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ABSTRACT

This work presents a methodology for the construction of an
uncertain nonlinear computational model adapted to théista
analysis of a complex mechanical system. The deterministie
linear computational model is constructed with the finieneént
method using a total Lagrangian formulation. The finite edain
nonlinear response is then considered as a reference digterm
istic solution from which a reduced-order basis is constedc
using the POD (Proper Orthogonal Decomposition) methodol-
ogy. The mean reduced nonlinear computational model is thus
obtained by projecting the reference deterministic soluton
this basis. The explicit construction of the mean reduceat no
linear computational model is proposed for any type of struc
ture modeled with three-dimensional solid finite elemeftsro-
cedure for the robust identification of the uncertain noeén
computational model with respect to experimental respoise
then given. Finally, the methodology is applied to a struefor
which simulated experiments are given.

INTRODUCTION
In structural mechanics, a recent challenge of interes is t
have advanced numerical methodologies for constructihgsto
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computational models in order to efficiently predict the treac

ical behavior of structures. In numerous industrial aggtlans,

the effects of geometrical nonlinearities induced by lasigains

and by large displacements have to be taken into account in
the numerical modeling. For instance, such nonlinear mecha
ical behavior is exhibited in aeronautics by helicopteatiog
blades [1, 2] or in automotive or aerospatial industrieslbpder
beams or thin shells [3-5]. In the context of complex strregy
large finite element computational models are needed. Ghan
numerical difficulties inherent to the complexity of suchrgmu-
tational models, many recent efforts have focused on the con
struction of reduced order models in this nonlinear cor{ext].

In particular, the STEP procedure [8,9] has been develaped i

der to explicitly construct all the linear, quadratic, aubfiffness
terms related to reduced nonlinear models. The methodasogy
based on the smart use of an industrial finite element code for
which no further numerical developments are needed. It only
requires a series of basic nonlinear numerical calculativith
judiciously prescribed displacements taken as a lineatbawen

tion of given basis vectors.

Moreover, deterministic nonlinear computational modeds a
in general not sufficient to accurately predict the mectelriie-
havior of such complex structures. The uncertainties Hzae to
be taken into account in the computational models by usiagpr
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abilistic models as soon as the probability theory can bel.luse FORMULATION OF THE GEOMETRIC NONLINEAR

Let us recall that there exist two classes of uncertain{iEsthe PROBLEM

system parameter uncertainties result from the varighifithe The structure under consideration is made up of a lin-
parameters of the computational model induced for instényce  ear elastic material and is assumed to undergo large deforma
the manufacturing process, (2) the model uncertaintieshare tions induced by geometrical nonlinearity. L@tbe the three-
features of the mechanical system not captured by the compu-dimensional bounded domain of the physical sp&éecorre-

tational model, e.g. the introduction of reduced kinensaiic sponding to the reference configuration taken as a natuat st
the numerical modeling. Parametric probabilistic apphesare without prestress. The bounda#\ is such thavQ =T JZ
particularly adapted to take into account system parametasr- with TN Z = 0 and the external unit normal to boundat®
tainties as shown in [10, 11] is the context of the post-bagkl is denoted a®. The boundary parft corresponds to the fixed
of cylindrical shells. This last decade, the nonparametraba- part of the structure whereas the boundary pdg subjected to
bilistic approach adapted to the modeling of both model tnce an external surface force field. A total Lagrangian forniatat
tainties and system parameter uncertainties has beedirted is chosen. Consequently, the mechanical equations aremvrit
in [12, 13] for the linear case and has been extended more re-with respect to the reference configuration. kdte the position
cently in [9, 14-16] in the context of geometrical nonlinges. of a point belonging to domaif. The displacement field ex-
In the present paper, a direct procedure is proposed in the pressed with respect to the reference configuration is edrast
context of geometrical nonlinear structural mechanicateys. u(x). It should be noted that the surface force fi€itk) acting
In this methodology, the explicit construction of the uniaar on boundaryx and that the body force fielg(x) acting on do-
nonlinear computational model is proposed for any typerofcst main Q corresponds to the Lagrangian transport of the physical
ture modeled with three-dimensional solid finite elements. surface force field and to the physical body force field ajpidie

In the first Section, the equations of the geometrical non- the deformed configuration into the reference configuratien
linear problem are written in the context of a total Lagramgi € be the admissible space defined by
formulation. The second Section is devoted to the constnuct
of a mean reduced nonlinear computational model required by C = {ve Q,vsufficiently regular,v = 0onl'} . (1)
the implementation of the nonparametric probabilisticrapph.
This mean reduced nonlinear computational model is obdaineé Tne weak formulation of the geometric nonlinear static etary
using the Proper Orthogonal Decomposition method known to problem consists in finding the unknown displacement fietd

be particularly efficient in nonlinear cases [6]. The POBibés admissible spacé such that, for any admissible displacement
then easily deduced from a reference solution taken as tee-de  fig|qy ¢

ministic response of the structure. The mean reduced rearlin

computational model, which results from the projection bf a g '

the linear, quadratic and cubic stiffness terms on this R@Bis /Q Vi Fij Sjdx = /Q Vi gi dX+'/ZVi Gids (2)

is then explicitly constructed in the context of three-dirsienal

solid finite elements. The third Section is devoted to the-con in whichF is the deformation gradient tensor whose components
struction of the uncertain nonlinear computational modshg Fij are defined by

the nonparametric probabilistic approach. Such nonparame

probabilistic approach is based on the construction of &gto Fj = Uij+3;
bility model for random matrices with values in the set of sym '
metric positive-definite matrices whose mean value is deduc
from the mean reduced computational model. Let us recdll tha
the nonlinear quadratic stiffness term of the mean reduoed n
linear computational model is defined as the sum of threemonl
ear terms. In the present geometrical nonlinear contextyim-
parametric probabilistic model is implemented from a daiar
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in which §;j is the Kronecker symbol such that = 1ifi = j
and §; = 0 if not, and whereS is the second Piola-Kirchoff
symmetric stress tensor defined for any elastic materiahby t
linear relation

istic symmetric positive-definite matrix whose componeares Sj = aij Ba - (4)
notably described by each of these three nonlinear termg No

that its explicit construction is then needed. In the foBtc- In Eq. (4), the fourth order elasticity tensoisatisfies the clas-
tion, the procedure for the robust identification of the utaia sical symmetry and positive definiteness properties. Treer
nonlinear computational model with respect to availablgegix strain tensoft is then written as the sum of a linear term and of
mental responses is carried out [17, 18]. Finally, the fittet®n a nonlinear term such that

is devoted to a numerical example in order to demonstrate the

efficiency of the proposed methodology. Ej =& +nj , (5)



in which

1 1
&j = *(Ui,ﬁuj,i) and  1ij = 5 Us; Us,|

5 ®)

The weak formulation Eq. (2) is reformulated as finding the un
known displacement field of admissible spacé such that, for
any admissible displacement fialde C we have

KD (u,v) + K2 uu,v) + kO (uuuv) = 1(v) ,  (7)

in which the multilinear forms(v), k®(u,v), k@ (u,u,v) and
k(3 (u,u,u,v) are defined for alli,v € C by

I(v):/ vigidx+/viGids : @)
Q s
k(1>(u,v):/Qajk|ms|m(u)£jk(v)dx , (9)
k@ (u,u,v) :/Qajk|m'7|m(u)8jk(V)dX+
/Qajmmusjvgkam(u)dx (20)
k®(u,u,u,v) = /Qajk|mUSjV5kn|m(U)dX (11)

CONSTRUCTION OF A MEAN REDUCED COMPUTA-
TIONAL MODEL FOR THE GEOMETRICAL NONLIN-
EAR PROBLEM

General equations of the mean reduced model
Lete?(x), o ={1,...,N}, be a given set of basis functions
such that

ux) =y $Px)a | (12)

1

wT?I\/Iz

in which theRN-vectorq = (qs,...,qn) is the vector of the gen-
eralized coordinates. Le{x) be a test function such that

V(X) = ¢g(X)da (13)

Replacing Eq.(13) in Eq.(7) yields the following set of niaehr
equations

Kt + Ko, a0y + Kig 505G 0s = Fa . (14)
in which
@ _lr@ | 202 | 2
Kapy = §<KGI3V+KBVG+KVGB> ' (15)

and where the expressions/ﬁfg , IACE,ZB;V

metry properties can be found in [9].

andfcfgya and its sym-

Numerical construction of the reduced order basis us-
ing Proper Orthogonal Decomposition

The set of basis vectors used for constructing the mean re-
duced nonlinear computational model is obtained with tlogEr
Orthogonal Decomposition method which is known to be effi-
cient for nonlinear cases. The determination of this basts n

This Section concerns the construction of the mean reduced essarily requires a reference response. Indeed such baigs i

computational model adapted to the geometrical nonlinear c
text. The methodology is based on the explicit construatibn
each term constituting this mean reduced nonlinear computa
tional model. It is recalled that such mean reduced nonlinea
computational model is required by the nonparametric proba
bilistic modeling of uncertainties. First, the general atipns
yielding the mean reduced nonlinear computational model ar
written for any given projection basis. Then, the PropehGgt
onal Decomposition method is used for constructing theeguroj
tion basis in the context of large finite elements system$9p,
This POD-basis is deduced from a reference calculationgusin
a finite element code. Finally, each linear, quadratic and cu
bic stiffness component constituting the mean reduced mea
computational model is explicitly constructed in the coumief
three-dimensional solid finite elements.

fined by the eigenvalue problem of the spatial correlatioarop
ator related to the displacement field of this referencearesg.

It should be noted that this basis does not only depend on the
operators of the computational model but also strongly ddpe

on the external applied loads used for exciting the strectBe-

low, the numerical construction of the POD-basis is sumpeari

in the context of the finite element method. The finite element
discretization of Eq. (7) can be written as

KO+ NNy =f (16)

in which theR"-vectoru is the vector of the unknown displace-
ments. In Eq. (16), thén x n) symmetric positive definite matrix
[K()] is the linear finite element stiffness matrix, tRB-vector
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fNL(u) is the vector of the restoring forces induced by the geo-
metrical nonlinear effects and tfR8-vectorf is the vector of the
external applied loads. It should be noted that there areifspe
numerical algorithms for solving this nonlinear equatised for
instance [20]) which are particularly efficient as the ctuve of
the nonlinear response changes (see for instance [21]dor al
rithms based on arc-length methods or [22] for algorithnseda
on asymptotic methods).

Lets; € [0,1], j € {1,...,p} with s; < sj+1 be the scalar
denoting the incremental weight numbjeof the external load
vectorf. The(n x p) real matrix[V] is then introduced as

V]ij = ui(sj) VAsj , Asj=sj—sj_1withsg=0 . (17)

The spatial correlation matrix related to the nonlineaerefice
response is defined by the symmetric positive-defifrite n)
real matrix[A] such that

(Al = V][V]T (18)

The POD-basis is then obtained in solving the following rige
value problem

(Al[®] = [®][A] -, (19)

in which [A] is the diagonal matrix whose components are the
eigenvalues ordered by decreasing values and widgres the
modal matrix whose columns are the POD-basis vectors. It
should be noted that such numerical construction can noabe c
ried out as the dimensiamof the system increases. The singular
value decomposition of matri}/] is written as

(20)

in which [§ = [A]Y/2 and where the columns of th{a x n) real
matricesB] and[C] are the left and right singular vectors related
to the corresponding singular values. As a consequencanit ¢
be shown that

[®] = [B] and[S = [A] (21)

Let [B]N be the(n x N) matrix issued from the truncation of
matrix [B] with respect to theN largest singular values. Matrix
[BJN can easily be computed by using an adapted algorithm for
truncated single value decomposition [23].

Construction of the mean reduced nonlinear computa-
tional model

In this subsection, the mean reduced nonlinear computa-
tional model is explicitly constructed from the knowleddeie
POD-basis. The construction is carried out in the contexief
three-dimensional finite element method. The finite element
used are isoparametric solid finite elements with 8 nodes and
the numerical integration is carried out witlfGauss integration
points.

Let [D] be the(6 x 6) real matrix which represents the usual
Hooke matrix related to the fourth-order elasticity tengar the
considered isoparametric finite element, the displacerfieldt
Gi(y) with y € [—-1,1]3, is defined by

(22)

in which the(3 x 24) real matrix|N(y)] defines the interpolation
functions and where tHg?*-vectorii is made up of the degrees of
freedom of the finite element. L&tbe the set of indices defined
by Z = {(i,j) € {(11),(22),(33),(12),(13),(23)} } and corre-
sponding with the sef = {1,2,3,4,5,6}. From Eq. (22), it can
be deduced that

& () (1— &) + & () = [BY)w (i, ]) €Z.1 €7
sy (y) Gsm(y) = @' [Ci(y)]" [Cm(y)] T

,(23)
(24)

in which [B(y)] and [Ci(y)] are the(6 x 24) and (3 x 24) real
matrices whose components are obtained by the calculation o
partial derivatives of the interpolation functions contd in ma-

trix [N(y)].

The first step consists in calculating for each finite element
the elementary contributions of the linear, quadratic amic
internal forces projected on the POD-basis. Then, for angiive
nite element, lef'” (3P), 2 (8, 3Y) andf® (38,3, %) be
the R?4-vectors constituted of the internal forces, (1) induced
by the POD-basis vectap? and related to the linear stiffness
term, (2) induced by the POD-basis vectg, ¢ and related
to the quaderatic stiffness term, induced by the POD-basitove
©B, Y, 9 and related to the cubic stiffness term. All details
concerning the explicit construction of these terms carobed
in[15,16]. In a second step, for each type of stiffness, voeged
with the assembly of each of these elementary contributidfes
then denote byM) (@F), £ (F ) andf®(pf,pY,¢%) the
R"-vectors of these internal loads. The mean reduced nomlinea
computational model is then described by

Ko = " T1(e) (25)
~(2
R, = e T12(eP @) (26)
Kogys = ™ 1P 0", 0?) (27)



The quadratic stiffness contributidﬁfgy of the mean reduced
nonlinear computational model is then build from Eq. (15). |

should be noted that thle:gl’;, IACE,ZEV and Icfgyé contributions
have to be explicitly known for constructing the uncertaimn
linear computational model in the general case of complexst

tures.

NONPARAMETRIC STOCHASTIC MODELING OF UN-
CERTAINTIES

In this Section, it is assumed that the mean reduced non-
linear computational model contains both system paranuveter
certainties and model uncertainties which justifies theaisbe
nonparametric probabilistic approach for modeling theseer
tainties in the computational model. The main idea of the-non
parametric probabilistic approach consists in replaciacheof
the matrices of a given mean reduced computational model by
a random matrix whose probability model is constructed from
the maximum entropy principle using the available inforiomat
[12,13]. Inthe usual linear case, the random matrices ésboen
the mechanical system are with values in the set of the syrniunet
positive-definite matrices. In the present geometricalinear
context, the nonlinear equations involve nonlinear omesatin
this case, we then introduce the mafif¥ [9] as the rea[P x P)
matrix withP = N(N + 1) defined by

KWy (k)

; (28)

in which [£'?] and [K(®] are respectively théN x N2) and
(N? x N?) real matrices resulting from the following reshaping
operation defined by

kP, :/“cff,;y . withd=(B-1N+y , (29)
K@)y = ’Cfﬁya with | = (@ —1)N+ B andJ = (y—1)N+4.

(30)
Itis shown in [9] that matriXK] is a symmetric positive-definite
matrix. Consequently, the nonparametric probabilistigrapch
can easily be adapted to the geometrically nonlinear comaex
follows. The mean reduced matrik] is replaced by the ran-
dom matrix[/C] such that{[K]} = [K] in which £ is the math-
ematical expectation. The random matf] is then written as
[K] = [Lk]T [Gk][Lk] in which [L] is a (P x P) real upper ma-
trix such thafK] = [Lk]" [Lk] and wherdG] is a full random
matrix with value in the set of all the positive-definite synic
(P x P) matrices. The probability model of random matj@ |

is constructed by using the maximum entropy principle wiid t
available information. All details concerning the constion of
this probability model can be found in [12,13]. The dispensi
of random matriXGk| is controlled by one real positive param-
eter d € D called the dispersion parameter. In addition, there
exists an algebraic representation of this random matefuliso

the Monte Carlo numerical simulation. From random malix

the random linear, quadratic and stiffness teiﬁ%, IAC(Z)

aBy
ngyé can easily be deduced. The random matrix model is then

defined by

and

u=[@"Q . (31)

in whichQ = (Qg,...,Qy) is theRN-valued vector of the ran-
dom generalized coordinates solution of the random equatio

(1) 2 €) _
’Ca[} Qp + ’CanQB Qy+ ’CaﬁyaQB QyQs =Fa , (32)
with

@ 1.2 -2

apy (33)

-(2)
Kyap)

IDENTIFICATION OF THE UNCERTAIN NONLINEAR
COMPUTATIONAL MODEL

In this Section, the identification of the uncertain nordine
computational model from experimental data is formulatéd.
is assumed that the mean reduced nonlinear computational is
known and that the identification focuses on the paraméter
controlling the uncertainty level in the uncertain compiotaal
model. This robust updating problem consists then in mipimi
ing a cost function with respect to paramedeiThe formulation
of the optimization problem requires the definition of a dast-
tion relevant to the uncertain nonlinear computational eladd
to the experimental data. It is proposed here to introdunalpe
terms only in areas for which the experimental data is ndtiwit
the confidence region constructed with the uncertain neafin
computational model. It is assumed that a collectiongf ex-
perimental responses are availablengj spatial locations. We
then denote atsljeXp(s, 6¢) the experimental response number
at dof numberj as a function of the load incremesit The cor-
responding observation issued from the uncertain compuotit
model is denoted dd;(d,s) and is a function of the paramet@r
to be updated. Lét;"(3,s) (resp.U; (3,s)) andU;™ P (s) (resp.
Ujex'“"(s)) be the upper (resp. lower) envelope of the confidence
region of observatiok/j(J,s) obtained with a probability level
a = 0.95 and the upper (resp. lower) envelope of experiments
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U™P(s). The cost functiorj(3) is then defined by onloUr1. The structure is free on bounda?@ \ {FoUUT1}.
The structure is subjected to external surface loads apalang
) N ’ B ) directionse;, &, andes in the middle section defined by =
j(8) = [[AT (3, )llg + [A7(3,)lIg - (34) 0.5L. The Young modulus, the Poisson coefficient and the mass
density of the homogeneous and isotropic linear elastiemat
in which || - || is the £2 norm over the load incremental band "2l are E = 210"N.m 2, v = 0.3 andp = 8200Kg.m °
B = [0,b] and whereA*(8,s) and A~ (,s) are theR"os- The finite element_model is a regular mesh of 765 nodes a_lnd
50x 4 x 2 = 400 finite elements constituted of 8-nodes solid
elements withr = 8 Gauss integration points. Therefore, the
mean computational model has= 2205 degrees of freedom

vectors whose component numbes defined by

A (8,9 = {U;7(8,9-U""(9)} x (see Fig. 1).
{1-H(U; (3,9 -UT"(s))} , (35)

A7 (3,9 = {U[ (8,9 -U (s)} x
{HU; (8,9 -U(9))} (36)

wherex — H(x) is the Heaviside function. The identification
of the uncertain nonlinear computational model consisgs ih
solving the optimization problem

find 5°Pt € D such thatj (8°P) < j(8) , V& eD.

NUMERICAL APPLICATION

The objective of this application is to show the efficiency
of the presented methodology. The application is a three-
dimensional linear elastostatic problem in the geomeltyican- The discretization of the external loads yields point loads
linear context. The material is chosen to be homogeneous andapplied to the nodes of the middle section along the dira@ip
isotropic. The extension to the nonhomogeneous case ahd to t e, ande; with intensity 100000,000N. Furthermore, the gravity
anisotropic case is straightforward. A preliminary cadtignis  |oad is also taken into account. In order to simulate theinegt
carried out with a non-linear finite element code in orderéb g pechanical response, the static nonlinear calculatiansaried
the reference solution from which the POD basis is calcdlate gt by solving Eq. (16) using a nonlinear finite element codb w
The stochastic nonlinear reduced-order computationaletisd an algorithm based on the arc-length method. The displaceme

then constructed as a function of identification parameter field is calculated using; = 60 load increments. Fig. 2 shows
Note that the simulated experiments have been obtained by the deformed structure for the nonlinear static case.

numerical simulations for a family of structures aroundrtiesan
structure. Specifically, the geometrical characteristitgach
structure of the family are modified with respect to thosehef t
mean structure. Moreover, the material characteristidhese
structures are inhomogenous at the contrary of the meagc-stru
ture. Consequently, the mean computational model can never
reproduce the simulated experiments which justifies theofiae
stochastic nonlinear reduced-order computational model.

FIGURE 1. FINITE ELEMENT MODEL

Mean finite element model

The three-dimensional bounded dom&iris a slender rect-
angular domain defined in a Cartesian systéne;,e;, e3) such v
thatQ = {]0,1[x]0,b[x]0,h[} with | = 10m, b = 0.8m, h =
0.4m. Let Iy andl'1 be the boundaries described Bg = FIGURE 2. DEFORMED STRUCTURE
{x;x1 =0} andl"; = {x; x1 = L}. The structure is assumed to
be fixed on this boundary so that we have a Dirichlet condition

N
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Construction of the experimental data basis Observation DOF y

In this numerical applicationnexp = 9 simulated exper- O, ‘ ‘
iments related to the static nonlinear response are cédéclila \\
The simulated experiments are observechg@t = 2 observa- 02\ |
tion points corresponding to the DOFs located at the bottom ‘\\
of the middle section in the directiores ande;. The simu- N
lated static nonlinear responses are denoteuﬁbgy(s), forkin E 041 N i
{1,...,nexp}. The corresponding quantity defined for the mean £ ‘\\
nonlinear computational model is denotedugyy(s). The simu- £ 06/ Ssel ]
lated experiments are generated as follows. The geomigieea 3 TS
rameters, b andh are replaced by the random uniform variables fg —oal i = |
L, B andH centered around geometrical parametets andh : =
with supportg0.95l , 1.051], [0.95b, 1.05b] and[0.95h, 1.05h].
Moreover, it is assumed that the Young modulus and the Pois- -1 :

son ratio are inhomogeneous with 10% of variation around the
mean value. This is achieved by replacing the determiniatice

E (respv) by a stochastic fiel&(x) (respv(x)) which is defined 0 0.2 . 04 06 0.8 1
by incremental load s

FIGURE 3. DISPLACEMENT RESPONSE AT OBSERVATION
J
DOF Y AS A FUNCTION OF THE INCREMENTAL LOAD S
E() =E+ JZIEJbJ x) (37) MEAN COMPUTATIONAL MODEL (THICK DASHED LINE), SIM-
ULATED EXPERIMENTS (THIN GRAY LINES)

J

v(x) = v+ &bix) (38)
=1 N — Conwop(N) in a logarithmic scale. It can be seen that

a good convergence is obtained fér= 10. From now on, all

in which &,...,& (resp. &j,...,&)) are independent uniform  nymerical calculations are carried out wth= 12. The mean

random variables with zero mean and standard deviatien nonlinear reduced-order computational model is then cocistd

0.1E/V/3 (resp. o = 0.1v/1/3) and where the functioris;(x) and solved using the Crisfield algorithm [21] based on the arc
are given smooth functions. For convenience, these smooth f length method.

tions are taken as the spatial average over each elemeng of th
eigenvectors associated with the= 12 lowest eigenvalues of ) ) o . .
the usual generalized eigenvalue problem related to teatidy- Experimental identification of the stochastic nonlinear
namics. reduced-order computational model

Figures 3 and 4 compare the static nonlinear responses as a The construction of the stochastic nonlinear reduced+orde
function of the incremental loasifor both mean nonlinear com- ~ computational model using the nonparametric probalulis-
putational model and simulated experiments. Since thelabea proachis performed as explained in Section 4. A stochastie ¢
experiments are scattered around the response calculiibetiev vergence analysis is then carried out to define the numpef
mean nonlinear computational model, it can be deducedhkatt Monte Carlo realizations to be kept in the numerical simafat
use of a stochastic nonlinear computational model is jastifi Letns— ConV(ns) be the function defined by

. . n 1/2

Construction of the POD basis Conv(ns) = {1 Zs |||U(9j)H|2} / 7 (40)
The nonlinear response shown in Fig. 2 is then used for Ns (=

calculating the POD basis as described in Section 3.2. Let

Comkon(N) be the function defined by in which [||U(6)[l| = max||U(8.9)Il, [lU(8;.9)I

n
N 2(. 9)i i izati
Combon(N) = 1 tr([1A]) z A (39) k; Ui (6j,5) whereUy(8;,s) is the jth realization of the random
=1 response at DOkfor a given load incremerst Figure 6 displays
the graphns — Conv(ns) obtained with a dispersion parameter
for which the calculation ofr([A]) does not require the com- & = 0.3. Convergence is reached fiy = 900. The identifica-
putation of matrix[A]. Fig. 5 shows the graph of the function tion of d is then carried out by constructing the non-differentiable

7



Observation DOF z Convergence Analysis

0I T T 076 !
A\
\
—0.2\ J 0.75
\\ -
\ N 0.74
04\ f T
3 \ z
é A\ 5"’ 0.73
8 08 1 g
[+ ~
o " o 0.72
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It can be seen that the optimal value is given &' = 0.3.
cost functiond — j() using the Monte Carlo numerical simu-  Figures 8 and 9 display the graph of the confidence region of

lation. The cost function is a positive decreasing functibpa- the optimal random responsky,s5°™,s) as a function of the

rameterd. As soon as the simulated experiments belong to the |oad incremens for both observations. It then can be seen that

confidence region of the random observation, the cost fondi there is a good agreement between the optimal stochastionon

equal to zero. ear reduced-order computational model and the simulateerex
Figure 7 shows the graph of the cost functién— j(9). iments.
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Conclusion

In the present paper, a methodology has been proposed for

constructing a stochastic nonlinear reduced-order coatipuial
model for any three-dimensional structure with geometadn-n
linearities and linear constitutive equation. The meanlinear
reduced-order computational model is constructed by ptioje

on the POD basis obtained from the mean nonlinear computa-

tional model. All the integrals involved in the weak formtiden

after projection on the POD basis are explicitly estimated u

ing three-dimensional solid finite elements. The directeation
of the stiffness parameters of the mean nonlinear reducdel-o

model proposed and accomplished here guarantees the agcess

properties (e.g. positive definiteness) of the model. luishier

achievable for any three-dimensional finite element mean-co

putational model. An application is presented and a metioggo
to perform the identification of the stochastic nonlineaused-

order computational model using simulated experimentsas p

posed. If experimental data is available, the simulateceaxp
ments are then replaced by such data.
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