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Abstract: 

 

In this paper we report a simple and effective method to build up self-assembled and well-

calibrated layers of plasmid DNA • 1,3-diaminopropane complexes onto Highly Oriented 

Pyrolitic Graphite (HOPG). The method is based on the self-assembly of the poly-electrolytes 

onto HOPG in an excess of positively-charged protonated di-amines (Dap
2+

) in comparison to 

the negatively-charged phosphate moieties of the DNA backbone in solution. Although short 

distortions in the helical parameters of DNA (maximum 12% hypochromicity) are revealed by 

UV-Vis absorption spectrometry, the native B form of the plasmids is conserved. By fixing 

the excess of positive charges arising from Dap
2+

 cations, it is possible to construct assemblies 

of a well-defined thickness ranging typically from 1 monolayer (ML) of DNA to 10 ML; 1 

ML has a thickness of 2.2 ± 0.5 nm. Adding TRIS-EDTA (TE) buffer lowers considerably the 

damage rate observed when plasmids are mixed to Dap
2+

 in pure water. The thickness of the 

first dense mono-layer matches well the DNA cross-sectional dimensions indicating that this 

layer is strongly anchored to the surface; it is insoluble in water. Conversely, thicker layers 

can be released in aqueous media and the plasmids do not undergo dramatic damage. In 

presence of TE buffer condensation of the plasmids on the HOPG surface and a further 

release of the deposits in water yields a loss of supercoiling that ranges typically from 10 to 

20% when the layer thickness varies from 22 to 12 nanometers. Such densely-packed and 

releasable DNA plasmid layers with a very well characterized and constant thickness 

constitute a substantial progress for biochemical and radiochemical experiments. 



 

 Introduction 

The interest for DNA-based structures deposited onto surfaces has promoted a large variety of 

studies in the last decades. DNA macromolecular assemblies are needed in radiological 

experiments and for various applications such as biosensing or gene delivery,
1
 self-assembly 

nanostructures
2,3

 and production of 2D templates or scaffolds for the construction of 

nanomaterials.
  

Fabrication of such structures usually requires well characterized single or 

double stranded oligonucleotides, which are physisorbed or chemically bonded to an 

atomically smooth surface.  Under such well controlled conditions, the DNA-based structures 

can usually be characterized and visualized by atomic and molecular probes such as Scanning 

Force Microscopy.
4
 However, the fabrication of well-defined structures and molecular 

assemblies from bacterial plasmid DNA as well as their characterization present a much more 

difficult task.  Despite its importance in many biochemical
5
 and radiation physics and 

chemistry 
6-44

 experiments, plasmid DNA cannot easily be organized into a periodic or quasi-

periodic arrangement, particularly, owing to its supercoiled configuration.  The problem is 

particularly acute in experiments with low-penetration-depth (10-100 nm) radiation (e.g., UV 

photons,
25,34,35,37

 soft X-rays
 26,29,36

 and low energy ions
 28,30,33,41,42,43

and electrons
6-24,32,38,39,44

).  

Irradiations of thin DNA targets with such low range radiation are often performed to 

investigate the nanoscopic aspects of DNA damage induced by high energy radiation
7,44

 

xample, in the case of low energy electrons (LEE) experiments, electrons of only 1 to 30 eV 

energy impinge on a thin DNA film held under ultra high vacuum (UHV). Owing to both 

short effective range
i
 and significant energy loss cross sections of LEEs,

40,44
 films have to be 

very thin (typically 6-10 nm) and deposited on a conducting substrate in order to avoid 

charging it during electron bombardment. The plasmid DNA films are ordinarily deposited on 

a metal substrate using the lyophilisation technique before being introduced into UHV.
44

 Such 



a method produces films which contain clusters of DNA molecules and have irregular 

thicknesses with ill-defined morphology and surface.
7
  Under these conditions, it is still 

possible to fabricate DNA films which are sufficiently uniform to measure various electron 

scattering processes and avoid film charging.
44

 However, it is difficult to determine the mean 

free paths and cross sections for electronic excitation, dissociative attachment and induced 

damage in experiments performed in vacuum.
44

 Only a very small amount of degradation 

species is produced owing to the small film thickness; this condition limits ex-vacuo analysis 

of the degradation products to no other the type of damage than configuration modifications, 

for which the supercoiled form is needed.
44

 The same difficulties arise in experiments with 

other short-range particles or photons.
25-30,33-37,41-43

 Thus, there exists a pressing need to 

develop methods to fabricate well-ordered plasmid DNA films, which can be characterized on 

a molecular scale. Such films should be easily redissolved in water for subsequent analysis by 

chemical methods. We describe in this article a method to fabricate well-characterized dense 

DNA plasmid layers, created under biogenic conditions and deposited onto an electrical 

conductor with molecular-level flatness. The method allows one to create well-characterized 

layers composed of plasmid DNA • diaminopropane cation (Dap
2+

) complexes designed to 

erode in water. In the present experiments, the film morphology and surface are analyzed 

using Atomic Force Microscopy (AFM) and DNA topological isomery by means of gel 

electrophoresis. The procedure for fabricating layers is described in the experimental section 

along with a description of the AFM and gel electrophoresis analysis. The results are given 

and discussed in the next section in relation to present and potential applications. We 

conclude and summarize our results in the last section of the paper.  



Experimental Section 

Chemicals and Materials.  

Plasmid DNA (pUC21, 3151bp) at initial concentration of 1mg/ml in water for injection 

(WFI) was obtained from PlasmidFactory GmbH & Co. KG (Germany). Without further 

purification, a stock solution of this DNA (>95% supercoiled) was prepared by dilution with 

ultrapure water having a resistivity of 18.2 M �.cm. The DNA concentration was determined 

by measuring the absorbance at 260 nm using the molar extinction coefficient �260 = 5.3 x 10
7
 

cm
-1

 M
-1

.
70

 1,3-Diaminopropane Dihydrochloride (98%) was purchased from Sigma-Aldrich 

and kept at 4°C. Solutions were freshly prepared before each experiment. 

 

Preparation of DNA Polyelectrolyte •  Dap Complexes. 

 

A solution with the appropriate concentration of DNA is mixed with an equal volume of a 

solution containing protonated 1,3-diaminopropane molecules (Dap
2+

) to attain the desired 

2

4 DNA
Dap PO+ −� � � �� � � �  molar ratios R ( )0.1 R 320≤ ≤ . The excess of positive charges arising 

from Dap
2+

 cations is defined with respect to R, the ratio of the molar concentrations of those 

divalent ions to that of anionic phosphate moieties of DNA in the solution. The resulting 

solutions were mixed and incubated at 25 °C for 15 minutes, then used for the different 

investigations (UV-spectroscopy, gel electrophoresis and multilayer fabrication). Within our 

experimental conditions, the pH of the used solutions was ranging from 7.2 to 6.2 in the 

absence of TRIS/EDTA buffer as measured using a Consort C861 Benchtop Electrochemistry 

Meter. In the presence of TE buffer, the pH was adjusted to 8. 

 

 



Multilayer Fabrication and AFM investigation 

The deposits were prepared by soft-adsorption (figure 1): A 50-µl droplet of DNA–Dap 

mixture was deposited onto a freshly cleaved graphite (HOPG, ZYA grade, NT-MDT) surface 

and incubated during 15 min. Then, the surplus mixture solution was removed using filter 

paper. After drying in clean air for 3 min, the samples were immediately imaged using atomic 

force microscopy (AFM). The AFM images were obtained with a Molecular Imaging 

scanning probe microscope (Agilent now, USA). Silicon nitride tips coated with aluminium 

(Nanoandmore) at a resonant frequency of 300 kHz in the tapping mode were used to image 

the topography surface in air, at standard temperature and pressure. 

 Thickness measurements were performed using the AFM: a small window (1x1µm) was 

scanned in the contact mode under a loading force appropriate for the tip to remove the 

deposit without damaging the graphite substrate. Following that step, the snapshots were 

recorded by scanning a large window (5x5µm) in the tapping mode, which make it easily 

possible to measure the height of the layers. 

 

Instruments and Methods. 

The absorption spectra were recorded using a Varian, Cary 100 Scan, UV-visible 

spectrophotometer. Quartz reservoirs of 1cm optical path length were used. Hypochromism or 

hypochromicity 
56

 refers to a decrease in absorption at a given wavelength, it is defined as:  

2

0

(DNA Dap )
% h 1 100

(Pure DNA)

+� �ε •
= − ×� �

ε� �
  (1) 

Hypochromicity data was computed for the different R values based on the absorption spectra 

of free DNA and DNA•Dap
2+

 complexes measured at 260 nm. Gel electrophoresis 

measurements are based on 1% agarose in TAE buffer at 6.7 V.cm−1 for 7 minutes and 5.0 

V.cm−1 for 70 minutes. Both the gel and DNA-Dap mixtures were pre-strained with SYBR-



Green 1 (Molecular Probes) (1X for gel and 20X for DNA respectively). Equivalent of one 

hundred nanograms of DNA was loaded per well. Gels were scanned with Bio-Rad Gel 

Doc
TM

 XR using blue fluorescence mode at an excitation wavelength of 302 nm. The relative 

amounts of each form of DNA were obtained from Image analysis by Quantity One software. 

Results and Discussion 

Preliminary Considerations and Experiments. We first tried to produce films with high 

coverage using the method described in Figure 1 and by increasing the DNA concentration in 

the initial solution, this without any buffer or other salts than structural counterions. We found 

that high coverage could not be achieved following this procedure. Thus, in order to partially 

screen the repulsive forces between DNA polyions, additional monovalent and divalent 

cations (Na
+
 and Mg

2+
) have been added to the mother solution and their influence on the 

topology of the deposited plasmids was followed accurately by AFM. 

Even though, the effects of a variation of the ionic strength on plasmid topology in solution 

are rather well described by thermodynamics, molecular mechanics and molecular dynamics 

calculations,
47,48

  not so much is known about the behavior of partially neutralized polyions 

adsorbed on a hydrophobic surface. As stated by Fujimoto and Schnurr,
49 
� �onfining a 

supercoiled DNA to a plane greatly restricts its configurational freedom and the number of 

configurations available (i.e., the configurations of DNA in solution are vastly greater than for 

surface-confined DNA). However, our results obtained after adsorption on HOPG in the 

presence of mono and di-valent cations tend to prove that the topology of the plasmids is not 

greatly modified as compared to an aqueous environment. Briefly, under high ionic strength 

(NaCl), the plasmids are adsorbed in a fully interwound (plectonemic supercoil) topology, 

whereas, under low ionic strength they are adsorbed in a quasi-relaxed form (the number of 

interwindings is low). Adding mono- or divalent cations to the mother solution does not allow 



condensation and precipitation of DNA onto HOPG. Only the topology of the plasmids is 

affected by a variation of the ionic strength, not the number of molecules adsorbed per unit 

area. As expected, a variation of the pH of the solution no longer increases the covered 

surface fraction that actually remains low. Thus, we used di-amines in order to condense 

plasmids and to screen as much as possible the repulsive forces between anionic phosphate 

groups of the DNA backbone in aqueous solution. Polyamines are indeed known to be 

involved in the mechanism of DNA folding-unfolding in biological cells
50 

 as well as 

stabilization of the negative charges of DNA.
51

 Cao and Schuster
52

 recently have shown that 

hydrophobic protection of DNA can be achieved by forming a complex with lipid-like 

spermine derivatives. Therefore, polyamines complexed with DNA should make it possible to 

densely pack DNA.  We thus expect plasmids to condense more easily onto the surface of 

hydrophobic HOPG in presence of polyamines than, for example, Poly(�-amino Ester)
53

 on 

planar silicon substrates or Poly(amidoamine)
54

 onto muscovite mica. We show in the next 

subsections that the simple protonated diamine, diamino propane (Dap, also called Z-5), is 

very efficient to create densely packed DNA plasmid layers designed to erode in aqueous 

media.  

DNA Plasmids Topology in the Presence of Dap
2+

. Diamino propane is mostly doubly-

protonated in water (pKa1= 10.1-10.7, pKa2 = 8.3-9.0).
55
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In order to control the DNA conformation, prior to deposition onto HOPG, the UV-absorption 

spectrum of [DNA • Dap2
+
] complexes in water was measured at the DNA maximum 

absorption, i.e. 260 nm. Neither red-, nor blue-shift was observed indicating that the native B 

form is retained when DNA is complexed with Dap
2+

 ions. Figure 2 shows the variations in 



hypochromicity
56

 measured for a wide range of R values, where R is the 

ratio 2

4 DNA
Dap PO+ −� � � �� � � � . Weak hyperchromicity is observed for small values of R (R = 0.1 

and R= 1, see the inset in Figure 2). As for higher R values, hypochromicity rises continually, 

reaching 12.5% at saturation.  For 2 R 16≤ ≤ , the hypochromicity remains low and reaches 

5% at R=16. Hypochromicity is the result of nearest neighbor base pair interactions; it can be 

due to both intercalation and groove binding.
57

 Using molecular dynamics computations, 

Korolev et al.,
58,59

 have shown that Dap
2+ 

essentially binds to DNA through O1P, O2P 

(phosphate moiety) within the minor and major grooves. Binding to the phosphate moiety 

appears with a clear dominance of coordination to the O1P atom compared to O2P.
58

 

Furthermore, using the isotopically labeled ammonium ion ( 15

4NH+ ) as a probe for high-

resolution NMR spectroscopy experiments, Hud and co-workers
60

 have shown that there is a 

preference for the binding of ammonium cations in the minor groove of A-tract sequences in 

DNA. As shown by Kielkopf and co-workers
61

 using high resolution X-Ray Cristallography, 

the presence of bound ions influences the helical parameters, torsion angles, and hydration of 

the DNA dimer, which in turn may exhibit hypochromicity. The BI conformation is the 

nucleotide conformation in the classical B-form of DNA. Multiple conformational states for a 

same B structure of double stranded DNA (BI-BII equilibria) are nevertheless known
61

 to 

arise. The BII / BI ratio depends on the ligand binding affinity and concentration. Dap binding 

to DNA may stabilize a certain conformation of the backbone at the expense of entropy.  In 

95% RH (Relative Humidity), the ratio BII/BI was found to be 0.72 in the presence of 

Dap
2+

.
59

 Our spectroscopic analyses thus demonstrate that no B�A or B�Z transition occur 

in the plasmids DNA; only distortions related to BI-BII equilibrium appear in their structure, 

when R increases and yields high ionic strengths. In the present study, 96.1% of the initial 

DNA macromolecules are in the supercoiled topological form; the remaining 3.9% adopt the 

circular (relaxed) form. A large series of aqueous solutions with DNA0.1 C 500ng /µl≤ ≤  and 



0.1 R 10≤ ≤  was analysed by means of agarose gel electrophoresis. Data for this series of 

measurements is graphically displayed in Figure 3. A ratio of R= 0.1 does not notably modify 

the proportion of supercoiled conformation, while for R reaching greater values (R=1 or 

R=10), this proportion decreases when CDNA increases, then stabilizes and no longer depend 

on R. For either R=1 or R=10, the results are very similar. The proportion of supercoiled form 

decreases and the circular as well as dimer percentages conversely increase and saturate over 

CDNA ≥ 200 ng/µl. In the concentration range 50-100 ng/µL the observed variations are 

particularly drastic. The appearance of dimers as well as the increase in circular conformation 

highlight DNA damage.
62,63

 One single strand break is sufficient to provoke plasmid 

relaxation (i.e. opening of the plasmid from its supercoiled to the circular form in order to 

relax torsional stress). Stabilization of the damage rate over CDNA ≥ 200 ng/µl when R ≥ 1 is 

noteworthy, it relate to the saturation of the damaging process in DNA.  At least 60% of the 

supercoiled form remains for whatever are the values of CDNA > 200 and R > 1. Most 

importantly, it is clear that in our experiments, DNA damage is undoubtely due to the 

presence of the Dap
2+

 ions. The same behaviour is observed when using amino propane 

instead of Dap (not shown here) indicating that the divalent character of Dap
2+

 is not a 

necessary condition to get the observed damages. The appearance of dimers (i.e. two 

covalently bound relaxed plasmids) for CDNA ≥ 100 ng/µl suggests that, within our 

experimental conditions, two relaxed topoisomers have a significant encounter frequency. To 

our knowledge, literature data concerning cleavage of DNA by metal-free compounds in the 

absence of ionising radiations are not as frequent, or even missing.  Further investigations are 

needed to understand the chemical pathways by which DNA cleavage occurs. Important here 

is the fact that we did use solutions of DNA free of any chemical buffer. We decided therefore 

to test the possible protecting effect of a buffer, i.e. TRIS-EDTA (TE), against DNA damage. 

For this reason, we prepared the same solutions as previously mentioned, but in presence of 



10 mM TRIS and 1 mM EDTA (pH = 7.8). In Figure 4 we present the % of the observed 

DNA forms at R=1 when TE buffer is added to the same DNA concentrations as those 

indicated in Figure 3. The addition of TE has a very stabilising effect. The dimer form no 

more appears and the % of supercoiled form is now very similar to the reference (see the two 

lines on the left-handed side of Figure 4); typically a 5% loss of supercoiling is observed with 

CDNA ranging from 10 to 500 ng.µl
-1

 and R=1.  

Making Films with Various Thicknesses. As the major Dap
2+ 

binding sites in DNA are the 

anionic phosphate groups,
57

 we guess that Dap
2+

 can act as an ionic binding ligand in order to 

self-assemble DNA layers onto HOPG. In the absence of TE, it is clear that R=0.1 is the most 

favorable ratio for depositing undamaged plasmids on the surface. Unfortunately, with this 

ratio taken at various DNA concentrations, it is impossible to obtain densely-packed layers on 

the HOPG surface, only sparsely adsorbed plasmids are observed using AFM (Figure 5). With 

R=1 and CDNA = 100 ng/µl a monolayer (ML) can be produced on a large area typically as 

large as the contact area of the drop which in our experiments is usually 1 cm
2
, whose 

adhesion/anchoring on the graphite surface prevents DNA release in water. Whatever is the 

rinsing time, the layer remains entirely confined to the surface.  As shown in Figure 6, 

increasing R makes it possible to self-accumulate thicker layers.  Contrary to the first layer, 

these additional layers are soluble in water. 

 

Characterization of Film Thickness and DNA Release in Water. The height of the formed 

layers is measured using the profilometry technique: a scratch is made on a small area of the 

layer with the AFM tip in the contact mode. The localized etching of the surface is then 

imaged in the tapping mode and a series of height measured along different lines crossing the 

empty area. This way, the average height of the deposits are measured and reported versus R 

at a constant DNA concentration. Changing R at constant CDNA, enables layers to be created 



starting from a 2 nm insoluble layer up to deposits as thick as several dozen of nanometers. In 

Figure 7, the mean height of the layers is presented versus R in the case of two different DNA 

concentrations with or without TE. The plateau-value of the film thickness depends on the 

DNA concentration, irrespective of the presence or not of TE. Both R and CDNA values dictate 

the height of the layers and therefore make it possible to control their heights. Acting on these 

two parameters allows one to construct layers of a well-defined thickness. The total thickness 

is considered to arise from successive intercalation of diamine molecules bridging the first 

insoluble monolayer of DNA with the plasmids in its close vicinity (see ISPL in Figure 1). 

The two plateau values shown in Figure 7 typically correspond to thicknesses of 5 monolayers 

(ML) (100 ng/µl) and 13 ML (300 ng/µl).  Figure 8 shows the evolution of the measured 

layers thickness versus CDNA with R=1 in the absence of TE.  At 100 ng/µl, only the first layer 

is formed. It is insoluble in water, even if both the incubation time and the number of rinsing 

(washing) are increased. The mean thickness of that layer was measured to be 2.2 ± 0.5 nm. 

This value is consistent with the DNA double-strand sectional dimensions (i.e. 2 nm) and 

demonstrates dense packing and full adherence to HOPG. We guess that such a strong 

adhesion is due to hydrophobic interactions and site specific anchorage. As 1,3-

diaminopropane molecules are in excess compared to the total number of anionic sites in 

DNA, its full charge is extremely screened and hydrophobic domains cover the DNA grooves 

that in turn favour hydrophobic interactions with the HOPG surface. Moreover, it is well-

known
64

 that in the double protonated 1,3-diaminopropane, the all-trans distance between two 

positively charged ammonium groups is very close to the distance separating two consecutive 

anionic phosphate groups on the DNA backbone (see SSPB in Figure 1). Molecular dynamic 

simulations demonstrate that Dap is capable of pronounced narrowing of the minor groove
65 

 

through direct binding to the phosphate groups across the groove (see MGPB in Figure 1). As 

the Dap
2+ 

ammonium moieties
 
are located in close vicinity to the negative DNA phosphate 



groups, it is likely that their free aliphatic (i.e. hydrophobic) chains may create short distance 

interactions with the HOPG surface (SSPB and MGB in Figure 1). Additionally, with their 

propensity to interact with phosphate moieties, Dap
2+

 molecules exclude water molecules 

from the close backbone environment and particularly from the minor groove.
61,65

 This last 

behaviour should thus emphasize hydrophobic interactions near to the surface. Moreover, we 

also verified that when thoroughly rinsed with water, the thick layers are released and the 

surface gets back to the state of a non-soluble monolayer with a constant thickness of 2.2 ± 

0.5 nm. Within any values of CDNA and R, for which thick layers are formed, release in water 

occurs, except for the first layer that remains anchored to the HOPG surface. Interestingly, 

specific and local interactions have been shown to appear near to a hydrophobic surface 

owing to intense local dielectric constant variations at the solid-liquid interface. As shown 

recently by Lima et al.
66

 and Horinek and Netz,
67 

a strong ion specific double layer sets in, 

owing to unequal ion short-range potentials acting between ions and surfaces. Those specific 

interactions may therefore favour the formation of the first insoluble layer observed in this 

work. Gel electrophoresis analysis of the DNA plasmids that leached out from the surface into 

ultra-pure water yield proportions of supercoiled conformation that are close to those 

measured prior to deposition (Figure 4) in buffered solutions (TE). On the contrary, in the 

absence of TE buffer, the whole process; mixing DNA with dap, depositing the complex and 

then leaching it of, is much more damaging. The presence of TE buffer makes it possible for 

DNA macromolecules to be gently restored in aqueous media with a very acceptable yield of 

damage. This latter is inversely proportional to the thickness of the layer. We summarize 

these results in Figure 9. Finally, we note that in relation to potential applications in the field 

of gene delivery from tissue engineering scaffolds or other techniques related to self-assembly 

of biomolecules, Dap may pose a problem due to its toxicity. We therefore did test the 

capabilities of putrescine, a biogenic diamine that contains one more methylene group in its 



aliphatic chain, in order to create similar densely packed and releasable layers on HOPG. 

Intracellular putrescine levels must indeed be significantly increased (> 50 nmol/mg of 

protein) in order to observe induction of polyamine-mediated gene expression.
68

 We found 

that putrescine used under the same conditions as Dap also makes it possible to accumulate 

very dense layers of plasmids on HOPG. In Figure 10, we present typical AFM snapshots of 

layers constructed with R = 2, 4, 8, 16 and CDNA = 20 ng/l. This result may show promise in 

fields related to surface mediated gene transfer, particularly because the present method could 

easily be automated and provide well characterized centimetric-sized areas of plasmid layers.      

 

Summary and Conclusion 

In aqueous solution, when 1,3-diaminopropane is in excess compared to DNA’s phosphate 

moieties (R � 1), condensation occurs and precipitation on the hydrophobic surface becomes 

possible. The first-formed layer is densely-packed and its thickness matches well the DNA 

double strand cross-sectionnal dimensions. The height of a given deposit is dependant on the 

concentration of DNA (CDNA) and R. With R ≥ 1, fixing either CDNA or R, while increasing 

the remaining parameter gives rise to the formation of layers, whose height reaches saturation. 

The layer growth and height of the closely and neatly packed plasmid DNA condensates can 

therefore be controlled and predicted.  As shown from AFM images, the plasmids are highly 

intertwined and linked together when condensed on the graphite surface. We have checked by 

means of gel electrophoresis analyses that the released plasmids are topologically truly intact. 

With the exception of BI � BII transitions, neither B � Z, nor B � A transitions are 

observed. Gel electrophoresis analyses of DNA dissolved in pure water in the presence of 

various Dap concentrations indicates that a constant amount (~30%) of the supercoiled 

conformation undergoes relaxation (i.e. transformation into the circular form) and in a lesser 



proportion (<10%) dimer formation. In the presence of TE buffer, the proportion of circular 

DNA drops down to 5 % and the dimer form disappears. By varying the ratio R, layer 

deposition can successfully be achieved onto the freshly cleaved HOPG surface starting from 

a thickness of 2.2 ± 0.5 nanometers up to layer depths as large as several dozen of 

nanometers. This behavior is independent of the presence of TE. When placed in contact with 

water, the deposits are released and become therefore available for further processes or 

analyses. In TE buffer, the re-dissolved portion of the supercoiled fraction does not vary so 

much compared to the fraction in solution before condensation onto HOPG. The amount of 

supercoiled configuration remaining after re-dissolution is more than sufficient for analysis by 

electrophoresis. The method described here provides valuable and well characterized DNA-

Dap complex deposits which will be extremely useful to study nanoscopic aspects of 

radiobiology related to DNA damage in experiments based on plasmid relaxation.
6-44

 In fact, 

errors introduced in the determination of fundamental and transportable quantities such as 

scattering cross sections and attenuation coefficients are highly dependent on variations of 

target thickness.
15 

These fundamental quantities are needed to model the effects of any type of 

radiation.
69

 The present method should make it possible to provide such fundamental 

parameters in thin DNA films and quantitate the damage to plasmid DNA induced by 

radiation of low penetrating range (10-100 nm) such as UV photons, soft X-rays, low energy 

ions and LEEs.  More generally, this method may constitute a novel and simple alternative to 

polyelectrolyte layer fabrication for applications in biological sciences. In these applications, 

it may be preferable to use a less toxic diamine such as putrescine.  As shown in this work, 

layers of DNA-putrescine complexes can also be assembled onto a HOPG surface. 
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Figure Captions 

 

Figure 1: Left is a schematic illustration of the preparation of densely packed [DNA Plasmid 

• Dap
2+

] complex layers using a method based on soft-adsorption. The right-handed part of 

the Figure shows the specific sites where the Dap
2+

 cations interact with the DNA phosphate 

moieties. SSPB stands for Single Strand Phosphate Binding, MGPB stands for Minor Groove 

Phosphate Binding and ISPL stands for Inter Strand Phosphate Linking. For a better 

description of the sites involved in electrostatic interactions, on the left-handed “stick” DNA 

model, only phosphate atoms (yellow) are shown as “balls”. An AFM snapshot, where single 

plasmids are resolved, illustrates the typical feature of the first layer in which DNA plasmids 

appear under the form of fully intertwined rods (CDNA=10ng/µl and R= 3). 

 

Figure 2: Hypochromicity measured @ 260 nm for R ranging from 0.1 to 320 in ultra-pure 

water. �(ref) corresponds to the maximum  absorption of pure DNA plasmids in ultra-pure 

water.
 56

 The DNA concentration in these experiments is 50 ng/µl. The inset shows the low 

hyperchromic effect measured when RA2. The dashed lines are drawn to guide the eye.  

 

 

Figure 3: % of supercoiled (SC), Circular (C) and Dimer (D) conformations for various DNA 

concentrations and ratios R. The dotted and dashed lines represent, respectively, the initial 

supercoiled and circular forms present in the mother solution. The error bars correspond to the 

highest standard deviation observed (2.5%) over all average values calculated for each point 

with 3 different series of measurements. The solid lines are drawn to guide the eye. 



                                                                                                                                                         

 

Figure 4: % of supercoiled (SC) and Circular (C) conformations for various DNA 

concentrations at a ratio R=1 in the presence of 10 mM TRIS and 1 mM EDTA (pH=7.8). 

Two measurements were performed by gel electrophoresis for each DNA concentration. 

 

Figure 5: AFM (5x5 µm) tapping mode image of plasmid DNA – Dap
2+

 complexes formed 

with R=0.1 and CDNA = 200 ng/µl. Plasmids appear fully intertwined and are mostly isolated 

from each other. Dimers are exceptionally present (arrows) which confirm that the encounter 

frequency of the plasmids in solution is notable. The dashed lines indicate a region where 

plasmids did specifically adsorb parallel to an atomic-scale step on the HOPG surface. The 

maximum height measured for the deposited plasmids reaches 3.5 nm, therefore we can 

consider that with a DNA cross-sectional diameter of 2 nm, the plasmids are not fully 

adsorbed on the surface, but only partially anchored.  

 

Figure 6: AFM (5x5 µm) tapping mode images of layers composed of [plasmid DNA • 

Dap
2+

] complexes with R=1, 2, 8 and 32 and CDNA = 20 ng/µl. On the first AFM snapshot 

(R=1), the inset shows a 6-fold magnification of an area of the deposit where a hole exists. 

This inset shows clearly the pristine HOPG surface present under the first layer, which is 

particularly dense. For R=1, some plasmids start to form a layer and exhibit a fibrous shape, 

indicating a fully intertwined conformation due to a high degree of complexation. It is clear 

also that several plasmids are linked together in order to form fibres. Varying R from 2 to 8 

then to 32, a progression toward the formation of a second layer covering the first one is 

clearly evidenced. 

 



                                                                                                                                                         

Figure 7: Average thickness of the layers as a function of the ratio R at two different DNA 

concentrations with and without TE as measured by AFM. Error bars represent the standard 

deviations of 10 measurements. The dashed lines are drawn to guide the eye.  

 

Figure 8: Evolution of the layer’s mean thickness for various DNA concentrations in the 

special case where Dap
2+

 and DNA phosphate moieties concentrations are equi-molar, in the 

absence of TE. Error bars represent the standard deviations of ten different height 

measurements. The height of the monolayer was measured = 2.2 ± 0.5 nm. The plateau 

corresponds typically to a 5-layer self assembly. The thin dashed line is drawn to guide the 

eye. 

 

 

Figure 9: Summary of the various average percentages of supercoiled DNA after the different 

steps necessary to release the complexes in water. The protecting effect of TE, which allows 

restoring plasmids in water with minimal damage, is clearly evidenced. The average values 

correspond to ten measurements and are presented together with their statistical standard 

deviation. The thicknesses of the layers are expressed in terms of monolayers (ML); one ML 

typically corresponds to 2.2 ± 0.5 nm. Thin layers are more fragile than thicker ones. 

 

Figure 10: 4x4 µm snapshots of layers formed on freshly cleaved HOPG with putrescine as a 

electrostatic linker, R = 2, 4, 8, 16 and CDNA = 20 ng/µl. The white segment on the R=8 image 

corresponds to 1 µm. 



                                                                                                                                                         

Figures 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                                         

Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                                         

 

 

Figure 10 
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