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In this paper, we present a new method for the modeling and characterization of oscil-
lator circuit with a Van-Der Pol (VDP) model using parameter identification. We also
discussed and investigated the problem of estimation in nonlinear system based on time
domain data. The approach is based on an appropriate state space representation of Van
der Pol oscillator that allows an optimal parameter estimation. Using sampled output
voltage signal, model parameters are obtained by an iterative identification algorithm
based on Output Error method. Normalization issues are fixed by an appropriate trans-
formation allowing a quickly global minimum search. Finally, the proposed estimation
method is tested and validated using simulation data from a 1GHz oscillator circuit in
GaAs technology.

Keywords: Oscillator; Van der Pol Model; parameter estimation; Nonlinear system; mod-
eling; continuous time domain.

1. Introduction

The interest in oscillators is motivated, among others, by their recent use in an-

tenna array systems. Coupled oscillators are a simple and efficient method for phase

control in microwave antenna arrays due to their synchronization properties1,2,3,4.

Nevertheless, for the design of an oscillator circuit or an array of coupled oscillators,

one must be able to test and implement control laws on simple systems that repro-

duce well the dynamics of the real system. Classical Van der Pol (VDP) oscillators

are usually used to model microwave oscillators. Indeed, in 5,6,7, R. York made use

of simple Van der Pol oscillator to model an array of oscillators coupled through

many types of circuits. Hence, this theory provides a full analytical formulation

allowing to predict the performances of microwave oscillators arrays. Nevertheless,

the identification of the parameters of the VDP oscillator is not always made easily.

1
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The main difficulty in modeling an oscillating system is caused by its highly and

complex non-linear behavior. The parameter computation for strongly non-linear

devices is difficult and time consuming.

Parameter identification can be defined as mathematical modeling of a process in

order to understand, predict and enhance its dynamic behavior using input and out-

put set of data. Furthermore, such an identification can be carried out using an it-

erative identification algorithm based on Output Error (OE) method. Output Error

techniques are based on iterative minimization of a quadratic criterion, also called

cost function, by a Non-Linear Programming (NLP) technique8,9,10. This method

requires much more computation and do not converge to unique optimum11,12,13.

Nevertheless, OE methods present very attractive features because the simulation

of the output model is based only on the knowledge of the input so that the param-

eter estimates are unbiased14,15,16. Moreover, OE methods can be used to identify

non linear systems. For these reasons, the OE methods are more appropriate in

microwave systems characterization17.

Due to these considerations, the aim of this paper is to present a tool allowing to

extract the electrical and nonlinear parameters of the Van der Pol model, reproduc-

ing the behavior of a 1.025GHz GaAs FET oscillator circuit, using an identification

technique based on Output Error (OE) method.

This paper will be organized as follows. The principles of oscillator circuits and

their representation with VDP model in state space will be described in section

2. In section 3, we will introduce and present the proposed method allowing to

estimate the involved parameters using Output-Error technique. The application

of this technique in the special case of an oscillator circuit will also be investigated.

Two examples will then be studied in section 4: a theoretical one to analyze the

performances of the method in term of robustness under noisy data and a practical

one in order to see the efficiency of the study in a real case.

2. Oscillator design and modeling

The basic form of a harmonic oscillator consists in an electronic amplifier connected

in a positive feedback loop to a frequency selective network like an RLC resonator.

Such an architecture is presented in (Fig. 1) where the amplifier, also called the

active part, compensates for the tank losses to enable a constant amplitude oscil-

lation.

2.1. VDP model

The models used for real circuits need to take into consideration the energy dissi-

pation and compensation. Thus, the circuit must contain a dynamic element with

a negative resistance so that oscillation is maintained. Negative resistance circuit

elements are purely theoretical and does not exist as discrete components. However,

some elements present, in some parts of their operating characteristic, a negative

resistance. The Van der Pol oscillator is considered as a widely used example in
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Fig. 1. Block diagram of a feedback oscillator

the literature18. It is highly nonlinear and it can exhibit both stable and unstable

limit cycles. The main advantages of this model is the simplicity in simulation and

high level in understanding and studying nonlinear dynamical phenomena, but also

because it contains the necessary and sufficient elements to describe a real oscillator.

R uC(t)

iNL(t)

CL

iL(t)

GNL(t) = −a+ b · u2

C
(t)

Fig. 2. The Van der Pol Model

The VDP model used contains a nonlinear conductance, noted GNL(t), and a

RLC resonator circuit as shown in Fig. (2). The nonlinear conductance, GNL(t),

models the active part of the oscillator and exhibits the necessary negative resis-

tance region on its operating characteristic. The current iNL(t) to voltage uC(t)

relationship describing the behavior of the nonlinear conductance is a cubic equa-

tion:

iNL(t) = −a · uC(t) + b · u3
C(t) = GNL(t) · uC(t) (1)

Since, such an oscillator topology can be modeled by a quasi-linear represen-

tation allowing a simple analytical calculation 19, the negative conductance pre-

sented by the active part in order to compensate for the tank losses R is equal to

−GNL(A) = −a+ 3
4 · b ·A2 where A is the amplitude of the oscillations.

Mathematically, a general form of the second order differential equation that

describes the Van der Pol oscillator is:

üC(t)− µ (1− u2
C(t)) u̇C(t) + uC(t) = 0 (2)

where the parameter µ is a damping indicator, u̇C(t) =
duC(t)

dt
and üC(t) =

d2uC(t)
dt2

denote respectively the first and the second derivative of uC(t).
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2.2. VDP state space representation

The state equation representation of a physical system consists in describing the

system as a set of inputs, outputs and state variables related by first-order differen-

tial equations. This modeling method, using matrix representation, can be applied

for systems with multiple-inputs and multiple-outputs (MIMO) and the model in-

cludes the internal state variables and the output variables. Nevertheless, the most

important advantage of this modeling form is that the representation consists in

simple first order differential equations and provides directly a time-domain solu-

tion.

The state vector, noted x, composed of state variables, is a minimum set of

variables that are fully describing the system and its response to any given set of

inputs. These variables are related to the energy storage elements in a circuit. In this

case, the state vector includes two state variables, the current through the inductor

iL(t) and the voltage across the capacitor uC(t). Using elementary electrical rules

(Kirchhoff’s and Ohm’s laws) and the nonlinear current expression given by (1), we

can write the two following differential equations:











C duC(t)
dt

+ 1
R
uC(t) + iL(t) = a · uC(t)− b · u3

C(t)

diL(t)
dt

= 1
L
uC(t)

(3)

For the Van der Pol oscillator, the state space representation of the system,

written in matrix form, is the following set of first order differential equations:

{

ẋ(t) = A · x(t) + B(t)
y(t) = C · x(t) (4)

where x(t) is the state vector such as:

x(t) =





uC(t)

iL(t)



 (5)

and the matrices are:

A =





(

a− 1
R

)

· 1
C

− 1
C

1
L

0



 , B(t) =





− b
C
· u3

C(t)

0



 and C =
[

1 0
]

Let us note that the output signal y(t) is defined as the state variable of interest

which is the output voltage uC(t) in our case.
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3. Parameter identification of the VDP model

Parameter identification is based on the definition of a model. Once the previous

mathematical model has been chosen, we can define the parameter vector to be

estimated as follows:

θ = [ a b C]T (6)

where [.]T denotes the transposition operation.

The choice of this parameter vector is not random. Indeed, the parameters a

and b of the non-linear conductance are not easily accessible and thus, need to be

identified. Concerning the RLC resonator, designers have prior information on the

resonator losses, i.e. the R parameter. Furthermore, the frequency of oscillation

is determined by the LC tank. Hence, knowing one of these two parameters, the

frequency of oscillation can be adjusted by varying the other one. In the practical

case of a VCO(Voltage Controlled Oscillator), a variable capacitor is used to tune

the oscillator. This has led us to the estimation of the parameter C. Let us note that

this method is not restricted to this vector and can be generalized to the inductance

L.

y∗
k

ŷk

+

−

Van der Pol

Model

Oscillator

Circuit

Initial

conditions
Quadrantic

Criterion

NonLinear

Programming

Technique

Measurement

Noise

θ̂
k

+

+

εk J

Fig. 3. Principle of Output Error Methods

The block diagram of off-line output error technique is shown in Fig. (3). Let us

note that for the oscillator circuit, no input signal is used and only initial values of

voltage and current are used to run it. The same values are used in the simulation

of the VDP model.

Assuming that we have measured K values of the output voltage, noted y∗(t)

(where t = k.Ts for k = 1,K and 1/Ts is the sampling rate). The identification

problem is then to estimate the values of the parameters θ that minimize the dif-
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ference between measured data and estimation. Thus, the output prediction error

is defined as follows:

εk = y∗k − ŷk(θ̂) (7)

where the predicted output ŷ is obtained by numerical simulations of the VDP

model and θ̂ is an estimation of the true parameter vector θ.

Parameter estimation with OE technique is based on minimization of a quadratic

criterion defined as :

J =

K
∑

k=1

ε2k =

K
∑

k=1

(

y∗k − ŷk(θ̂)
)2

(8)

Since ŷ(t) is nonlinear in parameters θ̂, the estimation is made iteratively using

nonlinear programming techniques. Marquardt’s algorithm20,21 was used to ensure

an efficient and rapid convergence even with poor initialization. The parameters to

be estimated are updated as follows:

θ̂i+1 = θ̂i − {[J ′′
θθ + λ · I ]−1.J ′

θ}θ̂=θ̂i
(9)

J ′
θ and J ′′

θθ are respectively the gradient and the hessian such as:

J ′
θ = −2

K
∑

k=1

εTk · σyk,θ

J ′′
θθ ≈ 2

K
∑

k=1

σyk,θ
· σT

yk,θ

with σyk,θ
= dy

dθ
the sensitivity function, λ the monitoring parameter and I the

identity matrix.

3.1. Sensitivity computation

Sensitivity computation is an important point in the identification procedure. In-

deed, the sensitivity functions express the effect of a parameter variation on the

system output. We can define two types of sensitivity functions:

• σy,θ = ∂y
∂θ
: the output sensitivity function used in nonlinear programming

algorithm;

• σx,θ = ∂x
∂θ

: the state sensitivity function.

The functions can be obtained directly using numerical differentiation methods,

but they require high computation time and there is a risk of introducing errors

caused by approximations. For this reason, it is recommended to solve, by simu-

lation, the differential system that describes the dynamic of these variables. Thus,

for each parameter θi of the vector θ, the corresponding sensitivity functions are
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determined by partial differentiation of equation (4) so that:










σ̇x,θi
= Aσx,θi

+
[

∂A
∂θi

]

x+
[

∂B(t)
∂θi

]

σy,θi = C σx,θi

(10)

For example, the sensitivity functions for the parameter C can be obtained by

the simulation of the following differential model:






















σ̇x,C =





(

a− 1
R

)

1
C

− 1
C

1
L

0



 σx,C +





(

1
R
− a

)

· 1
C2

1
C2

0 0



x+





b
C2u

3
C(t)

0





σy,C =
[

1 0
]

· σx,C

(11)

It is important to note that all state space model like VDP model (Eq. 4) and

sensitivity function models are solved using the 4th order Runge-Kutta method 22.

3.2. Parameter normalization

If a hypothetical situation is studied, the values chosen for the different parameters

are close. Nevertheless, in a real situation, the numerical values of the physical

system parameters can be highly different, especially for RF systems. This can lead

to convergence difficulties that are slowing or even make impossible the process to

find the global optimum17,21. The solution consist in normalizing the parameters

values which means the normalization of the sensitivity functions.

The method is first explained for a single parameter θn, then it will be extended

to the entire vector of parameters θ to be estimated. Let us consider the parameter

θn with the initial value θn0
so that θn = θn0

+ ∆θn. In this case, estimating

the value for θn is equivalent to estimate the ∆θn parameter which represents the

difference between the nominal and the initial value.

The ∆θn expression depends on the parameter θn0
in the following manner:

∆θn = µnθn0
(12)

Thus, for the parameter θn, we can write the following expression:

θn = (1 + µn) · θn0
(13)

Since the initial value θn0
is known, the estimation of θn can be made through a

change of variables, i.e. by estimating µn. The sensitivity function according to µn

is written as follows:

σµn
=

∂ŷ

∂µn

= θn0
· ∂ŷ

∂θn
= θn0

· σθn (14)

where the sensitivity functions ∂ŷ
∂µn

are with the same magnitude order.
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In order to apply the normalization method for several parameters, all the sensi-

tivity functions are normalized, leading to a well conditioned gradient and Hessian

written as:






















J ′
µn

= ∂J
∂µn

= −2 ·
K
∑

k=1

εk · σk,µn

J ′′
µnµm

= ∂2J
∂µn∂µm

= 2
K
∑

k=1

σk,µn
· σk,µm

(15)

For the iterative estimation of all parameters of the vector µ, we apply the

Marquardt’s algorithm so that:

µ̂
i+1

= µ̂
i
− {[J ′′

µµ + λ I]−1 · J ′
µ} µ̂=µ̂

i
(16)

Thus, (Eq. 16) allows to obtain the vector of parameters θ̂i so that:

θ̂i = θ0 · (1 + µ̂
i
.I) (17)

This method is very simple to implement because it does not change the struc-

ture of the algorithm, only the computation of the sensitivity functions changes.

4. Simulation results

The validation method consists in two main parts:

• a study of the robustness technique in presence of stochastic disturbances,

• the characterization possibility of an oscillator using a CFY30 GaAs FET.

4.1. Validation of the technique and investigations

In order to validate the proposed technique, let us consider the identification of a

1.3GHz VDP oscillator of (Fig. (4)) simulated with Agilent’s ADS software.

uC(t)

+

Measurement
noise

R
=

2
00

Ω

L
=

1
.6
n
H

C
=

9
.5
23

p
F

G
N

L

Fig. 4. Simulated circuit with added noise

Thus, no modeling error is introduced because the simulated circuit and the

model have the same structure. Only stochastic disturbances effects, due to the
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measurement noise with different signal to noise ratio (SNR) values is investigated

through Monte Carlo simulations. The nonlinear conductance GNL(t) is described

by the following relation GNL(t) = −0.0085 + 0.00071 · u2
C , the measured signal

uC(t) is sampled with a period of Ts = 0.01ns and the number of samples by

realization is K = 10000. The proposed identification algorithm and data treatment

is implemented on Matlab Mathworks software.

In order to allow statistical analysis, a zero-mean white noise is added to the

output data according to 30dB, 20dB and 10dB of SNR and 100 attempts were

performed for each SNR value. Let us note that using noise free measurement, the

estimated parameters are identical to the true values.

2

4

6

8

10

12

14

16x 10
−3 Estimation of parameter a

30dB

20dB

10dB

True Value
Estimation

−5

0

5

10

15

20
x 10

−4 Estimation of parameter b

30dB
20dB

10dB

True Value

Estimation

9.48

9.5 

9.52

9.54

9.56
Estimation of parameter C (pF)

30dB
20dB

10dB

True value
Estimation

Fig. 5. Projections of estimated values for 100 realizations with differents SNR

Figure (5) shows the estimated values (circle) as well as the true values(cross)

for each parameter a, b and C. Furthermore, the estimates have been plotted for

different SNR values. It can be seen that the estimates are, on average, close to the

exact value, whatever of the noise level. Regarding the accuracy of the estimation,

let us note that once the value of SNR is decreasing, the uncertainty range increases

for each parameter. Overall, the parameters identification, even in the presence of

high noise level, gives satisfactory results.

In order to study the correspondence between the estimated output ŷ and the

measured one y∗ and the parameters θ̂ convergence to true values θ, we computed

the Normalized Mean Square Errors (NMSE) based on the output data and on the
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parameters such as:

NMSE y,dB = 10 log

(

(ŷ−y∗)T ·(ŷ−y∗)

y∗T ·y∗

)

NMSE θ,dB = 10 log
(

(θ̂−θ)T ·(θ̂−θ)

θT ·θ

)
(18)

The NMSE y,dB criterion is widely used by the radio frequency community,

especially for describing the deviation level for time domain measurement. On the

other hand, we have deliberately introduced the second criterion which reflects the

deviation of the entire parameter space instead of the standard deviation which

gives this information but only for a single parameter.

Table 1. Average results for 100 attempts for 10dB of SNR

Identification results

θ̂imean
σi

a = 8.5 · 10−3 8.625 · 10−3 2.77 · 10−3

b = 71 · 10−4 73.4 · 10−4 5.35 · 10−4

C = 9.523 · 10−12 F 9.517 · 10−12 1.874 · 10−14

NMSE y,dB −10.06dB

NMSE θ,dB −15.02dB

Table (1) gives the identification results for a 10dB SNR. We can clearly see

that the mean of the parameter θimean
is close to the true value with reduced

standard deviation σi. The normalized error NMSE y,dB on data and on parameters

NMSE θ,dB, presented at the end of the table indicates a low error rate.

4.2. Simulation results for a 1.025GHz GaAs FET oscillator

circuit

4.2.1. Oscillator Design

The schematic of the oscillator used in simulation is shown in Fig. (6). The active

part of the oscillator provides the necessary negative resistance to compensate for

the resonator’s losses. The transistor used is a CFY30 GaAs FET. The total power

consumption of the oscillator is 115mW, under VD = 5V. The passive part is

represented by a RLC parallel resonator that determines the frequency of oscillation.

For the tank chosen in this case, the frequency of oscillation has a value of about

1.025GHz and the resulting quality factor of the resonator is 61.35.

A small signal study of the active part was first made. The objective of this

part is to define the starting conditions of the VCO and the various constraints

that can ensure it will work. The model used for the active part of the oscillator

is shown in Fig. (7) where Cgs and Cgd are respectively the gate-source and the
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gate-drain capacitances. In steady-state, in order to establish and maintain a stable

oscillation, the admittance presented by the active part, expressed as follows, for

Cgd = 0, should have a negative real part:

Ye =
gm

1− ω2LgCgs

+
jωCgs

1− ω2LgCgs

=
ie
Ve

(19)

D S

G

RD LG

VD
VG

-

+

-

+

Resonator

C
=

9
.5
2
3
p
F

L
=

2
.5
3
n
H

R
=

1
k
Ω

Fig. 6. Oscillator schematic using a CFY30 GaAS FET

D S

G

Cgd Cgs

Lg

gmVgs

VR

Vgs

Ve

V

ie

iL

Ye

Fig. 7. Small signal model of the active part

In these conditions, Fig. (8) shows the plot of the real part of the admittance

Ye normalized to gm (the transconductance in siemens) versus the pulsation ω,

normalized with ωr =
1√

LgCgs

. Hence, for

• ω = 0, Re(Ye) = gm

• ω =

(

1√
Lg·Cgs

)−

, Re(Ye) → +∞
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• ω =

(

1√
Lg·Cgs

)+

, Re(Ye) → −∞

• ω → ∞, Re(Ye) → 0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−60

−40

−20

0

20

40

60

R
e
(Y

e
)

g
m

ω
ωr

Fig. 8. Normalized real part of the admittance Re(Ye)/gm plotted versus ωe/ωr

Therefore, from this curve it can be deduced that, to ensure a negative real

part of Ye , the value of the inductance Lg must be chosen so that the resonant

frequency of the tank LgCgs is less than the desired oscillation frequency. Thus, the

ratio ω
ωr

should be greater than unity in order to produce and maintain a constant

oscillation. Hence, to ensure proper start-up of the oscillator, the value fo Lg was

chosen to be equal to 7nH .

4.2.2. Estimation results

The behavior of the oscillator presented in the previous section is simulated using

Agilent’s ADS software in Transient with a sampling period of 0.01ns. For a sake

of clarity, the obtained simulated waveforms will be called the measured data in

the following. In general case, the resulting output voltage uC(t) for VDP model

simulation corresponds to a cosine-type function. To ensure a proper match between

the measured data and the estimation during the identification procedure, we made

a truncation in output data so that the measured voltage starts with the maximum

value, corresponding to cosine type function.

In these conditions, the aim is to find the parameter vector θ so that the Van

der Pol model describes the data collected from the real circuit as accurately as

possible. Let us note that no prior knowledge is available for a and b parameters.

After few iterations, the obtained values of parameters are:






a = 6.2 · 10−3

b = 1.3 · 10−3

C = 9.5 pF
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Fig. (9) shows the evolution of parameter estimates during identification pro-

cedure. We can see that the convergence to optimal values is obtained after 40

iterations.

5 10 15 20 25 30 35 40 45
0.006

0.008

0.01 

0.012

Iterations

a

Parameter a

5 10 15 20 25 30 35 40 45
0    

0.004

0.008

0.012

0.016

Iterations

b

Parameter b

5 10 15 20 25 30 35 40 45
7.6

8  

8.4

8.8

9.2

9.6

Iterations

C
 (

pF
)

Parameter C

Fig. 9. Evolution of estimations during identification procedure

The comparison between the measured and the estimated responses is shown in

figure (10). We can observe good agreement with a maximum error around 0.06V

and a computed NMSEy,dB of −32dB.

5. Conclusion

In this paper, the study and the implementation of an output error approach used

for the identification of oscillating circuits is presented. The physical parameters

of the corresponding Van der Pol model of an oscillator have been identified, us-

ing sampled time data. A brief description of the real system was made and the

mathematical model of the considered system is also described. The mathematical

equations used for the implementation of the method were developed and the im-

provement of the algorithm, for RF systems which have a highly different magnitude

order of their parameters, was presented.

The simulation results, when the simulated circuit has the same structure as

the model in the presence of noise, prove the algorithm convergence and show its
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Fig. 10. Comparison between the measured data and the estimations.

robustness under high level of disturbances. A good agreement was found between

the response of the circuit and the estimated model, showing the efficiency of such

an identification technique. This approach constitutes a simple way to find the Van

der Pol model for the large class of oscillating systems.

The investigated optimization technique behave very well and thus it is suitable

for characterization of practical RF oscillator circuits with classical VDP model.

The next objective is to study how to estimate the parameters of an array of coupled

oscillators using the proposed method. Our first investigation in this field seem to

be very promising.
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