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PROBABILISTIC AUTO-ASSOCIATIVE MODELS AND

SEMI-LINEAR PCA

SERGE IOVLEFF

Abstract. Auto-Associative models cover a large class of methods used
in data analysis. In this paper, we describe the generals properties
of these models when the projection component is linear and we pro-
pose and test an easy to implement Probabilistic Semi-Linear Auto-
Associative model in a Gaussian setting. We show it is a generalization
of the PCA model to the semi-linear case. Numerical experiments on
simulated datasets and a real astronomical application highlight the in-
terest of this approach.

1. Introduction

Principal component analysis (PCA) [29, 20, 23] is a well established tool
for dimension reduction in multivariate data analysis. It benefits from a
simple geometrical interpretation. Given a set of n points Y = (y1, . . . ,yn)′

with yi ∈ Rp and an integer 0 ≤ d ≤ p, PCA builds the d-dimensional affine
subspace minimizing the Euclidean distance to the scatter-plot [29]. The
application of principal component analysis postulates implicitly some form
of linearity. More precisely, one assumes that the data cloud is directed, and
that the data points can be well approximated by there projections to the
affine hyperplane corresponding to the first d principal components.

Starting from this point of view, many authors have proposed nonlinear
extensions of this technique. Principal curves or principal surfaces methods
[16, 17, 6] belong to this family of approaches, non-linear transformation of
the original data set [7, 3] too. The auto-associative neural networks can
also be view as a non-linear PCA model [2, 27, 4, 19]. In [13] we propose
the auto-associative models (AAM) as candidates to the generalization of
PCA using a projection pursuit regression algorithm [9, 25] adapted to the
auto-associative case. A common point of these approaches is that they have
the intent to estimate an auto-associative model whose definition is given
hereafter.

Definition 1.1. A function g is an auto-associative function of dimension
d if it is a map from Rp to Rp that can be written g = R ◦ P where P
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2 SERGE IOVLEFF

(the “Projection”) is a map from Rp to Rd (generally d < p) and R (the
“Restoration” or the ”Regression”) is a map from Rd to Rp.

An auto-associative model (AAM) of dimension d is a manifold Mg of
the form

Mg = {y ∈ Rp, y − g(y) = 0}
where g is an auto-associative function of dimension d.

For example the PCA constructs an auto-associative model using as auto-
associative function an orthogonal projector on an affine subspace of dimen-
sion d. More precisely we have

g(y) = m +

d∑
i=1

〈
~ai,y −m

〉
~ai, y ∈ Rp

with y,m, ~ai ∈ Rp and the vectors ~ai chosen in order to maximize the
projected variance. g can be written g = R ◦ P with

P (y) =
(〈
~a1,y −m

〉
, . . . ,

〈
~ad,y −m

〉)
and

R(x) = m + x1~a
1 + . . .+ xd~a

d

with x = (x1, . . . , xd)
′. The AAM is then the affine subspace given by the

following equation

Mg =

{
y ∈ Rp; y −m−

d∑
i=1

〈
~ai,y −m

〉
~ai = 0

}
Interested reader can check that principal curves, principal surfaces, auto-
associative neural networks, kernel PCA [31], ISOMAP [36] and local linear
embedding [30] have also the intent to estimate an AAM.

In the PCA approach the projection and the restoration function are both
linear. It is thus natural to say that the PCA is a Linear Auto-Associative
Model. In the general case, the manifold Mg set can be empty (i.e. the
auto-associative function g have no fixed point) or very complicated to de-
scribe. Our aim in this paper is to study from a theoretical and practical
point of view the properties of some Auto-Associative models in an inter-
mediary situation between the PCA model and the general case: we will
assume that the projection function is linear and let the regression function
be arbitrary. We call the resulting AAM the Semi-Linear Auto-Associative
Models (SLAAM).

Having restricted our study to the SLAAM, we have to give us some cri-
teria to maximize. As we said previously, the PCA tries to maximize the
projected variance or, equivalently, to minimize the residual variance. Com-
mon AAM approaches used also the squared reconstruction error as criteria,
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or more recently a penalized criteria [17]. However as pointed out by M. E.
Tipping and C. M. Bishop [37], one limiting disadvantage of this approach
is the absence of a probability density model and associated likelihood mea-
sure. The presence of a probabilistic model is desirable as

• the definition of a likelihood measure permits comparison between
concurrent models and facilitates statistical testing,
• A single AAM may be extended to a mixture of such models,
• if a probabilistic AAM is used to model the class conditional den-

sities in a classification problem, the posterior probabilities of class
membership may be computed.

We propose thus a Gaussian generative model for the SLAAM and try to
estimate it using a maximum likelihood approach. In the general case we are
faced with a difficult optimization problem and we cannot go further without
additional assumptions. It will appear clearly that if P is known then the
estimation problem of a SLAAM is very close to an estimation problem in a
regression context. There is however some differences we will enlighten. In
particular it will appear that in order to get tractable maximum-likelihood
estimates, we have to impose some restrictions to the noise. We call the
resulting model of all these assumptions/simplifications a Semi-Linear Prin-
cipal Component Analysis. It does not seem possible to add non-linearity
to the PCA and get tractable likelihood estimate for P. But clearly, the
assumption that P is known is too strong in practice. We propose thus to
estimate it in a separate step using either the PCA or a contiguity analysis
[26] by extending our previous work on the Auto-Associative models [13].
Finally, even if P is assumed known it remains to estimate the regression
function R which is a non-linear function from Rd to Rp. If d > 1 and p is
moderately high the task become very complicated. Thus we simplify once
more the model and assume that R is additive inspired by the Generalized
Additive Model (GAM) approach [18].

In view of the experiments we have performed and we present there,
it seems we obtain a practical and simple model which generalizes in an
understandable way the PCA model to the non-linear case.

The paper is organized as follows. Section 2 introduces the Probabilistic
Semi-Linear Auto-Associative Models (PSLAAM) and relate them to the
PCA and Probabilistic PCA models. In section 3 we present the Proba-
bilistic Semi-Linear PCA models and the estimation of theirs parameters
conditionally to the knowledge of the projection matrix P. Section 4 is
devoted to the determination of the projection matrix P using contiguity
analysis. Data sets and experiments are detailed in Section 5 with a real
astronomical data set. Finally, some concluding remarks are proposed in
Section 6.
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2. Semi-Linear Auto-Associatif Models (SLAAM)

2.1. Geometrical properties of the SLAAM. Let us first consider a
general auto-associative model as given in the definition 1.1. We have the
following evident property

Proposition 2.1. Let H = {P (y); y ∈ Mg} ⊂ Rd. On H the projection
function and the regression function verify

(1) P ◦R = Idd

where Idd denote the identity function of Rd.

Proof. Let y ∈Mg and let x = P (y), then

x = P (y) = P (g(y)) = P (R(P (y))) = P (R(x)).

�

As a consequence, we have the following “orthogonality” property verified
by an AAM when P is an additive function

Proposition 2.2. Let V = {P (y); y ∈ Rp} and assume that the property
(1) extend on V , let y ∈ Rp, ȳ = R(P (y)) and ε̄ = y − ȳ. If P is additive,
i.e. P (y + y′) = P (y) + P (y′), then

P (ε̄) = 0.

Proof. Using the property (1), we have on one hand P (ȳ) = P (R(P (y))) =
P (y). While on the other hand P (ȳ) = P (y − ε̄) = P (y)− P (ε̄) giving the
announced result. �

Clearly we have H ⊂ V and the assumption given in this proposition
seems quite natural. We focus now on the semi-linear case and we assume
that

(2) P (y) =
(〈
~a1,y

〉
, . . . ,

〈
~ad,y

〉)
= Py.

with P = (~a1, . . . , ~ad)′ a matrix of size (d, p).

Proposition 2.3. Let g = R ◦ P be an auto-associative function, with P
given in (2) and R verifying the property (1). Let B =

(
~a1, . . . , ~ad, ~ad+1, . . . , ~ap

)
be an orthonormal basis of Rp with (~ad+1, . . . , ~ap) chosen arbitrarily. Let
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y ∈ Mg, and let ỹ and r̃ denote respectively the vector y and the auto-
associative function r in the basis B, then

(3)



ỹ1
...
ỹd
ỹd+1

...
ỹp


=



ỹ1
...
ỹd

r̃d+1(ỹ1, . . . , ỹd)
...

r̃p(ỹ1, . . . , ỹd)


.

Proof. It suffices to notice that the change of basis matrix Q is given by

Q′ =
(
~a1, . . . , ~ad, ~a(d+1), . . . , ~ap

)
,

thus the left multiplication of y and r by Q, using (1), will give (3). �

From this last proposition we can see that the Semi-Linear Auto-Associative
models have a relatively simple geometrical structure and that we cannot
expect to model highly non-linear models with them.

2.2. Probabilistic Semi-Linear Auto-Associative Models (PSLAAM).
In the sequel, we will denote by V the subspace spanned by the set of vec-
tors (~a1, . . . , ~ad), and give us an arbitrary orthonormal basis of V ⊥ denoted
by (~ad+1, . . . , ~ap). We will denote by P the matrix (~a1, . . . , ~ad)′ and by P̄
the matrix (~ad+1, . . . , ~ap)′. As in proposition 2.3, Q represents the unitary
matrix (P|P̄)′ = (~a1, . . . , ~ap)′.

2.2.1. General Gaussian Setting.

Definition 2.1. Let x be a d-dimensional Gaussian random vector:

(4) x ∼ N (µx,Σx)

and let ε̃ be a p-dimensional centered Gaussian random vector with a diag-
onal covariance matrix Σε̃ = Diag(σ1, . . . , σp).

The p-dimensional vector y is a Probabilistic Semi-Linear Auto-Associative
Model (PSLAAM) if it can be written

(5) y = Q′





x1
...
xd

r̃d+1(x)
...

r̃p(x)


+ ε̃


= R(x) + ε,

where the r̃j(x), d+ 1 ≤ j ≤ p, are arbitrary real functions from Rd to R.
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2.2.2. Link with the Principal Component Analysis. Assume that:

(1) r̃j(x) = µ̃j for all j ∈ {d+ 1, . . . p},
(2) the covariance matrix of x, Σx = Diag(σ21, . . . , σ

2
d) is diagonal with

σ1 ≥ σ2 ≥ . . . ≥ σd,
(3) the Gaussian noise ε̃ have the following covariance matrix Σε =

Diag(0, . . . , 0, σ2, . . . , σ2) with σ < σd.

then the vector y is a Gaussian random vector

y ∼ N (µ,Σ)

with

µ = Q′



µ̃1
...
µ̃d
µ̃d+1

...
µ̃p


and Σ = Q



σ1
. . . 0

σd
σ

0
. . .

σ


Q′

and ~a1, . . . , ~ad are the d first eigenvectors given by the PCA.

2.2.3. Link with the Probabilistic Principal Component Analysis. The prob-
abilistic PCA [37] is a model of the form

(6) y = µ+ Wx + ε,

with W a (p, d) matrix, x a d-dimensional isotropic Gaussian vector, i.e.
x ∼ N (0, Id), and ε a p-dimensional centered Gaussian random vector with
covariance matrix σ2Ip. The law of y is not modified if W is right multiplied
by a (d, d) unitary matrix, it is thus possible to impose to the rows of W to
be orthogonal (assuming that W is of full rank).

The following proposition is then straightforward

Proposition 2.4. Assume that ε̃ (and thus ε) is an isotropic Gaussian
noise, i.e. Σε̃ = σ2Ip, take r̃j = µ̃j for all d+ 1 ≤ j ≤ p and set

W = P′


σ1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 σd

 .

The resulting Probabilistic Semi-Linear Auto-Associative Model is a Proba-
bilistic Principal Component Analysis.

For this simple model there exists a close form of the posterior probability
of y and for the maximum likelihood of the parameters of the model. In
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particular, the matrix W can be estimated up to a rotation and spans the
principal subset of the data.

3. Semi-Linear PCA

Our aim is now to generalize the PCA model we present in part (2.2.2) to
the semi-linear case. We observe that in the PCA model, if the matrix P is
known, then we are able to know the random variable x. This observation
lead us to formulate the following hypothesis about the noise ε̃:

N: the Gaussian noise ε̃ have the following covariance matrix Σε̃ =
Diag(0, . . . , 0, σ2, . . . , σ2).

Expressing y in the basis B (definition 2.1) we get the following expression
for ỹ:

(7)



ỹ1
...
ỹd
ỹd+1

...
ỹp


=



x1
...
xd

r̃d+1(x)
...

r̃p(x)


+



0
...
0

ε̃d+1
...
ε̃p


.

In other word, the coordinates of ỹ can be split in two sets. The d first
coordinates are the Gaussian random vector x, while the p − d remaining
coordinates are a random vector z which is conditionally to x a Gaussian
random vector N

(
r̃(x), σ2Ip−d

)
. Observe that the regression functions are

dependents of the choice of the vectors ~ad+1, . . . , ~ap and that, as the noise ε
lives in the orthogonal of V , we have x = Py.

3.1. Maximum Likehood Estimates. The parameters we have to esti-
mate are the position and correlation parameters µx and Σx for the x part
and (σ2, r̃) for the non-linear part. Given a set of n points Y = (y1, . . . ,yn)′

in Rp, we get by projection two sets of n points X = (x1, . . . ,xn)′ = YP′ in
Rd, and Z = (z1, . . . , zn)′ = YP̄′ in Rp−d.

Standard calculation give the maximum likehood for µx and Σx

(8) µ̂x =
1

n

n∑
i=1

xi.

and

(9) Σ̂x =
1

n

n∑
i=1

(xi − µ̂x)(xi − µ̂x)′.
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The maximum likehood of σ2 is given by

(10) σ̂2 =
1

n(p− d)

n∑
i=1

∥∥∥zi − ˆ̃R(xi)
∥∥∥2 .

It remains to estimate R̃. We consider two cases : R̃ is a linear function
and R̃ is a linear combination of the elements of a B-Spline function basis.
The linear case is just a toy example that we will use for comparison with the
additive B-Spline case. In the non-linear case, we have to estimate a function
from Rd to Rp−d. As we say in the introduction this is a difficult task and
we restrict ourself to a generalized additive model (GAM) by assuming that

the function R̃ is additive, i.e.

(11) R̃(x) =

d∑
j=1

r̃j(xj),

where each r̃j is a map from R into Rp−d.

3.2. Linear Auto-Associative Models. In the linear case, we are looking
for a vector µ and a (d, p− d) matrix R minimizing

n∑
i=1

∥∥zi − µ−R′xi
∥∥2 .

It is easily verified that

µ̂ =
1

n

n∑
i=1

(
zi −R′xi

)
= µ̂z −R′µ̂x.

Setting X̄ = X− 1µ̂′x and Z̄ = X− 1µ̂′z, where 1 represent a vector of size
n with 1 on every coordinates. Assuming that the matrix X̄′X̄ is invertible,
standard calculus show that

R̂ = (X̄′X̄)−1X̄′Z̄.

Finally, using the decomposition in eigenvalues of the covariance matrix
of Y, it is straightforward to verify the following theorem

Theorem 3.1. If the d orthonormal vectors a1, . . . ,ad are the eigenvectors
associated with the d first eigenvalues of the covariance matrix of Y then
the estimated auto-associative model is the on obtain by the PCA.

3.3. Additive Semi-Linear Auto-Associative Models. In order to es-
timate the regression functions r̃)j , j = 1 . . . , d, we express them as a linear
combination of m B-Spline functions basis sjl where m is a number chosen by
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the user. We have thus to estimate the set of coefficients (αjl), j = 1, . . . , d,
l = 0, . . .m by minimizing

n∑
i=1

∥∥∥∥∥∥zi − α0 −
d∑
j=1

m∑
l=1

αjls
jl(xij)

∥∥∥∥∥∥
2

.

Standard regression techniques give then the estimates

R̂(x) = α̂0 +

d∑
j=1

m∑
l=1

α̂jls
jl(xij), with α̂ = ((S′S)−1S′Z)

where S is the design matrix which depends of the knots position, degree of
the B-Spline and the number of control points chosen by the user [14].

The estimated regression function rj , for j = 1, . . . , d are then given by
the formula

r̂j =
m∑
l=1

α̂jls
jl.

3.4. Estimation in practice. The drawback of the previous maximum
likehood equations is that, given the projection matrix P, we have to perform
a rotation of the original data set and next to perform an inverse rotation of
the estimated model. In practice, we avoid such computations by estimating
the model using the following steps:

• (C) Center and (optionally) standardize the data set Y: obtain Ȳ,
• (P) Compute the projected data set X = ȲP′ (X is centered),
• (R) Compute the regression Ȳ ∼ X (without intercept),
• (S) Compute the log-likelihood and the BIC criteria.

As we can see the main difference is in the regression step: we estimate
directly a function from Rd to Rp. In practice, as the non-linear part of
the model is in V ⊥, the regression function we obtain numerically give the
identity function in the V space.

3.5. Model Selection. Since a Semi-linear PCA model depends highly of
the projection matrix P, model selection allows to select among various
candidate the best projection. Several criteria for model selection have been
proposed in the literature and the widely used are penalized likelihood cri-
teria. Classical tools for model selection include the AIC [1] and BIC [33]
criteria. The Bayesian Information Criterion (BIC) is certainly the most
popular and consists in selecting the model which penalizes the likelihood

by γ(M)
2 log(n) where γ(M) is the number of parameters of the model M

and n is the number of observations.
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In practice we will fix a set of vectors ~a1, . . . , ~admax given either by the
contiguity analysis (section 4) or the PCA and select the dimension of the
model using the BIC criteria because of its popularity. The projection ma-
trices we compare are thus P = (~a1)′, P = (~a1, ~a2)′,... and so on.

4. Contiguity Analysis

Given (~a1, . . . , ~ad) an orthonormal set of vector in Rp, an index I: Rp×d →
R+ is a functional measuring the interest of the projection of the vector ~y
on Vec(~a1, . . . , ~ad) with a non negative real number. A widely used choice
of I is I(

〈
~a1,y

〉
, . . . ,

〈
~ad,y

〉
) = tr(Var [Py]), the projected variance. This

is the criteria maximized in the usual PCA method [23].

The choice of the index I is crucial in order to find ”good” parametrization
directions for the manifold to be estimated. We refer to [21] and [24] for
a review on this topic in a projection pursuit setting. The meaning of
the word ”good” depends on the considered data analysis problem. For
instance, Friedman et al [10, 8], and more recently Hall [15], have proposed
an index which measure the deviation from the normality in order to reveal
more complex structures of the scatter plot. An alternative approach can be
found in [5] where a particular metric is introduced in PCA in order to detect
clusters. We can also mention the index dedicated to outliers detection [28].

Our approach generalizes the one we present in [13] and consists in defin-
ing a contiguity coefficient similar to Labart one’s [26] whose maximization
allows to unfold nonlinear structures.

A contiguity matrix is a n×n boolean matrix M whose entry is mij = 1 if
data points i and j are ”neighbors” and mij = 0 otherwise. Lebart proposes
to use a threshold r0 to the set of n(n − 1) distances in order to construct
this matrix but the choice of r0 could be delicate. In [13] we propose to use
a first order contiguity matrix, i.e. mij = 1 iff i is the nearest neighbor of
j in order to construct the proximity graph. In order to get a more robust
estimate of the neighbor structure, it is possible to generalize this approach
and to use a k-contiguity matrix, i.e. mij = 1 iff i is one of the k-nearest
neighbor of j.

The contiguity matrix being chosen, we compute the local covariance ma-
trix

(12) V∗ =
1

2kn

n∑
i=1

n∑
j=1

mij(yi − yj)(yi − yj)
′
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and the total variance matrix

(13) V =
1

n

n∑
i=1

(yi − µ̂)(yi − µ̂)′

The axis of projection are then estimated by maximizing the contiguity index

(14) I(~a1, . . . , ~ad) =
d∑
i=1

~ai′V∗~ai

~ai′V~ai
.

Using standard optimization techniques, In can be shown that the resulting
axis are the d eigenvectors associated with the largest eigenvalues of the
matrix V ∗−1V .

5. Examples

We first present two illustrations of the estimation principle of PSLAAM
on low dimensional data (Section 5.1 and 5.2). These two simulated ex-
amples are very similar from the one we use in our previous article with
S. Girard [13]. Second, PSLAAM is applied to an astronomical analysis
problem in Section 5.3.

Similarly, we always use an additive B-Spline regression model for the
estimation of the regression function R̃ (section 3.3). The B-Spline are of
degree 3 and we select the number of control points using the BIC .

5.1. First example on simulated data. The data are simulated using a
one-dimensional regression function in R3. The equation of the AA model
is given by

(15) x→ (x, sinx, cosx),

and thus P (x, y, z) = x . The first coordinate of the random vector is
sampled from a centered Gaussian distribution with standard deviation σx =
3 a thousand times. An independent noise with standard deviation σ = 1
has then been added to the y and z coordinates.

The axis of projection have been computed thanks to the contiguity anal-
ysis (section 4) using the 3 nearest neighbors for the proximity graph. The
correlations between the projected data set and the original data set are

X Y Z
Proj1 0.9999680850 -0.0005794581 0.0089238830

which show that the first axis given by the contiguity analysis is very close
from the x-axis as it was expected. The result of the contiguity analysis can
be visualized in the figure 1.
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Figure 1. Correlation of the first axis obtain using a conti-
guity analysis with the X and Y variables and representation
of the scatter-plot and regression function in the main PCA
plan. This graphic has been obtained with R using the plot
command of the aam library.

The projected variance on the first axis is 9.20496 which is also very close
from 9. We use the BIC criteria in order to select the dimension of the
model and the number of control points. A summary of the tested model is
given in the table 1

Finally the result of the regression is drawn in the figure 2.

Figure 2. The simulated scatter-plot (blue), the estimated
AAM (orange) and the true AAM (grey). This graphic is
obtained with R using the draw3d command of the aam li-
brary.
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Contiguity Analysis PCA
dim BIC Residual Variance BIC Residual Variance

linear 1 9987,13(5) 1.439 11495.8 1.43864
2 10609.7(10) 1.40815

9 1 11247.6(29) 1.06557 11058.4 1.06407
2 11621(58) 1.1086

10 1 11060.7(32) 0.986316 10926.3 0.985777
2 11469(64) 0.913605

11 1 10853.7(35) 0.941064 10855 0.92711
2 11503(70) 0.90682

12 1 10844.6(38) 0.92717 10845(38) 0.941661
2 11525(76) 0.892669

13 1 10871.4(41) 0.929965 10871.6 0.927976
2 11568.4(82) 0.891119

14 1 108887.5(44) 0.927834 10888.3 0.927976
2 11604(88) 0.885939

Table 1. Values of the BIC criteria for d = 1 and d = 2
and for various number of control points (given in the first
column). The number of free parameters of each model is
given in parenthesis. The BIC criteria selects the model of
dimension 1 with 11 control points. The axis of projection
can be either the one obtained by contiguity analysis or the
one obtained using the PCA.

5.2. Second example on simulated data. In our second example the
AAM is given by

(16) (x, y)→
(
x, y, cos(πr/3)(1− exp(−64r2)) exp(0.2r)

)
with r =

√
x2 + y2 and thus P (x, y, z) = (x, y). The first two coordinates of

the random vector are sampled from a centered Gaussian distribution with
covariance matrix

Σx =

(
1.8 0
0 1.5

)
and n = 1000 points are simulated. An independent noise with standard
deviation σ = 0.5 has then been added to the z coordinate.

The correlations between the projected data set and the original data are

X Y Z
Proj1 0.99924737 -0.1488330 0.0179811
Proj2 -0.14239437 0.98532966 0.01396622
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which show that the (x, y)-plan is the plan essentially chosen by the conti-
guity analysis. The result of the contiguity analysis is displayed in the figure
3.

Figure 3. The AAM components and the 2-neighbors
graph, the correlation circle of the AAM components with
the variables and representation of the scatter-plot in the
PCA plan. These pictures have been obtained using the plot
command of the aam library.

The BIC criteria select 7 control points. A summary of the tested model is
given in the table 2. The selected model over-estimate the residual variance
by a factor 2. It is not a surprising result as the original model is not additive
and we cannot expect to reconstruct it exactly. We don’t show the results
with the PCA as the first axis this method select is the Z-axis which is
clearly the wrong parametrization.

The true model and the estimated model obtained with an additive B-
Spline regression are given in the figure 5.2.

5.3. Example in spectrometry analysis. Finally we illustrate the per-
formance of the semi-linear PCA on a real data set. The data consists of
19-dimensional spectral information of 487 stars [34, 12, 35, 11] and they
have been classified in 6 groups. They have been modeled by [32] using an
auto-associative neural networks based on a 19-30-10-30-19 network. Using
the terminology of this article the model proposed by M. Scholz and its co-
authors is an auto-associative model of dimension 10. We select the model
using the BIC criteria. The main results are the following:

(1) The axis of projection given by the PCA outperform largely the re-
sults we obtain with the contiguity analysis, for any choice of control
point.
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dim BIC Residual Variance
linear 1 11024.7(5) 1.78335

2 10.832.7(10) 1.20314

2 10654.2(34) 0.852753
6 1 11072.6(20) 1.68675

2 10716.1(40) 0.870381
7 1 11014.2(23) 1.55841

2 10.213.6(46) 0.505186
8 1 11.031.6(26) 1.55334

2 10.216.6(52) 0.486137
9 1 11051.7(29) 1.55229

2 10255(58) 0.484644
Table 2. Values of the BIC criteria for d = 1 and d = 2
and for various number of control points (given in the first
column). The number of free parameters of each model is
given in parenthesis. The BIC criteria selects the model of
dimension 2 with 7 control points.

(a) (b) (c)

Figure 4. (a) the original data set (blue) and the individ-
ual regression functions. (b)-(c) two views of the original
manifold (grey) and of the extrapolated manifold using an
additive B-Spline regression (yellow-red). These images have
been obtained using the draw3d function of the aam library.

(2) The BIC criteria retains a model of dimension 5 with 9 Control
Points (871 parameters) when we use a non-linear regression step.
The residual variance is σ2 = 0.0080763 while the total variance
(inertia) of the data was 26.59832.

(3) The BIC criteria retains a model of dimension 12 (307 parameters)
when we use a linear regression step. Observe that in this case, we
are performing an usual PCA (theorem 3.1).

The data cloud in the main PCA space with the values predicted by the
model is displayed in the figure 5.
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Figure 5. Data cloud in the main PCA space with the pre-
dicted values (green).

A summary of some tested model are given in the table 3 and some planes
of projection are displayed in the picture 6. We visualize each components
of the regression functions by setting all, except one, predictors to zero and
we represent the evolution of the regression function in the R14 space in the
graphic 7.

PCA
Control Points BIC value dim Residual variance
Linear 1829,95(307) 12 0,0049702
7 1187,26(820) 6 0,00727521
8 1147,62(776) 5 0,00975073
9 453,387(871) 5 0,0080763
10 701,769(966) 5 0,00768342
11 1333,45(1061) 5 0,00773327

Table 3. Values of the BIC criteria for various number of
control points (given in the first column). The BIC criteria
select the model of dimension 5 with 9 control points using
as projection matrix the 5 axis given by the PCA. The total
variance (inertia) of the data set was 26.59832.
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Figure 6. Some plans of projection of the PCA with the
2-neighbors graph (left) and with the single regression func-
tions (right). As we use the PCA for the projection matrix,
the AAM components are the PCA components. The colors
of the points represent the classification of the stars.

Figure 7. The individual regression functions from R5 to
R14. In each row we have the non-zero predictor sampled in
the range [min,max], and in each column the evolution of the
functions in the dimension 6,...,19. The system of coordinates
is the one given by the PCA.

6. Conclusion

We have presented a class of auto-associative model for data modeling and
visualization called semi-linear auto-associative models. We provided theo-
retical groundings for these models by proving that the principal component
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analysis and the probabilistic principal component analysis are special cases.
Our model allows to models data set with a simple non-linear component
and is truly generative with an underlying probabilistic interpretation. How-
ever it does not allow to models data with a strong non-linear component
and it depends highly on the choice of the projection matrix.

The Semi-Linear PCA have been implemented in C++ using the stk++ li-
brary [22] and is available at: https://sourcesup.renater.fr/projects/
aam/.

The program is accompanied with a set of R scripts which allows to
simulate and display the results of the aam program.

References

[1] H. Akaike. A new look at the statistical mode identification. IEEE Transaction on
Automatic Control, 19:716–723, 1974.

[2] Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis:
Learning from examples without local minima. Neural Networks, 2(1):53–58, 1989.

[3] P. Besse and F. Ferraty. A fixed effect curvilinear model. Computational Statistics,
10(4):339–351, 1995.

[4] C. M. Bishop. Pattern recognition and machine learning, information science and
statistics. Springer, Berlin, 2006.

[5] H. Caussinus and A. Ruiz-Gazen. Metrics for finding typical structures by means of
Principal Component Analysis. Data science and its Applications, Harcourt Brace
Japan, pages 177–192, 1995.

[6] P. Delicado. Another look at Principal curves and surfaces. Journal of Multivariate
Analysis, 77:84–116, 2001.

[7] J. F. Durand. Generalized principal component analysis with respect to instrumental
variables via univariate spline transformations. Computational Statistics and Data
Analysis, 16:423–440, 1993.

[8] J. H. Friedman. Exploratory Projection Pursuit. Journal of the American Statistical
Association, 82(397):249–266, 1987.

[9] J. H. Friedman and W. Stuetzle. Projection Pursuit Regression. Journal of the Amer-
ican Statistical Association, 76(376):817–823, 1981.

[10] J. H. Friedman and J. W. Tukey. A Projection Pursuit algorithm for exploratory data
analysis. IEEE Trans. on computers, 23(9):881–890, 1974.

[11] J. Garcia, N. Sanchez, and R. Velasquez. Quantitative Stellar Spectral Classification.
IV. Application to the Open Cluster IC 2391. Rev.Mex.Astron.Astrofis. 45 (2009)
13-24, September 2008.

[12] J. Garcia, J. Stock, M. J. Stock, and N. Sanchez. Quantitative Stellar Spectral Classi-
fication. III. Spectral Resolution. Rev.Mex.Astron.Astrofis. 41 (2005) 31-40, October
2004.

[13] S. Girard and S. Iovleff. Auto-Associative models and generalized principal compo-
nent analysis. Journal of Multivariate Analysis, 93:21–39, 2005.

[14] Prautzsch H., Boehm W., and Paluszny M. Bézier and B-Spline Techniques. Mathe-
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