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Abstract

This paper deals with the study of axisymmetric wave propagation in var-
ious acoustic / porous stratified media coupling configurations. It presents
the theoretical development of a semi-analytical method, its validation for a
limit test-case half-space ground, and an extension to a realistic multilayered
seabed, when spherical waves are emitted from a transient point source in
water.

Keywords: Stratified poroelastic seabed, Spherical acoustic wave,
Axisymmetric geometry, Hankel-Fourier transforms.

1. Introduction

The study of wave propagation in seawater-seabed coupling configurations
is of interest for underwater acoustics and civil engineering. On the one
hand, the acoustic equation models the physical phenomenon in the seawater
part, and on the other hand, the Biot equations describe the seabed part
[1, 2, 3]. In such problems, several boundary conditions between the fluid
and the top porous layer can be used to model hydraulic exchanges [2, 4, 5].
The proposed study focuses on transient wave propagation in a multi-region
medium composed of a fluid half-space representing seawater over a stratified
poroelastic medium representing the seabed. The source is located within the
seawater part and emits spherical transient waves. The purpose is to provide
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a semi-analytical approach to solve this coupled problem in an axisymmetric
configuration.

Configurations are often restricted to 2D Cartesian geometries. Three-
dimensional Green’s function in axisymmetric configurations was first devel-
oped by [6] for an acoustic point source located near a half-space poroelastic
seabed. Nevertheless, the study was restricted to half-space situations.

Focusing on the stratified aspect of the problem, the strategies usually
adopted are based on transfer matrix, stiffness matrix or transmission and
reflexion matrix methods. The main difficulty deals with the conditioning
of matrices, that can be overcome using specific techniques [7]. These meth-
ods historically developed for electromagnetic and then viscoelastic problems
have been extended to poroelastic media. These developments have been
proposed for 2D Cartesian geometries with a free surface [7, 8] and then
with a coupling with a seawater interaction [9]. In the present article, we
propose to extend the previous work to an axisymmetric geometry and to
couple the stratified poroelastic medium to a fluid one. The axisymmetric
approach is based on Hankel-Fourier transforms, providing thus an analytical
matrix system for the fluid pressure / stresses / displacements / velocities in
the frequency-wavenumber domain. To obtain results in the time and space
domain, integrations are then performed numerically.

The paper is organized as follows. Section 2 describes the geometry under
study, and proposes analytical solutions to the acoustic equation and Biot
equations in the context of multilayered medium and axisymmetric geometry.
Section 3 presents a test case to validate the results by a comparison with
those of [6], and illustrates both the stratified aspect of the ground and the
interface with the seawater.

2. Model formulation

2.1. Geometry under study

The configuration under investigation is a fluid half-space Ω0 over a stack
of homogeneous and isotropic poroelastic layers Ωn (n = 1, · · · , N), as shown
in Fig. 1. The z geometrical axis points upward. The N plane and parallel
interfaces are located at zn ≤ 0, with z0 = 0. An acoustic point source
Os ( rs = 0 ; zs > 0) in the fluid emits transient spherical waves.
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2.2. Multilayered porous medium

The poroelastic media Ωn are modeled using the Biot theory [1, 2, 3]. For
homogeneous and isotropic layers, the physical parameters do not depend on
the spatial coordinates and can be listed as follows: for the saturating fluid,
dynamic viscosity η and density ρf ; for the elastic skeleton, density ρs and
shear modulus µ as well as connected porosity φ, tortuosity a, absolute per-
meability κ, Lamé coefficient of the dry matrix λ, and two Biot coefficients
β and m. Based on the constitutive equations and the conservation of mo-
mentum in porous media, one obtains





σ = (λ∇.u− β p) I+ 2µ ε, (1a)

p = −m (β∇.u+∇.w) , (1b)

∇ σ = ρ ü+ ρf ẅ, (1c)

−∇ p = ρf ü+
a ρf

φ
ẅ +

η

κ
Υ ∗ ẇ, (1d)

where ∗ denotes a convolution product in time. Υ is a time-dependant vis-
cosity correction factor describing the transition behaviour from viscosity-
dominated flow in the low-frequency range towards inertia-dominated flow at
high-frequency range [10]. u,U andw = φ (U−u) are the solid displacement,
the fluid displacement and the relative displacement vectors, respectively. I
is the identity tensor, σ is the stress tensor, ε = 1

2
(∇u+∇t u) is the strain

tensor, and p is the pore pressure. The overlying dot denotes the deriva-
tive in terms of time t. Pressure and stress components are eliminated from
Eqs. (1a)-(1b) and substituted in Eqs. (1c)-(1d), giving a (u, w) second-
order wave formulation [7, 8]. By introducing the Helmholtz potentials for
the solid (ϕ, Ψ) and relative (ϕr, Ψr) displacements, the wave formulation
yields a system of partial differential equations associated to these potentials
as follows





−µ (∆ψθ −
ψθ

r2
) + ρ ψ̈θ + ρf ψ̈

r
θ = 0, (2a)

ρf ψ̈θ +
a ρf

φ
ψ̈r
θ +

η

κ
Υ ∗ ψ̇r

θ = 0, (2b)

(λ+ 2µ+mβ2)∆ϕ+mβ∆ϕr − ρ ϕ̈− ρf ϕ̈r = 0, (2c)

mβ∆ϕ+m∆ϕr − ρf ϕ̈− a ρf

φ
ϕ̈r − η

κ
ϕ̇r = 0. (2d)
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Note that when projecting in the axisymmetric geometry, only the θ coordi-
nate is useful for the vector potentials: Ψ(r) = ψθ

(r)(r, z, t) eθ.
For an axisymmetric configuration, it is relevant to introduce the nth or-

der Hankel (or Fourier-Bessel) transform over the r variable, and the Fourier
transform over the t variable, of an integrable function f , defined as follows
[11]

f̃n(ξ) =

∫ +∞

0

rf(r)Jn(ξr)dr and f ∗(ω) =
1

2π

∫ +∞

−∞

f(t)e+iωtdt, (3)

where ξ is the transform Hankel parameter, ω the radial frequency and Jn
the nth order Bessel function of the first kind.
In the following, we perform a Fourier transform in time of Eqs. (2a)-(2b)-
(2c)-(2d). Then, a 0 th- and 1 st-order Hankel transform is applied to the
scalar and vector potentials, respectively. From equation (2b), a proportion-

ality relation between ψ̃θ

r∗

1 (ξ, z, ω) and ψ̃θ

∗

1(ξ, z, ω) is obtained

ψ̃θ

r∗

1 (ξ, z, ω) = − ρf ω
a ρf ω
φ

+ i
η
κΥ

∗(ω)
ψ̃θ

∗

1(ξ, z, ω) = G∗(ω) ψ̃θ

∗

1(ξ, z, ω). (4)

Then, the introduction of the above relation in the doubly transformed do-
main formulation of Eq. (2a) provides the partial differential equation rela-
tive to the S shear wave

∂2ψ̃θ

∗

1

∂z2
(ξ, z, ω) +

(
ω2

µ
(ρ+ ρf G

∗(ω))− ξ2
)
ψ̃θ

∗

1(ξ, z, ω) = 0. (5)

Similarly, relative and absolute scalar potentials are linked by

ϕ̃r∗
0j(ξ, ω) =

ρf ω
2 −mβ(k2Pj + ξ2)

m(k2Pj + ξ2)− a ρf ω
2

φ
− i

η ω
κ Υ∗(ω)

ϕ̃∗
0j(ξ, ω) = F̃j

∗
(ξ, ω)ϕ̃∗

0j(ξ, ω),

(6)
where j = 1, 2. The formulation of Eqs. (2c) and (2d) in the doubly trans-
formed domain results in two coupled partial differential equations relative
to the P1 and P2 compressional waves, defined as

[(
∂2

∂z2
− ξ2

)
KP + ω2 M+ i ωC

]
Φ̃∗

0 = 0, (7)
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where Φ̃∗
0 =

{
ϕ̃∗
0(ξ, z, ω)

ϕ̃r∗
0 (ξ, z, ω)

}
, stiffness, mass and damping matrices being

respectively

KP =

[
λ+ 2µ+mβ2 mβ

mβ m

]
,M =




ρ ρf

ρf
aρf

φ


 ,C =




0 0

0
η

κ
Υ∗


 .

(8)
From Eqs. (5) and (7), we introduce global wavenumbers kS and kPj by the

relations k2S = k2zS + ξ2 = ω2

µ
(ρ + ρf G

∗(ω)) and k2Pj = k2zPj + ξ2. kzS, kzPj

and ξ are the associated vertical wavenumbers and the radial wavenumber,
respectively. Applying the Fourier transform over the z variable defined as
follows

f(kz) =
1

2π

∫ +∞

−∞

f(z)e−ikzzdz (9)

to system (7), yields the dispersion relation when the determinant of matrix is
equal to zero. Then, the general solution relative to the solid phase Helmholtz
potentials of system (5)-(7) can be written as

ψ̃θ

∗

1(ξ, z, ω) = ψ̃θ

∗I

1 (ξ, ω)e−ikzSz + ψ̃θ

∗R

1 (ξ, ω)eikzSz, (10)

ϕ̃∗
0(ξ, z, ω) = ϕ̃∗I

01(ξ, ω)e
−ikzP1

z + ϕ̃∗R
01 (ξ, ω)e

ikzP1
z

+ ϕ̃∗I
02(ξ, ω)e

−ikzP2
z + ϕ̃∗R

02 (ξ, ω)e
ikzP2

z, (11)

where I and R state the ‘incident’ (or downward) and the ‘reflected’ (or
upward) waves, respectively.
The choice of an upward (z) axis, implies that the conditions ℑm{kzS} ≥ 0
as well as ℑm{kzPj

} ≥ 0 (j = 1, 2) should be satisfied to have a bounded
field far away from the ground surface (z −→ −∞).

Besides, for an axisymmetric geometry

ũr
∗
1(ξ, z, ω) = − ξ ϕ̃∗

0(ξ, z, ω)−
∂ψ̃θ

∗

1

∂z
(ξ, z, ω), (12)

ũ∗z0(ξ, z, ω) =
∂ϕ̃∗

0

∂z
(ξ, z, ω) + ξ ψ̃θ

∗

1(ξ, z, ω). (13)

Obviously, analogous expressions are obtained for the radial and vertical
relative displacement components of vector w by substituting Helmholtz po-
tentials for the solid displacement by relative ones.
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Then, the expressions of ũr
∗
1 and ũz

∗
0 as functions of the scalar ‘incident’ and

‘reflected’ Helmholtz potentials, are obtained from Eqs. (10)-(11) substituted
in Eqs. (12)-(13). The same approach is led for w̃r

∗
1 and w̃z

∗
0 with relative

Helmholtz potentials. In the present axisymmetric configuration, the exact
stiffness matrix approach is based on vectors of transformed displacement
and stress components [7, 8], defined as

ũ
∗ = (ũr

∗
1, i ũz

∗
0, i w̃z

∗
0)

t, Σ̃∗ = (σ̃rz
∗
1, i σ̃zz

∗
0, − i p̃∗0)

t.

By using matrix notations, after setting Φ̃∗I/R = (ϕ̃
∗I/R
01 , ϕ̃

∗I/R
02 , ψ̃θ

∗I/R

1 )t, one
can deduce

{
ũ
∗(ξ, zn−1, ω)
ũ
∗(ξ, zn, ω)

}
=

[
MatI MatRZ
MatIZ MatR

]{
Φ̃

′∗I(ξ, ω)

Φ̃
′∗R(ξ, ω)

}
, (14)

where Φ̃
′∗I/R are modified potentials to have a better conditioning of Eq.

(14) [7]. MatI/R =
[
mat

I/R
pq

]
; p = 1, 2, 3 ; q = 1, 2, 3 with

mat
I/R
11 = mat

I/R
12 = − ξ ; mat I

13 = −mat R
13 = + ikzS ; mat I

21 = −mat R
21 =

+ kzP1
; mat I

22 = −mat R
22 = + kzP2

; mat
I/R
23 = + iξ ; mat I

31 = −mat R
31 =

+ kzP1
F̃1

∗
(ξ, ω) ; mat I

32 = −mat R
32 = + kzP2

F̃2

∗
(ξ, ω) ; mat

I/R
33 = + iξG∗(ω).

Z = Diag[eikzP1
hn , eikzP2

hn , eikzShn ] where Diag represents the terms of a diag-
onal matrix. hn = zn−1−zn > 0 is the height of a specific layer “n” bordered
by the upper and the lower depth coordinates, zn−1 and zn, respectively.

Using the Biot behaviour law, stress components can be expressed in
terms of transformed displacements

σ̃rz
∗
1(ξ, z, ω) = µ

(
∂ũr

∗
1

∂z
(ξ, z, ω)− ξ ũz

∗
0(ξ, z, ω)

)
, (15)

σ̃zz
∗
0(ξ, z, ω) = (λ+mβ2) ξ ũr

∗
1(ξ, z, ω) + (λ+ 2µ+mβ2)

∂ũz
∗
0

∂z
(ξ, z, ω)

+ mβ ξ w̃r
∗
1(ξ, z, ω) +mβ

∂w̃z
∗
0

∂z
(ξ, z, ω). (16)

Besides, regarding the pore pressure, the equivalent of Eq. (1b) in the doubly
transformed domain is

p̃∗0(ξ, z, ω) = − m

{
β

[
ξ ũr

∗
1(ξ, z, ω) +

∂ũz
∗
0

∂z
(ξ, z, ω)

]

+ ξ w̃r
∗
1(ξ, z, ω) +

∂w̃z
∗
0

∂z
(ξ, z, ω)

}
. (17)
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Then, the relation between stresses and Helmholtz potentials is given by

{
Σ̃∗(ξ, zn−1, ω)

−Σ̃∗(ξ, zn, ω)

}
=

[
SI SRZ
-SIZ -SR

]{
Φ̃

′∗I(ξ, ω)

Φ̃
′∗R(ξ, ω)

}
, (18)

where SI/R =
[
s
I/R
pq

]
; p = 1, 2, 3 ; q = 1, 2, 3 with

s I
11 = −s R

11 = +2µξikzP1
; s I

12 = −s R
12 = +2µξikzP2

; s
I/R
13 = +µ(k2zS −

ξ2) ; sI21 = sR21 = − i[(k2zP1
+ ξ2)(λ+mβ2 +mβF̃1

∗
(ξ, ω)) + 2µk2zP1

] ; sI22 =

sR22 = − i[(k2zP2
+ ξ2)(λ + mβ2 + mβF̃2

∗
(ξ, ω)) + 2µk2zP2

] ; s I
23 = −s R

23 =

+2µξkzS ; s
I/R
31 = − im(k2zP1

+ ξ2)(F̃1

∗
(ξ, ω) + β) ; s

I/R
32 = − im(k2zP2

+

ξ2)(F̃2

∗
(ξ, ω) + β) ; s

I/R
31 = 0.

Finally, analytical expressions for transformed displacement vectors are
written in condensed form as

[Tlayern ]6×6

{
ũ
∗(ξ, zn−1, ω)
ũ
∗(ξ, zn, ω)

}
=

{
Σ̃∗(ξ, zn−1, ω)

−Σ̃∗(ξ, zn, ω)

}
. (19)

A conventional assembling technique between the layers is then performed.
As [Tlayern ] is a 6×6 matrix, the global resulting matrix system has dimension
3(N + 1)× 3(N + 1).

2.3. Acoustic medium

This part presents the analytical model formulation of wave propagation
coming from an acoustic point source applied at Os (Fig. 1), in the water
semi-infinite domain Ω0, characterized by celerity of waves c and by density
ρf , assumed to be the same as in the porous media Ωn.

The acoustic equations are written as follows





Ü(r, z, t) = − 1

ρf
∇p(r, z, t), (20a)

∆ p(r, z, t)− 1

c2
p̈(r, z, t) = −s(r, z, t) = −S(t) δ(r − rs) δ(z − zs),(20b)

where p is the acoustic pressure, U is the fluid displacement and s(r, z, t) is
the impulse transient superpressure emitted from point Os. S(t) is a causal
source term and δ is the Dirac function.
In the following, we introduce the fluid global wavenumber kf , linked to its
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vertical (kzf ) and radial (ξ) components by k2f = k2zf + ξ2 = ω2

c2
, and use the

mathematical property

δ̃0(ξ) =

∫ +∞

0

rδ(r)J0(ξr)dr =
1

2π
. (21)

Then, the partial differential equation relative to the pressure wave is ob-
tained from the formulation of Eq. (20b) in the Fourier and 0 th-order Hankel
transform domain, as

∂2p̃∗0
∂z2

(ξ, z, ω) + k2zf p̃
∗
0(ξ, z, ω) = −S

∗(ω)

2π
δ(z − zs). (22)

The solution to the above inhomogeneous equation results in the summation
of two components:
- the complementary part p̃C

∗
0(ξ, z, ω) corresponding to the solution of the

homogeneous equation associated to Eq. (22),
- the principal part p̃P

∗
0(ξ, z, ω) which is a specific solution of Eq. (22).

On the one hand, the complementary part of the solution is given by

p̃C
∗
0(ξ, z, ω) = P̃∗(ξ, ω)eikzf z + Q̃∗(ξ, ω)e−ikzf z, (23)

P̃∗(ξ, ω) and Q̃∗(ξ, ω) being the amplitudes, Q̃∗(ξ, ω) = 0 and ℑm(kzf ) > 0
to satisfy the convergence condition when z −→ +∞.
On the other hand, the calculation of the principal part of the solution is
inspired by [12, 13]. Concisely, the key steps are:
(i) Setting the principal part of the solution as a simple Fourier integral
expression

p̃P
∗
0(ξ, z, ω) =

∫ +∞

−∞

A(κz) e
iκzzdκz. (24)

(ii) Searching function A(κz) by introducting Eq. (24) in Eq. (22), multi-
plying the obtained equation by e−iKzz (where Kz ∈ R), integrating over the
z variable from -∞ to +∞, and using some mathematical properties of the
Dirac function to obtain

A(κz) = −S
∗(ω)

(2π)2
e−iκzzs

k2zf − κz2
. (25)

(iii) Rewritting the principal part of the solution as

p̃P
∗
0(ξ, z, ω) =

S∗(ω)

(2π)2
I(z − zs, kzf ), (26)
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where [12]

I(z − zs, kzf ) =

∫ +∞

−∞

eiκz(z−zs)

k2zf − κz2
dκz = ±iπ e

i±kzf |z−zs|

kzf
. (27)

(iv) Finally obtaining the single physically valid solution, satifying the Som-
merfeld condition [13]

p̃P
∗
0(ξ, z, ω) =

iS∗(ω)

4π

eikzf |z−zs|

kzf
. (28)

Solution (28) corresponds to the one obtained by [6, 13]. Indeed, these au-
thors provide a Green’s function as a solution of a cylindrical Helmholtz
equation, which corresponds to the Fourier transform in time of Eq. (20b).
Then, they calculate p̃P

∗
0(ξ, z, ω) by using a Sommerfeld integral decomposi-

tion of the simply transformed domain solution.

2.4. Interface equations

The geometry under study leads to a set of interface equations along the
N plane interfaces zn (n = 0, · · · , N − 1). For this purpose, we denote [g]n
the jump in a function g from Ωn to Ωn+1 across zn as

[g]n = lim
ε→0,ε>0

g(r, zn + ε, t)− lim
ε→0,ε>0

g(r, zn − ε, t)

= (g)+n − (g)−n .
(29)

- The porous / porous interfaces zn (n = 1, · · · , N − 1) are assumed to be in
perfect bonded contact [2]

[ur(r, z, t)]n = 0, [uz(r, z, t)]n = 0, [wz(r, z, t)]n = 0,

[σrz(r, z, t)]n = 0, [σzz(r, z, t)]n = 0, [p(r, z, t)]n = 0. (30)

- The fluid / porous interface z0 = 0 is modeled with the following interface
conditions [2, 4, 5]





(uz(r, z, t))
−
0 + (wz(r, z, t))

−
0 = (Uz(r, z, t))

+
0 , (31a)

(σrz(r, z, t))
−
0 = 0, (31b)

(σzz(r, z, t))
−
0 = −(p(r, z, t))+0 , (31c)

−[p(r, z, t)]0 =
1

K (ẇz(r, z, t))
−
0 . (31d)
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where K is the hydraulic permeability of the interface. The case K → +∞
describes open pores. For K → 0, Eq. (31d) is replaced by (ẇz(r, z, t))

−
0 =

0, stating sealed pores. An intermediate state for K ∈ ] 0 ; +∞[ describes
imperfect pores.

The formulation of the fluid /porous interface equations (31a)-(31c)-(31d)
in the doubly transformed domain enables both to determine the amplitude
P̃∗(ξ, ω) of the ‘reflected’ pressure wave in the fluid, and as a result to provide
the following matrix block




− i ρf ω
2

kzf
− i ρf ω

2

kzf

− i ρf ω
2

kzf
− i ρf ω

2

kzf
− i ω

K








i (ũz
∗
0(ξ, z, ω))

−
0

i (w̃z
∗
0(ξ, z, ω))

−
0





=





−i (σ̃zz∗0(ξ, z, ω))−0 +
S∗(ω)
2 π

exp(i kzf zs)
kzf

i (p̃∗0(ξ, z, ω))
−
0 +

S∗(ω)
2 π

exp(i kzf zs)
kzf




. (32)

Eq. (32) is assembled to Eq. (19) to give the radial and vertical solid and
relative displacements at each interface. The transformed displacements,
stresses, velocities and acoustic pressure everywhere inside each domain Ωn

can then be obtained analytically. The latter quantities are subsequently
calculated in the spatio-temporal domain by means of inverse Hankel-Fourier
transforms.

3. Results and discussion

In this section, we propose firstly to validate the above theoretical for-
mulation by using a half-space porous medium such as in [6]. To do that,
we consider a limit test-case of the stratified configuration, composed of two
layers presenting the same physical properties. Once the semi-analytical ap-
proach stamped, we present new results coming from a seabed [14, 15] made
of ten layers presenting various properties, as an extension of the half-space
porous ground.

3.1. Half-space test-case configuration

Porous and fluid parameters are [6]: λ = 10.0 × 109 Pa, µ = 5.0 ×
109 Pa, ρs = 2.5 × 103 kg.m−3, ρf = 1.0 × 103 kg.m−3, a = 3, β = 0.7,
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m = 10.0× 109 Pa, φ = 0.33, η = 1.0× 10−3 Pa.s, κ = 10−8 m2 as well as,

Υ∗(ω) =

(
1 + iχ

ω

ωJKD

)1/2

, ωJKD =
η φ

a κ ρf
and χ = 0.5 [10].

In the water domain Ω0: ρf = 1.0× 103 kg.m−3, c = 1414.0 m.s−1.
The emission point source is located at zs = 10 m and the observation ones
are pointed by r = 20 m and z = ± 20 m. Such as in [6], S(t) is a Ricker
wavelet and S∗(ω) its Fourier transform

S(t) = ((1− 2α̂2(t− β̂)2)e−α̂2(t−β̂)2 and S∗(ω) =
ω2

4 α̂3
√
π
e(iβ̂ω−

ω2

4α̂2
), (33)

where α̂ = ω0

2
and β̂ = ts, ω0 = 2πf0 (f0 = 1.0×103 Hz) and ts = 2.5×10−3 s

being, respectively the central angular frequency and a shift in time.
As regards time evolution of pore pressure and fluid pressure, Fig. 2 shows

that there is an excellent agreement between the results proposed by [6] and
those obtained from our calculations. Both in permeable and impermeable
cases, it checks the validity of the analytical approach in the half-space limit
test-case.

3.2. Extension to a stratified poroelastic seabed

The regarded configuration is built from mechanical data taken in [14, 15].
It corresponds to a more realistic description of a seabed. To model the
stratified ground and to illustrate the capabilities of our approach, we have
chosen a ten layer geometry coupled to a half-space configuration. In the
porous medium, the unchanged parameters are: a = 1.25, ρs = 2.65 ×
103 kg.m−3 as well as the compressibility of the solid skeleton, χs = 36 GPa,
and of the fluid volume, χf = 2 GPa. The Lamé constants are linked in this
study by λ = 2µ. Ranges of physical characteristics from the first layer to
the half-space are: φ ∈ [0.5 ; 0.2], κ ∈ [10−9 ; 10−12] m2 and µ ∈ [107 ; 109]
Pa. From one stratum to another, only one of these three parameter values
is modified as indicated in Tab. 1, as well as the related ones. The two Biot
coefficients β and m are given by

β = 1− χ0

χs

,
1

m
=
β − φ

χs

+
φ

χf

, where χ0 = λ+
2

3
µ.

Parameters relative to the nature of the point source and to the water are
the same as for the half-space test-case situation, the only differences are:
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zs = 5 m and the observation points are located at r = 1 m and z = ±1 cm
or z = − 80 cm.

Layer n Height Porosity Absolute Shear

hn (m) φ permeability κ (m2) modulus µ (Pa)

n = 1 0.1 0.5 1× 10−9 1× 107

n = 2 0.1 0.5 1× 10−9 5× 107

n = 3 0.4 0.4 1× 10−9 5× 107

n = 4 0.4 0.4 5× 10−10 5× 107

n = 5 1.0 0.4 5× 10−10 1× 108

n = 6 1.0 0.3 5× 10−10 1× 108

n = 7 2.0 0.3 1× 10−11 1× 108

n = 8 5.0 0.3 1× 10−11 5× 108

n = 9 5.0 0.2 1× 10−11 5× 108

n = 10 10.0 0.2 1× 10−11 1× 109

Half-space + ∞ 0.2 1× 10−12 1× 109

Table 1: Height of each layer and parameter values changing from one layer to another in
the seabed

Firstly, Fig. 3 shows very similar time evolutions of fluid pressure at
z = 1 cm observation height, both for sealed, imperfect and open pore in-
terfaces between seawater and seabed. This means that the nature of the
contact does not have any influence on the fluid pressure for the configu-
ration under study. Secondly, considering only the impermeable cases, Fig.
3 emphasizes the fact that the properties of the first layer force the fluid
pressure behaviour in the seabed when observation point is very close of the
z0 = 0 interface. Thirdly, central arrival time of the acoustic compressional
wave is given by

tf =

√
(zs − z)2 + r2

c
+ ts = 6.1 ms.

In contrast, Fig. 4 clearly proves that the hydraulic permeability coefficient
value has a strong impact on temporal variation of the vertical displacement
at z = − 1 cm observation height, in the first layer of the seabed. Note
that this trend is very attenuated when considering stresses in the seabed,
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not shown here.
Besides the comparison beween Fig. 4 and Fig. 5 highlights the multiple
wave reflections at the porous / porous intefaces in the seabed. In addition,
the confrontation between half-space and multilayered results yields higher
differences in the intermediate case than those obtained in the extreme situ-
ations.
In the fourth layer, at z = − 80 cm observation height (Fig. 6), the nature
of the contact does not have influence on the first displacement peaks any
more. This time, the differences due to the kind of hydraulic interface is seen
on the part of the response relative to the reflection waves (t > 9 ms).

4. Conclusion and perspectives

An axisymmetric model of wave propagation in poroelastic / acoustic
configurations, has been presented, validated and extended by using a semi-
analytical method. The theoretical development has been based on a matrix
block assembling technique stating the porous layers, the fluid domain as
well as their interfaces. A half-space porous ground as a limit test-case of our
multilayered medium has been considered to validate the analytical model.
Indeed, regarding pore and fluid pressures, there is a very good agreement
between the results coming from [6] and our calculations, whatever the pore
nature. Then, the approach has been applied to a stratified seabed, as an
extension of the half-space porous soil, providing new results which emphasize
the variations in time of mechanical quantities.

From the obtained displacements and stresses, a future investigation con-
sists in estimating mechanical and hydrological parameters of the systems
under study. In parallel, the results could be compared to those issuing
from finite difference, element and/or volume approaches or other analytical
formulations such as transfer or transmission and reflexion matrices.
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Figure 2: Time evolution of fluid pressure (up) and pore pressure (down) for permeable
and impermeable cases, obtained by [6] and our calculations
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Figure 3: Time evolution of fluid pressure at z = 1 cm observation height, for permeable
and intermediate (K = 5× 10−10 m.s−1.Pa−1) cases in the seabed configuration, and for
impermeable case in both the seabed and the half-space corresponding situation
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Figure 4: Time evolution of vertical displacement in the first layer at z = − 1 cm obser-
vation height, for permeable, intermediate (K = 5×10−10 m.s−1.Pa−1) and impermeable
cases in the seabed configuration
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Figure 5: Time evolution of vertical displacement in the half-space corresponding situation
to that of Fig. 3
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Figure 6: Time evolution of vertical displacement in the fourth layer at z = − 80 cm
observation height, for permeable, intermediate (K = 5× 10−10 m.s−1.Pa−1) and imper-
meable cases in the seabed configuration

21


