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Abstract

In this presentation, we will present and discuss some of the most recent contributions to the
construction of Prior Algebraic Stochastic Models (PASM) for non-Gaussian tensor-valued random
fields. We will first motivate the need of such prior models accounting, not only for mathematical
constraints, but also for physically sounded constraints such as local anisotropy. In a second step, we
will expose a methodology that aims at constructing such probabilistic models. Computational issues
related to random generation will be addressed as well. Finally, we will exemplify both the approach
and the algorithms by considering the modeling of mesoscopic elasticity tensor random fields, for which
information associated with a stochastic anisotropy measure must be taken into account.

1 Introduction

Multiscale descriptions of physical problems generally involves the representation of the underlying ran-
domness at a given, arbitrary scale. Whereas the theoretical framework of homogenization theories usually
refers to the so-called micro-scale and macro-scale, a complete (probabilistic) description of the random
elastic microstructure at the former scale is seldom (if ever) achievable in practice. Subsequently, one
may be interested in considering an intermediate, mesoscopic scale at which the remaining statistical
fluctuations reflect the smoothing of the randomness occurring at finest scales. In addition, one should
note that such mesoscale modelling also turns out to be genuinely necessary whenever the classical as-
sumption of scale separation cannot be invoked (which may be the case for some concretes or for some
reinforced composite materials). From that point of view, such models can also be used for computing
(and for characterizing the convergence towards) the effective deterministic properties associated with
the random microstructure; see [1] for an illustration. The stochastic modelling of the aforementioned
apparent properties has been quite extensively addressed in the literature of Stochastic Mechanics and
Uncertainty Quantification. In particular, it has often been performed, either by assuming the type of
probability distributions or by having recourse to functional (chaos) representations. The latter bene-
fit from a well-established mathematical framework and have motivated numerous developments around
efficient stochastic solvers (e.g. stochastic spectral methods). However, their identifications typically
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require a large amount of experimental data, hence justifying the development of alternative probabilis-
tic representations, such as Prior Algebraic Stochastic Models (PASM). Such representations ensure all
the mathematical properties (such as positive-definiteness or some boundedness properties) that must be
satisfied by the considered quantities and are intended to reduce the modeling bias. Further, their param-
eterization is generally restricted to a few parameters (controlling the spatial correlation lengths and the
overall level of statistical fluctuations, for instance), hence allowing for an inverse identification with lim-
ited data. A methodology of construction for such prior models has been investigated in [2]. Besides some
important theoretical issues (related for instance to the ellipticity condition) and a few technicalities, the
strategy is essentially similar to the approach which is commonly pursued in the analysis and generation
of non-Gaussian stochastic processes. It turns out to be very flexible and can accommodate, in addition
to the usual mathematical properties, physically sound constraints (such as those related to stochastic
anisotropy, which may be critical in inverse measurements or for a wave propagation analysis; see [3] [4]
[5] [6] [7] and the references therein). In this paper, we present some of the latest developments related to
these Prior Algebraic Stochastic Models and exemplify the approach by considering the case of mesoscopic
elasticity tensor random fields [8]. The paper is organized as follows. First of all, we present, in Section 2,
some of the key aspects of the overall methodology. In particular, we introduce the so-called generalized
stochastic prior representation and briefly address the issue of random generation. More specifically, we
propose a novel algorithm which is based on solving a family of Itô stochastic differential equations (ISDE)
and which turns out to be very efficient, regardless of the probabilistic dimension under consideration.
We finally exemplify the efficiency of the algorithm in Section 3.

2 Construction of the PASM

Let Ω be an open bounded domain in Rd, with 1 6 d 6 3. We denote by M+
n (R) the set of all the

symmetric positive-definite (n × n) real matrices. We further denote by {[C(x)],x ∈ Ω} the mesoscopic
M+

n (R)-valued random field, the probabilistic model of which has to be constructed. Let {[C(x)],x ∈ Ω}
be the mean value of {[C(x)],x ∈ Ω}. Let {Ξ(x),x ∈ Rd} and {ξ(x),x ∈ Rd} be two normalized
homogeneous Gaussian random fields with values in RN and Rp respectively, with p = n(n+ 1)/2. Let E
denote the mathematical expectation.

2.1 Methodology of construction

The construction of a PASM is achieved following a methodology similar to that pursued in [2]. In essence,
we proceed in two steps:

• We first define a set of homogeneous Gaussian normalized random fields, which are referred to as
the stochastic germs and which are used for the random generation procedure.

• Secondly, we prescribe, through a particular algebraic decomposition of [C(x)] at any point x of
Ω, the family of first order marginal distributions for the random field {[C(x)],x ∈ Ω}. Such a
prior decomposition involves a deterministic mapping as well as a measurable operator acting on the
aforementioned stochastic germs, hence inducing spatial correlations in the probabilistic model.

It should be noticed at this stage that the prior decomposition is not designed in order to prescribe a
given correlation structure on random field {[C(x)],x ∈ Ω}, and that the correlation functions induced
by such a construction, while unknown a priori, can be set up having recourse to an inverse analysis.

2



2.2 Generalized probabilistic representation

For all x in Ω, we decompose the random matrix [C(x)] as follows:

[C(x)] = [L(x)] [G(x)] [L(x)], (1)

where {[G(x)],x ∈ Ω} and {[L(x)],x ∈ Ω} are two auxiliary second-order random fields defined below.
The random field {[G(x)],x ∈ Ω} is introduced as an anisotropic germ in the representation of the

mesoscale random field. It exhibits fully anisotropic stochastic fluctuations, and is then assumed to belong
to the class SFG+ of non-Gaussian positive-definite matrix-valued random fields defined in [2] (and for
which the family of first-order marginal probability distributions is constructed within the maximum
entropy - MaxEnt - paradigm [9]). Consequently, the random matrix [G(x)] is written as

[G(x)] = [K(x)]T [K(x)], (2)

for all x in Ω, with [K(x)] an upper-triangular random matrix. From Eq. (2) and the p.d.f. of [G(x)]
(which is not recalled below for the sake of simplicity), it can be deduced that [K(x)] reads as

[K(x)] = T (ξ(x)) , (3)

where T is a nonlinear measurable (deterministic mapping) (see [2] for a closed-form expression).
The random field [L(x)],x ∈ Ω is defined as the unique positive-definite square root of a random field,

denoted by {[M(x)],x ∈ Ω}, which takes its values in the subset Minv
n (R) ⊂M+

n (R) of matrices exhibiting
some SO(n)-invariance properties:

[L(x)] = [M(x)]1/2, ∀x ∈ Ω. (4)

In the framework of linear elasticity (to which the derivations are restricted from now on), the set Minv
n (R)

can readily be identified with a set of elasticity matrices exhibiting some given material symmetries (e.g.
isotropy or transverse isotropy). From a practical perspective, the generalized probabilistic representation
defined by Eq. (1) allows the level of stochastic anisotropy to be controlled apart from the overall level
of statistical fluctuations (see [7] for an illustration in the isotropic case; see [5] [8] for the generalization
to all symmetry classes and algorithmic details). Note that a fully anisotropic stochastic elasticity matrix
can be recovered by setting the level of fluctuations of [L(x)] to 0. In order to construct the probabilistic
model for random matrix [M(x)], we first decompose [M(x)] as

[M(x)] = [C(x)]1/2 expm ([A(x)]) [C(x)]1/2, (5)

where expm denotes the matrix exponential. In Eq. (5), [A(x)] is a random matrix exhibiting the same
topological structure as [M(x)] and such that

E{expm ([A(x)])} = [In], (6)

with [In] the (n× n) identity matrix. It can be shown [8] that [A(x)] can be expanded as

[A(x)] =

i=N∑
i=1

ai(x) [Ei], (7)

in which the set of deterministic matrices [E1], . . ., [EN ] is a basis of Minv
n (R) and a(x) = (a1(x), . . . , aN (x)) ∈

RN . Note that [A(x)] is not positive-definite and consequently, [A(x)] does not belong to Minv
n (R). As
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for the anisotropic germ, the p.d.f. of the random vector a(x) is inferred through the MaxEnt principle,
for which the following constraints (in addition to the normalization condition) are used:

E

{
i=N∑
i=1

ai(x) [Ei]

}
= [In], (8)

i=N∑
i=1

E{ai(x)}tr
(
[Ei]

)
= ν(x). (9)

The induced p.d.f. for random vector a(x) then involves a set of Lagrange multipliers whose numerical
values can be determined by solving an optimization problem (see [8]). Unlike the anisotropic germ
{[G(x)],x ∈ Ω}, the random field {a(x),x ∈ Ω} cannot be expressed in terms of a vector-valued Gaussian
random field, at least in a way that turns out to be efficient from a computational standpoint. In order
to tackle this issue, a new random generation procedure is then proposed in the next section.

2.3 Random generator for random field {a(x),x ∈ Ω}
We propose a novel generation procedure which is based upon solving a family of Itô Stochastic Differential
Equations indexed by Ω. This family if ISDE is such that the family of p.d.f. associated with the family
of invariant measures exactly matches the family of MaxEnt first-order marginal distributions introduced
above (see [10] for the construction of each ISDE). A cornerstone of the method thus consists in introducing
a family {W x(r), r > 0}x∈Ω of normalized RN -valued Wiener processes, indexed by Ω, such that the
Gaussian increment of the Wiener process at point x between times r and s (with r < s) reads as

∀0 6 r < s, W x(s)−W x(r) =
√
s− r Ξrs(x), (10)

where x 7→ Ξrs(x) is an independent realization of the Gaussian random field {Ξ(x),x ∈ Rd}. Owing to
the convergence towards the stationary solution at all points of domain Ω (which has to be characterized
beforehand), such a strategy does generate spatial dependencies for random field {a(x),x ∈ Ω} (and then,
for random field {[C(x)],x ∈ Ω} in view of Eq. (1)). From a conceptual point of view, this algorithm
amounts to define the random field {[L(x)],x ∈ Ω} as

[L(x)] = H (Ξ(x)) , (11)

in which H is a nonlinear operator. It is worth noticing that such a random generator can be readily
applied to any vector-valued random field whose family of first-order marginal probability distributions is
induced by a MaxEnt approach. In this work, the conservative part of each ISDE is discretized by using a
symplectic Störmer-Verlet scheme, which is found to converge much faster than an explicit Euler scheme
for the investigated cases. The reader is referred to [8] for the mathematical background and further
details about this algorithm. In the next section, we illustrate the approach by considering the case of
tensors that are almost isotropic.

3 Application

3.1 Problem description

Let Ω =]0, 100[ (in [mm]). Below, all the spatial correlation lengths associated with the stochastic germs
are set to the same value, namely L = 20 [mm]. We assume that {[L(x)], x ∈ Ω} takes its values in
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the set of isotropic elasticity tensors, spanned by the two projectors [E1] and [E2]. The mean function
x 7→ [C(x)] is then written as [C(x)] = 3c1 [E1] + 2c2 [E2], where c1 and c2 are set to 1.5 and 1 (both in
[GPa]) respectively. Those parameters can be interpreted as the mean bulk and shear moduli, respectively.
Furthermore, we take ν = −0.2 (see Eq. (9)) and the level of statistical fluctuations associated with the
anisotropic term {[G(x)], x ∈ Ω} is set to 0.2.

3.2 Numerical results

It follows that
[A(x)] = a1(x) [E1] + a2(x) [E2], (12)

where the R-valued random fields {a1(x), x ∈ Ω} and {a2(x), x ∈ Ω} exhibit first-order marginal p.d.f.
that do not depend on x (since ν is constant over Ω). Those p.d.f., denoted by pa1

and pa2
respectively, are

defined through Lagrange multipliers, the values of which are calibrated within an optimization algorithm.
The graphs of pa1 and pa2 are shown in Figure 1. A few samples of the random fields {C11(x), x ∈ Ω} and
{C12(x), x ∈ Ω}, defined through the generalized representation and generated by the proposed algorithm,
are finally shown in Figure 2.
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Figure 1: Graphs of the p.d.f. a 7→ pa1
(a) and a 7→ pa2

(a).

4 Conclusion

This paper is devoted to the construction of a generalized Prior Algebraic Stochastic Models (PASM) for
non-Gaussian tensor-valued random fields. In a first step, we have recalled the MaxEnt-based methodology
of construction and have presented a generalized prior algebraic representation. Some computational issues
related to the construction of a random generator are briefly reviewed and a new algorithm, allowing for the
generation of vector-valued non-Gaussian random fields, is designed. Finally, the algorithm is exemplified
by considering the modeling of almost isotropic elasticity tensor random fields.
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Figure 2: A few samples of random fields {C11(x), x ∈ Ω} and {C12(x), x ∈ Ω}.
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