramong the set of all thé/,-elements basis.
Moreover, thanks to this expansion, spatial and statistimaelations are clearly separated.
Whereas{u’f, 1<k< NJ;} emphasizes the predominant track irregularity spatiapsba
n = (m,---,nn,) Characterizes the statistical variability &F. In order to fully describe
track irregularity vectoiX, the statistical content af, and more specially its joint probability
density function (PDF),, has to be focused on.

2.4. Polynomial Chaos Expansion
From thev**P track portions{:pl, e ,:c”exp}, v**P independent realizations, that we
call {n(61),---,n(0.»)}, of n can be deduced as:

V1I<k< N, 1<i<v™ n(6;) = (wz,uk) ) (12)

=~
B

The fact that? { X (s)} = 0 and Eq. [(1IL) imply two constraints on joint PRE of 7:

E{n} =0, E{gn"} = [Iy,], (13)

where|ly, ]| is the N,-dimension identity matrix. Therefore, random variablgs..,y, are
statistically orthogonal, but are generally not indepennd@&wo kinds of methods can be used



to build such a PDp,,: the direct and the indirect methods. The indirect methdidsvahe
construction of the PDI,, of the considered random vectgrfrom a transformatioft of a
known PDFp; of a random vectog = (&, ..., £y, ) of given dimensionV, < N,

n=t(), pp="T(pe). (14)

The construction of the transformatiens thus the key point of these indirect meth-
ods. In this context, the isoprobabilist transformatiomshsas the Nataf transformation (see
[3]) or the Rosenblatt transformation (séé [4]) have alldwige development of interesting
results in the second part of the twentieth century but alidistited to very small dimen-
sion cases. Nowadays, the most popular indirect methodb@polynomial chaos expansion
(PCE) methods, which have been first introduced by Wienefojs§tochastic processes, and
generalized by Ghanem and Spanos ([6] [7]). The PCE is baseddirect projection of the
random vectof; on a chosen orthonormal badis.;, = {wa(é), o< NNH} of its probability
space, such that:

£ wa(&) = qu(gl) ® .3 Xazvg (gNg)7 (15)

wherex — X, (z) is the normalized polynomial basis of degreeassociated to the PDF,
of the random variabl€,, anda is the multi-index of the multidimensional polynomial b&si
element), (§).

In practical terms, the PCE projection has to be truncatea. tfuncation parameters
are usually introduced in this prospect: we defifyeas the maximal size of PCE gegrand
p as the maximal polynomial order of the elements of the onagbasids,,;,, which allows
us to approximate by its truncated PCE expansigfi'®s(N,, p):

n =" (Ny,p) = E{n} + > y'a(&) = E{n} + 4T (), (16)
acA,
A, = {a: (al,...,aNg |0 < |a] = Zaz<p} a7

whereN = (N, + p)!/(N,! + p!) — 1 is the dimension of4,. The values ofV, andp have
to be identified according to an analysis of convergencartie noticed that the conditions,
defined by Eq.[(1I3) can be rewritten as:

N (Ny,p) = [y 2(€), [y] € O = {[t] € Mw, v(R) | B][0]" = [In,]}.  (18)

Based on the maximum likelihood principle, and #f&" independant realisations
{n(6,), 1 <i < v=r} ofn, agood approach to identify PCE coefficient mafyixs to search
it as the result of the maximization problem:

ly] = argmax L ([y]), (19)
[y]€O



where/ is the evaluation of the log-likelihood function gf**(N,, p) at the experimental
points{n(¢;), 1 < i <v*P}. As L is non concave, random maximization algorithms have to
be used to compute numericallyj. The optimization problem, defined by E¢. (19) is now
supposed to be solved with the advanced algorithms desanid8] and [9].

2.5. Generation of a whole track geometry

Once projection basi%u’f, 1<k< NJ;} and PCE coefficient matrily] have been
identified, the irregularity vectaX can be expressed as:

N, N
VseQ X(s)x X (5,6) =Y > vV AuM iy ¥(6). (20)
k=1 j=1
The elements{u’“, 1<k < Nx} and matrix[y] are both deterministic, wheregs
Is a random vector whose distribution is known. Hence, eaefization of¢ leads us to
the computation of a realistic and representative trackrggry of lengthS. Thanks to the
local-global approach, described in Sectionl 2.2, a whaektigeometry of lengtty™t =
N7S (N7 can be smaller or greater thaf?), {X*'(s), s € [0, 5]}, can therefore be
constructed fromVy copiesX (¢€V), - -+, X (¢¥7)) of track irregularity stochastic process

{35(5,5), s € [O,S]}, such that:

V1<n<Np, VselS(n—1),5n], X*(s)=X(s,&™). (21)

However, for each particular realizatio¥*™*(©) of X", a particular attention has
to be paid at the interface between the different realinati® (¢V(0)), - - - , X (¢ (0)).
Indeed, these jonctions have to guarantee the continuttyeafrack irregularity vector and at
least the continuity of its first and second order spatiavdéves X “and X tOt, but also the
continuity of their statistical moments to avoid an artdigerturbation for the train dynamics.
This continuity at the jonction between track portions afgth S is therefore guaranteed by
drawingﬁ“’(@) according to its chosen distributioR;, and for all2 < n < Ny, by drawing
realizationi(")(@) according to the conditional probability

P (X(5.677(0)), X (5,67 1(0)), X (5,"(©)))
= P (" ~ B | X(0,6(0)) = X(5,"(6)), X(0,6(0)) = X(5,"(®)),

X(0,£(0)) = X(8,£"71(0))).
(22)
Therefore, the proposed stochastic modeling allows usergge realistic track ge-

ometries of lengtht™* = NS that are representative of the whole considered network.

3. APPLICATION

In this section, the previously described methodology [#iad to the characterization
of the track geometry variability of the French high speeé between Paris and Marseille.
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Figure 2. Representation ¢f, s') — [Rxx (s, s')]11

This study being confidential, only normalized values aesgnted.

3.1. Evaluation of the autocorrelation matrix

For this studyy®® = 1850 track irregularity measurementge?, 1 < i < v*P}, of
same lengths have been gathered, which allows us to estimate the autdaton matrix
[RXX (8, SI)] as:

VeXP

[Rxx(s,s) s Za: (23)

As an illustration, matriXRx x (s, s')]11 is represented in Figute 2.

3.2. Karhunen-Loeve expansion

The solutiongu, \) of the Fredholm equation were then computed thanks to agFinit
Element approach. Given acceptable values of truncatiothfomean-square erret (10%
in our study) of Eq.[(10) (for which evolution is represenite€igure 3), truncation parameter
N, of Eq. (8) is identified:

2 =10% <+ N, = 452. (24)

From Eq. [(I2), theP realisations{n(;), 1 <i < v**P} of n are computed. In
Figure[4, the PDF ofy, n, andns are represented and compared to the normal distribution.
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Figure 4. Representation of three marginal PDFg.of

It can therefore be noticed that the marginal distributioihg are non-Gaussian: the random
processX is thus non Gaussian. Its joint PDF has therefore to be pyoplearacterized.

3.3. Polynomial Chaos Expansion

As presented in the former sectian,is projected on a known truncated polynomial
basis, which is expressed with respect to two truncatioarpatersV, andp:

n= T,ChaOS(Ng?p) = [y]\Il (517 "'7£Ng) ) (25)

where[y] is solution of Eq.[(19).
The values ofV, etp have to be identified according to a convergence analysthidn

prospect, the followind.!-log error functiorerry, is introduced:

\V/l S k S Nxa errk(Ngap) = / |l0910 (pnk(x)) - lOglO (pnzhaos(x)> |df[', (26)

BI,,
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Figure 5. Convergence analysis for the PCE expansian of

where:

e BI,; is a bounded domain which has to be adapted to the valugs of

° Dy andpnzhaos are the PDFs of the elements andn{">*(N,, p) of random vectors;
andn$'aos (N, p) respectively.

The final values ofV, andp are then deduced from the convergence of the multidimen-
sional error functiomrr(N,, p), which is expressed with respect to the former unidimeraion
L!-log error functions:

(Ng,p) = arg min err(N;,p"), 27)
Ng.p*
Ng
err(N,, p) = Z erri(Ny, p). (28)
k=1

Figurel5 shows the convergence of this error. Hence, theation parameterd’, and
p are chosen respectively equabtand26, such that the size of the PCE bas\ig,is equal to
3654.

3.4. Generation of representative track geometries

According to Sectiofn 215, once deterministic mafrjkhas been computed, one can
generate track geometries that are realistic and repesenof the high speed line between
Paris and Marseille. As an illustrution, a particular egtraf length.S of complete track
geometry is represented in Figure 6. This graph has beeereenat abscissa = 35/2,
that is to say at the jonction between the two first track padi In order to allow a better
visualization of the results, the four components of thekraregularity vector have been
represented in the same graph, but their values have bdedshi
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Figure 6. Extract of a simulated track geometry.

4. CONCLUSIONS

At a time when the numerical power and the mechanical sinomatigorithms pre-
cision keep increasing, the introduction of the simulatiorthe railway maintenance and
certification would represent an important progress. Thmerical characterization of the
track geometry is therefore bound to play a key role in thidugion.

From a sample of track measurements, a complete methodtiaggnerate realistic
and representative track geometries has been described eiper.

Coupled with any railway software without requiring an e&scéo the sources codes,
these track geometries makes up a very useful databaselyaatize complex link between
the train dynamics and the physical and statistical progeedf the track geometry.
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