
HAL Id: hal-00734076
https://hal.science/hal-00734076

Submitted on 20 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A CAD Tool for an Array of Differential Oscillators
Coupled Through a Broadband Network

Mihaela-Izabela Ionita, David Cordeau, Jean-Marie Paillot, Smail Bachir,
Mihai Iordache

To cite this version:
Mihaela-Izabela Ionita, David Cordeau, Jean-Marie Paillot, Smail Bachir, Mihai Iordache. A
CAD Tool for an Array of Differential Oscillators Coupled Through a Broadband Network. In-
ternational Journal of RF and Microwave Computer-Aided Engineering, 2013, 23 (2), pp.178-187.
�10.1002/mmce.20663�. �hal-00734076�

https://hal.science/hal-00734076
https://hal.archives-ouvertes.fr


A CAD TOOL FOR AN ARRAY OF DIFFERENTIAL OSCILLATORS COUPLED 

THROUGH A BROADBAND NETWORK 

 

M. Ionita
1,2

, D. Cordeau
2
, J.M. Paillot

2
, S. Bachir

2
, M. Iordache

1
 

 
1
 Electrical Engineering Faculty, University Politehnica of Bucharest, 313 Splaiul Independentei, 

060042 Bucharest – Romania  

2
 LAII ENSIP, EA 1219, University of Poitiers, IUT, 4 Av de Varsovie, 16021 Angoulême – 

France 

 

Shortened title: A CAD TOOL FOR COUPLED OSCILLATORS  

 

Abstract (50 words): A new expression of the equations describing the locked states of two 

oscillators coupled through a resistor is presented in this paper. This theory has led to the 

elaboration of a CAD tool which provides, in a short simulation time, the frequency locking 

region of two coupled differential oscillators.  
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I. Introduction 

Arrays of coupled oscillators are the subject of increasing research activity due to their use in 

new applications such as power-combining techniques or beam steering of antenna arrays, by 

synthesizing a constant phase shift distribution between two adjacent oscillators [1-6]. For a one-

dimensional oscillators array, the required inter-stage phase shift can be obtained by detuning the 

free-running frequencies of the outermost oscillators in the array [5]. Furthermore, it is shown in 

[4,7,8] that the resulting phase shift is independent of the number of oscillators in the array. 



In R. York’s previous works, coupled microwave oscillators have been modeled as simple 

single-ended van der Pol oscillators coupled through either a resistive network or a broadband 

network [4,7,9]. Unfortunately, these works are limited to the cases when the coupling network 

bandwidth is much wider than the oscillators’ bandwidth. In these conditions, a generalization of 

Kurokawa’s method [10] was used to extend the study to a narrow-band circuit allowing the 

equations for the amplitude and phase dynamics of two oscillators coupled through many types 

of circuits to be derived [11]. 

 Since these works, only a small number of articles have presented new techniques for the 

analysis of coupled-oscillator arrays [12-15]. In [14], a semi-analytical formulation is proposed 

for the design of coupled-oscillator systems, avoiding the computational expensiveness of a full 

harmonic balance synthesis exposed in [12,13]. In [15], a simplified closed-form of the semi-

analytical formulation proposed in [14] for the optimized design of coupled-oscillator systems is 

presented. Nevertheless, even if these new semi-analytical formulations permit a good prediction 

of the coupled-oscillator solution, it is only valid for the weak coupling case. On the other hand, 

the York’s theory [11] provides a full analytical formulation allowing to predict the 

performances of microwave oscillator arrays for both weak and strong coupling. 

In the authors’ previous work [16], mathematical manipulations were applied to the dynamic 

equations describing the locked states of the coupled oscillators proposed in [11]. A reduced 

system of equations was obtained, leading to the elaboration of a CAD tool that provides, in a 

considerably short simulation time, the frequency locking region of the coupled oscillators, in 

terms of the amplitudes of their output signals and the phase shift between them. Nevertheless, 

although this CAD tool allows to obtain, in a short simulation time, the cartography of the locked 

states of the coupled oscillators, it is limited to the case of two single-ended van der Pol 



oscillators coupled through an RLC circuit. Furthermore, it does not allow an accurate prediction 

of the oscillators’ amplitudes since the van der Pol model used by J. Lynch and R. York in [11] 

is too simple. 

Moreover, since the theoretical limit of the phase shift obtained for an array of single-ended 

coupled oscillators is within the range of 90° [7], it seems interesting to analyze the behavior of 

an array of differential oscillators. Indeed, in this case, the theoretical limit of the phase shift is 

within 360° due to the differential nature of the array, leading to a more efficient beam-scanning 

architecture for instance. Furthermore, differential oscillators are widely used in high-frequency 

circuit design due to their relatively good phase noise performances and ease of integration. 

Moreover, the use of a broadband coupling network, i.e. a resistor, instead of a resonant one, can 

lead to a substantial save in chip area. 

Due to these considerations, the aim of this paper is to present a new CAD tool allowing to 

acquire, in a considerably short simulation time, the frequency locking region of two differential 

oscillators coupled through a resistive network. 

This paper will be organized as follows. A brief review of R. York’s theory giving the dynamics 

for two van der Pol oscillators coupled through a resonant network will be presented in 

subsection II-A. In subsection II-B, a new expression of the equations describing the locked 

states of two van der Pol oscillators coupled through a broadband network using an accurate 

model allowing a good prediction of the oscillators’ amplitude will be presented. Then, in 

subsection II-C, we will introduce a reduced system of equations with no trigonometric aspects 

allowing an easier numerical solving method. In section III, the developed CAD tool as well as 

its reliability test using Agilent’s ADS software will be presented. The details concerning the 



variables estimation technique used to solve the system of equations describing the locked states 

of the two van der Pol coupled oscillators as well as the stability analysis of the locked states will 

be described in subsections III-A and III-B, respectively. Finally, in subsection III-C, the 

simulation results showing the reliability and the accuracy of the proposed tool will be presented. 

II. Coupled van der Pol oscillators theory 

A. Overview of R. York’s theory 

R. York’s work considers the analysis of simple single-ended van der Pol oscillators coupled 

through either a resistive network or a broadband network that produce a constant amplitude and 

a phase shift between the oscillators [7, 9]. This analysis is useful in showing the effects of the 

coupling network parameters but, unfortunately, it is limited to the broadband case. In these 

conditions, R. York used a generalization of Kurokawa’s method [10] to extend the oscillators 

dynamics to the case of narrow-band coupling. Using a system made of two parallel resonant 

circuits containing nonlinear negative conductance devices and coupled through a series resonant 

circuit, as shown in Fig. 1, and starting from the admittance transfer functions (Y1, Y2, Yc) 

binding the coupling current (Ic) to the oscillators’ voltages (V1 and V2), J. Lynch and R. York 

described the oscillators’ dynamic equations, as well as those for the amplitude and phase of the 

coupling current. Then, by setting the derivatives to zero, the algebraic equations describing the 

oscillators’ frequency locked states were obtained as follows: 
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with: 

 
c
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1
    : the coupling constant, where G0 is the nonlinear conductance at zero 

voltage; 

 
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, AA : the amplitudes of oscillators 1 and 2, respectively; 

 12    : the inter-stage phase shift; 
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Furthermore, let us note that in the equations presented above, we refer the oscillators’ free-

running frequencies or tunings, 
01

  and 
02

 , and the synchronization frequency of the system, 

 , to the coupling circuit resonant frequency, ,
0 c

  using the following substitutions: 

c00101
          

c00202
           

cc 0
         

Thus, a solution to (1) indicates the existence of a frequency-locked state and allows to obtain 

the amplitudes A1 and A2 of the two oscillators as well as the inter-stage phase shift   and the 

synchronization pulsation  for a combination (
01

 , 
02

 ). 

B. New expression of the equations allowing an accurate prediction of the 

oscillators’ amplitudes 

The purpose of this subsection is to present a new formulation of York’s equations describing the 

locked states of two coupled van der Pol oscillators using an accurate model allowing a good 

prediction of the oscillators’ amplitudes. Indeed, in [11], the negative conductance presented by 

the active part has the following expression: 
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leading to a free-running amplitude of one van der Pol oscillator always equal to unity 

irrespective of the G0 value. Thus, this result clearly shows the limitation of the van der Pol 

model used by Lynch and York in [11]. In this case, in order to provide a more accurate model, 



let us consider the schematic of a van der Pol oscillator as shown in Fig. 2, for which the current 

in the nonlinear conductance GNL is equal to      tbvtavti
3

           with –a the negative 

conductance necessary to start the oscillations and b a parameter used to model the saturation 

phenomenon. Now, assuming a perfectly sinusoidal oscillation so that    tAtv
0

cos.     , the 

expression of the current  ti  is the following: 
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Furthermore, let us recall that such an oscillator topology can be modeled by a quasi-linear 

representation allowing a very simple analytical calculation [17]. In this case, the expression in 

the first bracket in (3) represents the negative conductance presented by the active part.    

Now, in order to obtain the new system of four equations describing the locked states of two 

coupled van der Pol oscillators, let us consider the circuit of Fig. 3 made of two van der Pol 

oscillators coupled through a series RLC circuit. In this case, the frequency-domain equations, 

using the admittance transfer function binding the coupling current to the oscillators’ voltages, 

can be written as follows:  
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where A1, 1, represents the amplitude and pulsation of oscillator 1, and so on and the subscripts 

“NL” and “L” denote respectively the nonlinear and linear portions of the circuit. The admittance 



transfer function for oscillator 1, assuming that the frequency of the oscillator remains close to 

its “free running” or uncoupled value 
01

 , has the following expression: 
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where 
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1
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1
     is the tank resonant frequency of oscillator 1 and  
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is the negative conductance presented by the active part as expressed in (3) leading to sinusoidal 

oscillation. 

Now, let us note 
C
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a
   2   which represents the resonator “bandwidth” and using the 

substitution 
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  in order to simplify the notation, the expressions for the 

admittances of  the oscillator 1 and 2, are respectively: 
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Thus, following the same steps as in [11] but using (6) and (7) for the admittance functions of 

oscillators 1 and 2 and replacing 
0G  by LG , the new system of equations describing the locked 

states of two van der Pol oscillators coupled through a resonant network is the following: 
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The case of a resistive coupling circuit can be deduced from (8) by letting the frequency 

bandwidth of the unloaded coupling circuit approach infinity, so that ac  leading to 1    

and 0   . In these conditions, since         
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 , the 

equations describing the locked states can be written as follows: 
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C. New expression of the equations describing the locked states of two van der Pol 

oscillators coupled through a resistor 

Once more, a solution to (9) indicates the existence of a frequency-locked state for the two van 

der Pol coupled oscillators. However, in this case, one can obtain the oscillators’ amplitudes A1 



and A2 for any values of parameters a and b of the van der Pol non linearity under a sinusoidal 

assumption as well as the inter-stage phase shift   and the synchronization pulsation  for a 

combination (
0201

 , ).   

Nevertheless, due to the trigonometric and nonlinear aspect of equations (9), the solutions of this 

system are very difficult or impossible to obtain. In these conditions, mathematical 

manipulations are applied to the equations in order to obtain a new system of three equations 

with three unknowns A1, A2 and ,  easier to solve. Indeed, from (9) we can write: 
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and 
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Furthermore, according to (10), we obtain: 
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then (11) and (12) can be written as: 
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In the same way, (13) and (14) can be expressed as: 
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Hence, the new system of three equations with three unknowns A1, A2 and ,  is presented as 

shown below: 
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Once this system of equations is solved, the solutions will then allow to determine the 

phase shift   between the two adjacent elements according to the pulsations 
01

  and 
02

  

using the following expressions: 

 )(arctan    
11

, ωAX            (21) 

or 



 )(arctan
22

, ωAX            (22) 

III. CAD Tool 

In this section, the new CAD tool which allows to obtain, in a considerably short simulation 

time, the cartography of the locked states of two differential oscillators coupled through a 

resistive network is presented. Hence, the system of equations (20) was implemented on Matlab 

and solved using nonlinear programming technique. 

A. Variables estimation technique 

In this part, the problem of identifying the variables (or the roots) of the system of equations (20) 

is discussed. The basic formulation of the general problem is the following: given a n
th

 

dimension system of nonlinear coupled functions )(kf , we seek the value of the variables’ 

vector   for which ( n1,k   ,0)(f k  ).  

In the case of the two van der Pol coupled oscillators model given previously, a new root finding 

procedure based on parameter estimation technique is developed. Let us consider the previous 

mathematical model given by equations (20). The vector of variables to be estimated is: 
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Where T
[.]  denotes a transposition operation. 

Furthermore, the nonlinear coupled functions )(kf  are found from (20) as: 
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As a general rule, estimation with Output Error technique [18, 19] is based on minimization of a 

quadratic multivariable criterion defined as : 






3

1k

2
k )(fJ              (27) 

Unlike linear equations, most of the nonlinear equations cannot be solved in a finite number of 

steps. Iterative methods are being used to solve nonlinear equations. For criterion minimization, 

the variables values   can be driven iteratively to the optimum by Non Linear Programming 

techniques. Practically, we are using Marquardt’s algorithm [20] for off-line estimation: 
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where 

̂  is an estimation of the system solutions  , 
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,
 is the output sensitivity function or derivative of )(kf  according to  .  

It is important to note that the obtained ̂  is an approximated solution if J ≈ 0, i.e. 

1,3     ,0  )(  kf
k

 . This final value of the criterion corresponds to “small residual”. 

B. Stability analysis 

For the stability analysis of the synchronized states, it is important to consider an initial 

differential system describing the amplitudes 







21 , AA  and phases 








21 ,  dynamics and the 

coupling current in Cartesian format 







cycx AA , . Thus, dynamic equations developed in [11] 

have been adapted to the studied case and give the following differential relations: 
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A sin    and c is the phase of the coupling current. 

These differential equations are nonlinear in states x , and unfortunately, the stability theory 

developed for the linear problem does not apply directly to this system. In practice, we typically 

linearize this system around a synchronized solution noted 
0

x  and consider the eigenvalues of 

the Jacobian matrix 





 A  so that: 
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where 
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  xxx   are the small variations of the synchronized states x  and 
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Synchronized states are asymptotically stable if and only if all the eigenvalues of the Jacobian 

matrix 





 A   have negative real parts. Thus, after each estimation of variables values   , the 

resulting Jacobian matrix is evaluated and these six eigenvalues, noted i  , are computed. 

Hence, the obtained solution is asymptotically stable if all eigenvalues i  of the Jacobian matrix 






 A  satisfy 






 ieal  < 0 whereas the solution point is unstable if at least one eigenvalue i  

satisfies 0  






 ieal  . 

Let us note that in the developed CAD tool, the eigenvalues are obtained using the MATLAB 

software function eig(). 

C. Simulation results 

In order to show the accuracy and the reliability of the proposed CAD tool, simulations using 

Agilent’s ADS software will be performed. In these conditions, let us consider the design of 



two identical differential oscillators coupled through a resistor Rc/2 of 200 Ω, as shown in Fig. 

4. The oscillators’ structure is based on a cross-coupled NMOS differential topology using a 0.35 

μm BiCMOS SiGe process. The cross connected NMOS differential pair provides the negative 

resistance to compensate for the tank losses, and the tail current source is a simple NMOS 

current mirror which draws 28 mA. The frequency of oscillation is chosen to be close to 6 GHz 

and is determined by the LC tank at the drains. In these conditions, the inductance value, L1,2, is 

close to 0.8 nH and the capacitor value, C is close to 0.88 pF. The resistor value, R, is equal to 

100 Ω so that the quality factor of the tank is equal to 3.3. A tail capacitor CT is used to attenuate 

both the high-frequency noise component of the tail current and the voltage variations on the tail 

node [21]. To ensure proper start-up of the oscillator, the transconductance of the NMOS 

transistor should be greater than 
R
1 . In these conditions, the sizes of NMOS transistors T1 to T4 

are identical and chosen to be 
m

m
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W
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35.0

70
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Since the presented theory implemented in our CAD tool uses van der Pol oscillators to model 

microwave coupled oscillators, we performed the modeling of this structure as two differential 

van der Pol coupled oscillators as presented in [22], using ADS simulation results for one 

differential NMOS oscillator at the required synchronization frequency. As a consequence, the 

two coupled oscillators of Fig. 4 can be reduced into two differential van der Pol coupled 

oscillators as shown in Fig. 5. In this case, let us note that the value of the coupling resistor on 

each path is equal to Rc/2 to match well with the theory based on the use of two single-ended van 

der Pol oscillators. For the modelling of the active part, the I = f(Vd1- Vd2) characteristic of one 

differential NMOS oscillator of Fig.4 at the required synchronization frequency was plotted 

leading to the typical cubic nonlinearity of a van der Pol oscillator. Hence, from this 



characteristic, the values of parameters a and b of the negative conductance presented by the 

active part of each oscillator were found to be respectively equal to 7.55  ּ 10
-3

 and 4  ּ 10
-4

. 

Then, knowing the parameters 0, a , a and b, the proposed CAD tool provides the cartography 

of the locked states of the two differential coupled oscillators. For instance, for a synchronization 

frequency of 5.97 GHz, with 
a

 = 5.68  ּ 10
9
 rad/s and a coupling constant 0

 = 0.5, the 

cartography of the oscillators’ locked states provided by the CAD tool is presented in Fig. 6. 

Thus, this figure presents the variations of the phase shift,  , the oscillators’ amplitudes A1 and 

A2, and the synchronization frequency fs in function of f01 and f02.  

In order to validate the results provided by our CAD tool, we compared them to the simulation 

results of the two coupled differential oscillators of Fig.4, obtained with Agilent’s ADS software. 

Let us note that with ADS, only a transient analysis of one point at a time of synchronization 

region allows to verify the synchronization results obtained with the CAD tool.  The amplitudes 

of the oscillators’ output voltages as well as the phase shift between them and the 

synchronization frequency are provided for each combination of f01 and f02. For instance, let us 

now consider Fig. 6 where the point marked with an arrow in the four subplots represents a free-

running frequency f01 = 5.73 GHz for oscillator 1 and f02 = 6.21 GHz for oscillator 2. Let us note 

that these two free-running frequencies correspond to the equally spaced tunings line as 

presented in [11]. The marked points lead to a phase shift of 32.39°, a synchronization frequency 

of the coupled oscillators of 5.97 GHz and an amplitude of 2.68 V at the output of each of the 

coupled oscillators.  

 In the same conditions, the two differential NMOS coupled oscillators of Fig.4 simulated with 

ADS have lead to two sinusoidal waves at a synchronization frequency of 5.98 GHz, a phase 



shift of 31.23° and an amplitude of 2.72 V at the output of each oscillator, as presented in Fig. 7. 

Thus, the errors regarding the phase shift and the amplitude predictions are only 3.71 % and 1.49 

%, respectively. 

Furthermore, Table I shows a comparison between the synchronization frequency, the phase shift 

and the amplitudes obtained in simulations with ADS for the two coupled NMOS differential 

oscillators, and with our CAD tool. Let us note that the free-running frequencies chosen for this 

table correspond to the equally spaced tunings line for which the synchronization frequency is 

equal to 5.97 GHz. Table II shows the same comparison as Table I, except that the free-running 

frequencies are not referred to the equally spaced tunings line. Hence, a good agreement was 

found between the results presented in both tables showing the reliability and the accuracy of the 

presented CAD tool. Nevertheless, as we approach the locking-region boundary, one can observe 

that the difference between the theoretical and simulated results is increasing. This is mainly due 

to the fact that the modeling of each NMOS differential oscillator as a differential van der Pol 

oscillator has been performed only at one frequency, i.e. the desired synchronization frequency.  

Anyway, these results show that it is possible to adjust, with a relatively high accuracy, the free-

running frequencies of the two differential NMOS oscillators required to achieve the desired 

phase shift, amplitudes and synchronization frequency. The main advantage of this CAD tool is 

that, in an extremely short simulation time, one can obtain all the phase shifts, synchronization 

frequencies and amplitudes of the differential coupled system, in function of the free-running 

frequencies f01 and f02 of the two differential oscillators. Hence, since the inter-stage phase shift 

is independent of the number of oscillators in the array [4,7,9], the proposed tool can also help 

the designer to rapidly find the free-running frequencies of the two outermost oscillators of the 

array required to achieve the desired phase shift. Indeed, without such a tool, a transient analysis 



of the oscillator array for different couples of oscillators’ free-running frequencies must be 

performed in order to find the phase shift required for the targeted application. The proposed 

CAD tool can of course be used for other differential oscillators architectures and in strong and 

weak coupling cases. 

IV. Conclusion 

This paper presents a new CAD tool which provides, in a considerably shorter analysis time a 

cartography giving the phase shifts, synchronization frequencies and amplitudes of the 

differential output voltages of two differential oscillators coupled through a broadband network. 

Starting from a new expression of the equations describing the locked states of two van der Pol 

oscillators coupled through a resistor, a simpler system of three equations with three unknowns 

was obtained. Solving this system on Matlab using nonlinear programming technique has led to 

the elaboration of the cartography of the locked states of the two differential oscillators coupled 

through a resistive network.  

The reliability and the accuracy of the developed CAD tool was verified using Agilent’s ADS 

software, where two differential NMOS oscillators coupled through a resistor were simulated. 

The obtained results were in accordance with those generated by the presented CAD tool, 

showing the usefulness of such a tool for the design of an array of differential oscillators coupled 

through a broadband network. 
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Figure Captions 

Fig. 1 – Two single-ended van der Pol oscillators coupled through a resonant circuit 

Fig. 2 –  The van der Pol oscillator model 

Fig. 3 – Two van der Pol oscillators coupled through a RLC circuit 

Fig. 4 – Two differential NMOS oscillators coupled through a resistor 

Fig. 5 – Two differential van der Pol oscillators coupled through a resistor 

 



Fig. 6 – Cartography of the oscillators’ locked states provided by the CAD tool 

Fig. 7 – Waveforms of the output voltages of the two coupled differential NMOS oscillators, 

when   = 31.23° and A = 2.72 V 

Table I – Comparison of the obtained results between ADS and the CAD tool for the case when 

f01 and f02 correspond to the equally spaced tunings line  

Table II –  Comparison of the obtained results between ADS and the CAD tool for the case when 

f01 and f02 aren’t referred to the equally spaced tunings line 
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Table I 

f01 

(GHz) 

f02 

(GHz) 

ADS CAD tool 

fs 

(GHz) 

 

(°) 

A 

(V) 

fs 

(GHz) 

 

(°) 

A 

(V) 

5.97 5.97 5.96 0° 2.89 5.97 0° 2.91 

5.91 6.03 5.96 7.18° 2.88 5.97 7.69° 2.90 

5.85 6.09 5.98 15.79° 2.84 5.97 15.53° 2.86 

5.79 6.15 5.98 24.63° 2.78 5.97 23.69° 2.79 

5.73 6.21 5.98 31.23° 2.72 5.97 32.39° 2.68 

5.67 6.27 5.98 41.38° 2.60 5.97 42.03° 2.52 

5.61 6.33 5.99 53.40° 2.43 5.97 53.46° 2.26 



5.55 6.39 5.99 68.71° 2.16 5.97 69.61° 1.75 

5.55 6.40 5.99 69.28° 2.15 5.97 71.53° 1.67 

5.54 6.41 5.99 73.90° 2.05 5.97 76.13° 1.47 

5.53 6.41 5.99 74.81° 2.02 5.97 79.11° 1.32 

5.53 6.42 5.99 81.01° 1.85 5.97 83.29° 1.06 

 

Table II  

f01 

(GHz) 

f02 

(GHz) 

ADS CAD tool 

fs 

(GHz) 

 

(°) 

A 

(V) 

fs 

(GHz) 

 

(°) 

A 

(V) 

6.25 6.35 6.26 6.40 2.86 6.30 6.40 2.90 

5.56 5.80 5.65 15.53 2.87 5.68 15.53 2.86 

5.74 6.35 6.03 41.7 2.59 6.04 42.9 2.50 

5.53 6.39 5.95 72.28 2.09 5.96 73.67 1.58 

 

 

 

 


