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ABSTRACT
This work presents a methodology for the construction of an

uncertain nonlinear computational model adapted to the static
analysis of a complex mechanical system. The deterministicnon-
linear computational model is constructed with the finite element
method using a total Lagrangian formulation. The finite element
nonlinear response is then considered as a reference determin-
istic solution from which a reduced-order basis is constructed
using the POD (Proper Orthogonal Decomposition) methodol-
ogy. The mean reduced nonlinear computational model is thus
obtained by projecting the reference deterministic solution on
this basis. The explicit construction of the mean reduced non-
linear computational model is proposed for any type of struc-
ture modeled with three-dimensional solid finite elements.A pro-
cedure for the robust identification of the uncertain nonlinear
computational model with respect to experimental responses is
then given. Finally, the methodology is applied to a structure for
which simulated experiments are given.

INTRODUCTION
In structural mechanics, a recent challenge of interest is to

have advanced numerical methodologies for constructing robust

∗Address all correspondence to this author.

computational models in order to efficiently predict the mechan-
ical behavior of structures. In numerous industrial applications,
the effects of geometrical nonlinearities induced by largestrains
and by large displacements have to be taken into account in
the numerical modeling. For instance, such nonlinear mechan-
ical behavior is exhibited in aeronautics by helicopter rotating
blades [1,2] or in automotive or aerospatial industries by slender
beams or thin shells [3–5]. In the context of complex structures,
large finite element computational models are needed. Giventhe
numerical difficulties inherent to the complexity of such compu-
tational models, many recent efforts have focused on the con-
struction of reduced order models in this nonlinear context[6,7].
In particular, the STEP procedure [8,9] has been developed in or-
der to explicitly construct all the linear, quadratic, cubic stiffness
terms related to reduced nonlinear models. The methodologyis
based on the smart use of an industrial finite element code for
which no further numerical developments are needed. It only
requires a series of basic nonlinear numerical calculations with
judiciously prescribed displacements taken as a linear combina-
tion of given basis vectors.

Moreover, deterministic nonlinear computational models are
in general not sufficient to accurately predict the mechanical be-
havior of such complex structures. The uncertainties have then to
be taken into account in the computational models by using prob-
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abilistic models as soon as the probability theory can be used.
Let us recall that there exist two classes of uncertainties:(1) the
system parameter uncertainties result from the variability of the
parameters of the computational model induced for instanceby
the manufacturing process, (2) the model uncertainties arethe
features of the mechanical system not captured by the compu-
tational model, e.g. the introduction of reduced kinematics in
the numerical modeling. Parametric probabilistic approaches are
particularly adapted to take into account system parameteruncer-
tainties as shown in [10, 11] is the context of the post-buckling
of cylindrical shells. This last decade, the nonparametricproba-
bilistic approach adapted to the modeling of both model uncer-
tainties and system parameter uncertainties has been introduced
in [12, 13] for the linear case and has been extended more re-
cently in [9,14–16] in the context of geometrical nonlinearities.

In the present paper, a direct procedure is proposed in the
context of geometrical nonlinear structural mechanical systems.
In this methodology, the explicit construction of the uncertain
nonlinear computational model is proposed for any type of struc-
ture modeled with three-dimensional solid finite elements.

In the first Section, the equations of the geometrical non-
linear problem are written in the context of a total Lagrangian
formulation. The second Section is devoted to the construction
of a mean reduced nonlinear computational model required by
the implementation of the nonparametric probabilistic approach.
This mean reduced nonlinear computational model is obtained
using the Proper Orthogonal Decomposition method known to
be particularly efficient in nonlinear cases [6]. The POD-basis is
then easily deduced from a reference solution taken as the deter-
ministic response of the structure. The mean reduced nonlinear
computational model, which results from the projection of all
the linear, quadratic and cubic stiffness terms on this POD-basis
is then explicitly constructed in the context of three-dimensional
solid finite elements. The third Section is devoted to the con-
struction of the uncertain nonlinear computational model using
the nonparametric probabilistic approach. Such nonparametric
probabilistic approach is based on the construction of a proba-
bility model for random matrices with values in the set of sym-
metric positive-definite matrices whose mean value is deduced
from the mean reduced computational model. Let us recall that
the nonlinear quadratic stiffness term of the mean reduced non-
linear computational model is defined as the sum of three nonlin-
ear terms. In the present geometrical nonlinear context, the non-
parametric probabilistic model is implemented from a determin-
istic symmetric positive-definite matrix whose componentsare
notably described by each of these three nonlinear terms. Note
that its explicit construction is then needed. In the fourthSec-
tion, the procedure for the robust identification of the uncertain
nonlinear computational model with respect to available experi-
mental responses is carried out [17,18]. Finally, the fifth Section
is devoted to a numerical example in order to demonstrate the
efficiency of the proposed methodology.

FORMULATION OF THE GEOMETRIC NONLINEAR
PROBLEM

The structure under consideration is made up of a lin-
ear elastic material and is assumed to undergo large deforma-
tions induced by geometrical nonlinearity. LetΩ be the three-
dimensional bounded domain of the physical spaceR3 corre-
sponding to the reference configuration taken as a natural state
without prestress. The boundary∂Ω is such that∂Ω = Γ

⋃

Σ
with Γ

⋂

Σ = /0 and the external unit normal to boundary∂Ω
is denoted asn. The boundary partΓ corresponds to the fixed
part of the structure whereas the boundary partΣ is subjected to
an external surface force field. A total Lagrangian formulation
is chosen. Consequently, the mechanical equations are written
with respect to the reference configuration. Letx be the position
of a point belonging to domainΩ. The displacement field ex-
pressed with respect to the reference configuration is denoted as
u(x). It should be noted that the surface force fieldG(x) acting
on boundaryΣ and that the body force fieldg(x) acting on do-
mainΩ corresponds to the Lagrangian transport of the physical
surface force field and to the physical body force field applied on
the deformed configuration into the reference configuration. Let
C be the admissible space defined by

C = {v ∈ Ω , v sufficiently regular, v = 0 onΓ} . (1)

The weak formulation of the geometric nonlinear static boundary
problem consists in finding the unknown displacement fieldu of
admissible spaceC such that, for any admissible displacement
field v ∈ C

∫

Ω
vi,k Fi j Sjk dx =

∫

Ω
vi gi dx+

∫

Σ
vi Gi ds , (2)

in whichF is the deformation gradient tensor whose components
Fi j are defined by

Fi j = ui, j +δi j , (3)

in which δi j is the Kronecker symbol such thatδi j = 1 if i = j
and δi j = 0 if not, and whereS is the second Piola-Kirchoff
symmetric stress tensor defined for any elastic material by the
linear relation

Si j = ai jkl Ekl . (4)

In Eq. (4), the fourth order elasticity tensora satisfies the clas-
sical symmetry and positive definiteness properties. The Green
strain tensorE is then written as the sum of a linear term and of
a nonlinear term such that

Ei j = εi j +ηi j , (5)
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in which

εi j =
1
2

(

ui, j +u j ,i

)

and ηi j =
1
2

us,i us, j . (6)

The weak formulation Eq. (2) is reformulated as finding the un-
known displacement fieldu of admissible spaceC such that, for
any admissible displacement fieldv ∈ C we have

k(1)(u,v) + k(2)(u,u,v) + k(3)(u,u,u,v) = l(v) , (7)

in which the multilinear formsl(v), k(1)(u,v), k(2)(u,u,v) and
k(3)(u,u,u,v) are defined for allu,v ∈ C by

l(v) =
∫

Ω
vi gi dx+

∫

Σ
vi Gi ds , (8)

k(1)(u,v) =
∫

Ω
a jklm εlm(u)ε jk(v)dx , (9)

k(2)(u,u,v) =
∫

Ω
a jklmηlm(u)ε jk(v)dx+

∫

Ω
a jklmus, jvs,kεlm(u)dx (10)

k(3)(u,u,u,v) =
∫

Ω
a jklm us, j vs,k ηlm(u)dx . (11)

CONSTRUCTION OF A MEAN REDUCED COMPUTA-
TIONAL MODEL FOR THE GEOMETRICAL NONLIN-
EAR PROBLEM

This Section concerns the construction of the mean reduced
computational model adapted to the geometrical nonlinear con-
text. The methodology is based on the explicit constructionof
each term constituting this mean reduced nonlinear computa-
tional model. It is recalled that such mean reduced nonlinear
computational model is required by the nonparametric proba-
bilistic modeling of uncertainties. First, the general equations
yielding the mean reduced nonlinear computational model are
written for any given projection basis. Then, the Proper Orthog-
onal Decomposition method is used for constructing the projec-
tion basis in the context of large finite elements systems [6,19].
This POD-basis is deduced from a reference calculation using
a finite element code. Finally, each linear, quadratic and cu-
bic stiffness component constituting the mean reduced nonlinear
computational model is explicitly constructed in the context of
three-dimensional solid finite elements.

General equations of the mean reduced model
Let�α (x) , α = {1, . . . ,N}, be a given set of basis functions

such that

u(x) =
N

∑
β =1

�β(x)qβ , (12)

in which theRN-vectorq = (q1, . . . ,qN) is the vector of the gen-
eralized coordinates. Letv(x) be a test function such that

v(x) = �α (x)qα (13)

Replacing Eq.(13) in Eq.(7) yields the following set of nonlinear
equations

K(1)
αβ qβ + K(2)

αβγ qβ qγ + K(3)
αβγδ qβ qγ qδ = Fα , (14)

in which

K(2)
αβγ =

1
2

(

K̂(2)
αβγ + K̂(2)

βγα + K̂(2)
γαβ

)

, (15)

and where the expressions ofK(1)
αβ , K̂(2)

αβγ andK̂(3)
αβγδ and its sym-

metry properties can be found in [9].

Numerical construction of the reduced order basis us-
ing Proper Orthogonal Decomposition

The set of basis vectors used for constructing the mean re-
duced nonlinear computational model is obtained with the Proper
Orthogonal Decomposition method which is known to be effi-
cient for nonlinear cases. The determination of this basis nec-
essarily requires a reference response. Indeed such basis is de-
fined by the eigenvalue problem of the spatial correlation oper-
ator related to the displacement field of this reference response.
It should be noted that this basis does not only depend on the
operators of the computational model but also strongly depends
on the external applied loads used for exciting the structure. Be-
low, the numerical construction of the POD-basis is summarized
in the context of the finite element method. The finite element
discretization of Eq. (7) can be written as

[K(1)]u + fNL(u) = f , (16)

in which theRn-vectoru is the vector of the unknown displace-
ments. In Eq. (16), the(n×n) symmetric positive definite matrix
[K(1)] is the linear finite element stiffness matrix, theRn-vector
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fNL(u) is the vector of the restoring forces induced by the geo-
metrical nonlinear effects and theRn-vectorf is the vector of the
external applied loads. It should be noted that there are specific
numerical algorithms for solving this nonlinear equation (see for
instance [20]) which are particularly efficient as the curvature of
the nonlinear response changes (see for instance [21] for algo-
rithms based on arc-length methods or [22] for algorithms based
on asymptotic methods).

Let sj ∈ [0,1], j ∈ {1, . . . , p} with sj < sj+1 be the scalar
denoting the incremental weight numberj of the external load
vectorf. The(n× p) real matrix[V] is then introduced as

[V]i j = ui(sj)
√

∆sj , ∆sj = sj −sj−1 with s0 = 0 . (17)

The spatial correlation matrix related to the nonlinear reference
response is defined by the symmetric positive-definite(n× n)
real matrix[A] such that

[A] = [V] [V]T . (18)

The POD-basis is then obtained in solving the following eigen-
value problem

[A] [Φ] = [Φ] [Λ] , (19)

in which [Λ] is the diagonal matrix whose components are the
eigenvalues ordered by decreasing values and where[Φ] is the
modal matrix whose columns are the POD-basis vectors. It
should be noted that such numerical construction can not be car-
ried out as the dimensionn of the system increases. The singular
value decomposition of matrix[V] is written as

[V] = [B] [S] [C] , (20)

in which [S] = [Λ]1/2 and where the columns of the(n×n) real
matrices[B] and[C] are the left and right singular vectors related
to the corresponding singular values. As a consequence, it can
be shown that

[Φ] = [B] and[S]2 = [Λ] . (21)

Let [B]N be the(n×N) matrix issued from the truncation of
matrix [B] with respect to theN largest singular values. Matrix
[B]N can easily be computed by using an adapted algorithm for
truncated single value decomposition [23].

Construction of the mean reduced nonlinear computa-
tional model

In this subsection, the mean reduced nonlinear computa-
tional model is explicitly constructed from the knowledge of the
POD-basis. The construction is carried out in the context ofthe
three-dimensional finite element method. The finite elements
used are isoparametric solid finite elements with 8 nodes and
the numerical integration is carried out withr Gauss integration
points.

Let [D] be the(6×6) real matrix which represents the usual
Hooke matrix related to the fourth-order elasticity tensor. For the
considered isoparametric finite element, the displacementfield
ũ(y) with y ∈ [−1,1]3, is defined by

ũ(y) = [N(y)] ũ , (22)

in which the(3×24) real matrix[N(y)] defines the interpolation
functions and where theR24-vectorũ is made up of the degrees of
freedom of the finite element. LetI be the set of indices defined
by I = {(i, j) ∈ {(11),(22),(33),(12),(13),(23)}} and corre-
sponding with the setI = {1,2,3,4,5,6}. From Eq. (22), it can
be deduced that

εi j (ũ)(1−δi j )+ ε ji (ũ) = [B(y)]Ik ũk (i, j) ∈ I, I ∈ I , (23)

ũs,l (y) ũs,m(y) = ũT [Cl (y)]
T [Cm(y)] ũ . (24)

in which [B(y)] and [Cm(y)] are the(6× 24) and (3× 24) real
matrices whose components are obtained by the calculation of
partial derivatives of the interpolation functions contained in ma-
trix [N(y)].

The first step consists in calculating for each finite element
the elementary contributions of the linear, quadratic and cubic
internal forces projected on the POD-basis. Then, for a given fi-

nite element, let̃f
(1)
(�̃β), f̃

(2)
(�̃β , �̃γ) and f̃

(3)
(�̃β , �̃γ, �̃δ) be

the R24-vectors constituted of the internal forces, (1) induced
by the POD-basis vector�β and related to the linear stiffness
term, (2) induced by the POD-basis vectors�β , �γ and related
to the quadratic stiffness term, induced by the POD-basis vector�β , �γ, �δ and related to the cubic stiffness term. All details
concerning the explicit construction of these terms can be found
in [15,16]. In a second step, for each type of stiffness, we proceed
with the assembly of each of these elementary contributions. We
then denote byf(1)(�β ), f(2)(�β ,�γ) and f(3)(�β ,�γ,�δ) theRn-vectors of these internal loads. The mean reduced nonlinear
computational model is then described by

K(1)
αβ = �α ,T f(1)(�β) , (25)

K̂(2)
αβγ = �α ,T f(2)(�β ,�γ) , (26)

K(3)
αβγδ = �α ,T f(3)(�β ,�γ,�δ) . (27)

4



The quadratic stiffness contributionK(2)
αβγ of the mean reduced

nonlinear computational model is then build from Eq. (15). It

should be noted that theK(1)
αβ , K̂(2)

αβγ andK(3)
αβγδ contributions

have to be explicitly known for constructing the uncertain non-
linear computational model in the general case of complex struc-
tures.

NONPARAMETRIC STOCHASTIC MODELING OF UN-
CERTAINTIES

In this Section, it is assumed that the mean reduced non-
linear computational model contains both system parameterun-
certainties and model uncertainties which justifies the useof the
nonparametric probabilistic approach for modeling these uncer-
tainties in the computational model. The main idea of the non-
parametric probabilistic approach consists in replacing each of
the matrices of a given mean reduced computational model by
a random matrix whose probability model is constructed from
the maximum entropy principle using the available information
[12,13]. In the usual linear case, the random matrices issued from
the mechanical system are with values in the set of the symmetric
positive-definite matrices. In the present geometrical nonlinear
context, the nonlinear equations involve nonlinear operators. In
this case, we then introduce the matrix[K] [9] as the real(P×P)
matrix withP = N(N+1) defined by

[K] =

[

[K(1)] [K̂(2)
]

[K̂(2)
]T 2[K(3)]

]

, (28)

in which [K̂(2)
] and [K(3)] are respectively the(N × N2) and

(N2 ×N2) real matrices resulting from the following reshaping
operation defined by

[K̂(2)
]α J = K̂(2)

αβγ , with J = (β −1)N + γ , (29)

[K(3)]I J = K(3)
αβγδ with I = (α −1)N+β andJ = (γ−1)N+δ.

(30)
It is shown in [9] that matrix[K] is a symmetric positive-definite
matrix. Consequently, the nonparametric probabilistic approach
can easily be adapted to the geometrically nonlinear context as
follows. The mean reduced matrix[K] is replaced by the ran-
dom matrix[K] such thatE{[K]} = [K] in whichE is the math-
ematical expectation. The random matrix[K] is then written as
[K] = [LK ]

T [GK ] [LK ] in which [LK ] is a(P×P) real upper ma-
trix such that[K] = [LK ]

T [LK ] and where[GK ] is a full random
matrix with value in the set of all the positive-definite symmetric
(P×P) matrices. The probability model of random matrix[GK ]

is constructed by using the maximum entropy principle with the
available information. All details concerning the construction of
this probability model can be found in [12, 13]. The dispersion
of random matrix[GK ] is controlled by one real positive param-
eter δ ∈ D called the dispersion parameter. In addition, there
exists an algebraic representation of this random matrix useful to
the Monte Carlo numerical simulation. From random matrix[K]

the random linear, quadratic and stiffness termsK
(1)
αβ , K̂

(2)
αβγ and

K
(3)
αβγδ can easily be deduced. The random matrix model is then

defined by

U = [ΦN]Q , (31)

in which Q = (Q1, . . . ,QN) is theRN-valued vector of the ran-
dom generalized coordinates solution of the random equation

K
(1)
αβ Qβ + K

(2)
αβγQβ Qγ +K

(3)
αβγδQβ Qγ Qδ = Fα , (32)

with

K
(2)
αβγ =

1
2

(

K̂
(2)
αβγ + K̂

(2)
βγα + K̂

(2)
γαβ

)

. (33)

IDENTIFICATION OF THE UNCERTAIN NONLINEAR
COMPUTATIONAL MODEL

In this Section, the identification of the uncertain nonlinear
computational model from experimental data is formulated.It
is assumed that the mean reduced nonlinear computational is
known and that the identification focuses on the parameterδ
controlling the uncertainty level in the uncertain computational
model. This robust updating problem consists then in minimiz-
ing a cost function with respect to parameterδ. The formulation
of the optimization problem requires the definition of a costfunc-
tion relevant to the uncertain nonlinear computational model and
to the experimental data. It is proposed here to introduce penalty
terms only in areas for which the experimental data is not within
the confidence region constructed with the uncertain nonlinear
computational model. It is assumed that a collection ofnexp ex-
perimental responses are available atnobs spatial locations. We
then denote asUexp

j (s,θk) the experimental response numberk
at dof numberj as a function of the load increments. The cor-
responding observation issued from the uncertain computational
model is denoted asU j(δ,s) and is a function of the parameterδ
to be updated. LetU+

j (δ,s) (resp.U−
j (δ,s)) andUexp,+

j (s) (resp.

Uexp,−
j (s)) be the upper (resp. lower) envelope of the confidence

region of observationU j(δ,s) obtained with a probability level
α = 0.95 and the upper (resp. lower) envelope of experiments
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Uexp
j (s). The cost functionj(δ) is then defined by

j(δ) = ||D+(δ, ·)||2B + ||D−(δ, ·)||2B , (34)

in which || · ||B is theL2 norm over the load incremental bandB = [0,b] and whereD+(δ,s) andD−(δ,s) are theRnobs-
vectors whose component numberj is defined by

∆+
j (δ,s) = {U+

j (δ,s)−Uexp,+
j (s)}×

{1−H(U+
j (δ,s)−Uexp,+

j (s))} , (35)

∆−
j (δ,s) = {U−

j (δ,s)−Uexp,−
j (s)}×

{H(U−
j (δ,s)−Uexp,+

j (s)))} , (36)

wherex 7→ H(x) is the Heaviside function. The identification
of the uncertain nonlinear computational model consists then in
solving the optimization problem

find δopt ∈ D such thatj(δopt)≤ j(δ) , ∀δ ∈D.

NUMERICAL APPLICATION
The objective of this application is to show the efficiency

of the presented methodology. The application is a three-
dimensional linear elastostatic problem in the geometrically non-
linear context. The material is chosen to be homogeneous and
isotropic. The extension to the nonhomogeneous case and to the
anisotropic case is straightforward. A preliminary calculation is
carried out with a non-linear finite element code in order to get
the reference solution from which the POD basis is calculated.
The stochastic nonlinear reduced-order computational model is
then constructed as a function of identification parameterδ.

Note that the simulated experiments have been obtained by
numerical simulations for a family of structures around themean
structure. Specifically, the geometrical characteristicsof each
structure of the family are modified with respect to those of the
mean structure. Moreover, the material characteristics ofthese
structures are inhomogenous at the contrary of the mean struc-
ture. Consequently, the mean computational model can never
reproduce the simulated experiments which justifies the useof a
stochastic nonlinear reduced-order computational model.

Mean finite element model
The three-dimensional bounded domainΩ is a slender rect-

angular domain defined in a Cartesian system(0,e1,e2,e3) such
that Ω = {]0, l [×]0,b[×]0,h[} with l = 10m, b = 0.8m, h =
0.4m. Let Γ0 and Γ1 be the boundaries described asΓ0 =
{x; x1 = 0} andΓ1 = {x; x1 = L}. The structure is assumed to
be fixed on this boundary so that we have a Dirichlet condition

onΓ0
⋃

Γ1. The structure is free on boundary∂Ω\ {Γ0
⋃⋃

Γ1}.
The structure is subjected to external surface loads applied along
directionse1, e2 ande3 in the middle section defined byx1 =
0.5L. The Young modulus, the Poisson coefficient and the mass
density of the homogeneous and isotropic linear elastic mate-
rial are E = 2.1011N.m−2, ν = 0.3 and ρ = 8200Kg.m−3.
The finite element model is a regular mesh of 765 nodes and
50× 4× 2 = 400 finite elements constituted of 8-nodes solid
elements withr = 8 Gauss integration points. Therefore, the
mean computational model hasn = 2205 degrees of freedom
(see Fig. 1).

FIGURE 1. FINITE ELEMENT MODEL

The discretization of the external loads yields point loads
applied to the nodes of the middle section along the direction e1,
e2 ande3 with intensity 100,000,000N. Furthermore, the gravity
load is also taken into account. In order to simulate the nonlinear
mechanical response, the static nonlinear calculations are carried
out by solving Eq. (16) using a nonlinear finite element code with
an algorithm based on the arc-length method. The displacement
field is calculated usingnt = 60 load increments. Fig. 2 shows
the deformed structure for the nonlinear static case.

FIGURE 2. DEFORMED STRUCTURE
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Construction of the experimental data basis
In this numerical application,nexp = 9 simulated exper-

iments related to the static nonlinear response are calculated.
The simulated experiments are observed atnobs = 2 observa-
tion points corresponding to the DOFs located at the bottom
of the middle section in the directionse2 and e3. The simu-
lated static nonlinear responses are denoted byuexp,k

obs (s), for k in
{1, . . . ,nexp}. The corresponding quantity defined for the mean
nonlinear computational model is denoted byuobs(s). The simu-
lated experiments are generated as follows. The geometrical pa-
rametersl , b andh are replaced by the random uniform variables
L, B andH centered around geometrical parametersl , b andh
with supports[0.95l , 1.05l ], [0.95b, 1.05b] and[0.95h, 1.05h].
Moreover, it is assumed that the Young modulus and the Pois-
son ratio are inhomogeneous with 10% of variation around their
mean value. This is achieved by replacing the deterministicvalue
E (respν ) by a stochastic fieldE(x) (respν(x)) which is defined
by

E(x) = E+
J

∑
j=1

ξ jb j(x) , (37)

ν(x) = ν +
J

∑
j=1

ξ ′
jb j(x) , (38)

in which ξ1, . . . ,ξJ (resp. ξ ′
1, . . . ,ξ

′
J) are independent uniform

random variables with zero mean and standard deviationσ =
0.1E/

√
3 (resp. σ = 0.1ν/

√
3) and where the functionsb j(x)

are given smooth functions. For convenience, these smooth func-
tions are taken as the spatial average over each element of the
eigenvectors associated with theJ = 12 lowest eigenvalues of
the usual generalized eigenvalue problem related to the linear dy-
namics.

Figures 3 and 4 compare the static nonlinear responses as a
function of the incremental loads for both mean nonlinear com-
putational model and simulated experiments. Since the simulated
experiments are scattered around the response calculated with the
mean nonlinear computational model, it can be deduced that the
use of a stochastic nonlinear computational model is justified.

Construction of the POD basis
The nonlinear response shown in Fig. 2 is then used for

calculating the POD basis as described in Section 3.2. Let
ConvPOD(N) be the function defined by

ConvPOD(N) = 1− 1
tr([A])

N

∑
j=1

Λ j , (39)

for which the calculation oftr([A]) does not require the com-
putation of matrix[A]. Fig. 5 shows the graph of the function
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FIGURE 3. DISPLACEMENT RESPONSE AT OBSERVATION
DOF Y AS A FUNCTION OF THE INCREMENTAL LOAD S:
MEAN COMPUTATIONAL MODEL (THICK DASHED LINE), SIM-
ULATED EXPERIMENTS (THIN GRAY LINES)

N 7→ ConvPOD(N) in a logarithmic scale. It can be seen that
a good convergence is obtained forN = 10. From now on, all
numerical calculations are carried out withN = 12. The mean
nonlinear reduced-ordercomputational model is then constructed
and solved using the Crisfield algorithm [21] based on the arc-
length method.

Experimental identification of the stochastic nonlinear
reduced-order computational model

The construction of the stochastic nonlinear reduced-order
computational model using the nonparametric probabilistic ap-
proach is performed as explained in Section 4. A stochastic con-
vergence analysis is then carried out to define the numberns of
Monte Carlo realizations to be kept in the numerical simulation.
Let ns 7→ Conv(ns) be the function defined by

Conv(ns) =
{ 1

ns

ns

∑
j=1

|||U(θ j )|||2
}1/2

, (40)

in which |||U(θ j )||| = max
s

||U(θ j ,s))||, ||U(θ j ,s))||2 =
n

∑
k=1

U2
k (θ j ,s) whereUk(θ j ,s) is the jth realization of the random

response at DOFk for a given load increments. Figure 6 displays
the graphns 7→ Conv(ns) obtained with a dispersion parameter
δ = 0.3. Convergence is reached forns = 900. The identifica-
tion ofδ is then carried out by constructing the non-differentiable
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FIGURE 5. CONVERGENCE ANALYSIS : GRAPH OFN 7→
ConvPOD(N).

cost functionδ 7→ j(δ) using the Monte Carlo numerical simu-
lation. The cost function is a positive decreasing functionof pa-
rameterδ. As soon as the simulated experiments belong to the
confidence region of the random observation, the cost function is
equal to zero.

Figure 7 shows the graph of the cost functionδ 7→ j(δ).
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FIGURE 7. ROBUST IDENTIFICATION : GRAPH OFδ 7→ j(δ).

It can be seen that the optimal value is given byδopt = 0.3.
Figures 8 and 9 display the graph of the confidence region of
the optimal random responseUobs(δopt,s) as a function of the
load increments for both observations. It then can be seen that
there is a good agreement between the optimal stochastic nonlin-
ear reduced-order computational model and the simulated exper-
iments.
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Conclusion
In the present paper, a methodology has been proposed for

constructing a stochastic nonlinear reduced-order computational
model for any three-dimensional structure with geometric non-
linearities and linear constitutive equation. The mean nonlinear
reduced-order computational model is constructed by projection
on the POD basis obtained from the mean nonlinear computa-
tional model. All the integrals involved in the weak formulation
after projection on the POD basis are explicitly estimated us-
ing three-dimensional solid finite elements. The direct evaluation
of the stiffness parameters of the mean nonlinear reduced-order
model proposed and accomplished here guarantees the necessary
properties (e.g. positive definiteness) of the model. It is further
achievable for any three-dimensional finite element mean com-
putational model. An application is presented and a methodology
to perform the identification of the stochastic nonlinear reduced-
order computational model using simulated experiments is pro-
posed. If experimental data is available, the simulated experi-
ments are then replaced by such data.
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