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Best algorithms for HDR image generation
A study of performance bounds

Cecilia Aguerrebere† ‡, Julie Delon †, Yann Gousseau †, and Pablo Musé ‡

Abstract. Since the seminal work of Mann and Picard in 1994, the standard way to build high dynamic
range (hdr) images from regular cameras has been to combine a reduced number of photographs
captured with different exposure times. The algorithms proposed in the literature differ in the
strategy used to combine these frames. Several experimental studies comparing their performances
have been reported, showing in particular that a maximum likelihood estimation yields the best
results in terms of mean squared error. However, no theoretical study aiming at establishing the
performance limits of the hdr estimation problem has been conducted. Another common aspect
of all hdr estimation approaches is that they discard saturated values. In this paper, we address
these two issues. More precisely, we derive theoretical bounds for the hdr estimation problem,
and we show that, even with a small number of photographs, the maximum likelihood estimator
performs extremely close to these bounds. As a second contribution, we propose a general strategy
to integrate the information provided by saturated pixels in the estimation process, hence improving
the estimation results. Finally, we analyze the sensitivity of the hdr estimation process to camera
parameters, and we show that small errors in the camera calibration process may severely degrade
the estimation results.

Key words. high dynamic range imaging, irradiance estimation, exposure bracketing, multi-exposure fusion,
camera acquisition model, noise modeling, censored data, exposure saturation, Cramér-Rao lower
bound.

1. Introduction. The human eye has the ability to capture scenes of very high dynamic
range, retaining details in both dark and bright regions. This is not the case for current
standard digital cameras. Indeed, the limited capacity of the sensor cells makes it impossible
to record the irradiance from very bright regions for long exposures. Pixels saturate incurring
in information loss under the form of censored data. On the other hand, if the exposure time
is reduced in order to avoid saturation, very few photons will be captured in the dark regions
and the result will be masked by the acquisition noise. Therefore the result of a single shot
picture of a high dynamic range scene, taken with a regular digital camera, contains pixels
which are either overexposed or too noisy.

High dynamic range imaging (hdr for short) is the field of imaging that seeks to accurately
capture and represent scenes with the largest possible irradiance range. The representation
problem of how to display an hdr image or irradiance map in a lower range image (for
computer monitors or photographic prints) while retaining localized contrast, known as tone
mapping, will not be addressed here. Due to technological and physical limitations of current
optical sensors, nowadays the most common way to reach high irradiance dynamic ranges is by
combining multiple low dynamic range photographs, acquired with different exposure times
τ1, τ2, . . . , τT . Indeed, for a given irradiance C and exposure time τi, the corresponding pixel
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value is a function of the received luminous energy τiC. Hence, using different exposure times
allows to sample the camera response function at different operating points. Thus avoiding
saturation for at least some of the exposures and keeping details in both dark and bright
regions. This acquisition process is called exposure bracketing, and is an automatic function
in most modern digital SLR cameras. Of course, the more photographs spanning the whole
range of exposure times, the better. Ground-truth hdr images are built in such conditions,
in a very controlled environment. However, for practical limitations, exposure bracketing in
real situations can rarely exceed a few snapshots.

In this work we will concentrate on the problem of estimating the irradiance map, that
is the irradiance reaching each pixel, from a reduced number of photographs captured with a
given set of exposure times. More precisely, the general aim of this work is to establish the
performance bounds for this estimation problem, and to find out how far from these bounds
current state-of-the-art hdr estimation methods are.

Previous work. To our knowledge, the first hdr imaging technique in the framework of
digital photography, based on exposure bracketing, was proposed in 1994 by Mann and Pi-
card [13]. The method assumes that the camera radiometric response function f mapping
luminous energy to pixel values has been previously calibrated. Then, if zpi denotes the im-

age value at pixel p for the exposure time τi, the irradiance estimate at that position Ĉp is
computed from exposure times τ1, . . . , τT as

Ĉp =

∑T
i=1w

p
i
f−1(zpi )

τi
∑T

i=1w
p
i

, (1.1)

were wp
i is the weight assigned to the exposure i for pixel p. In [13], small weights are assigned

to extreme pixel values – very low or close to saturation – based on the claim that the camera
response function calibration is less accurate at these values1. This approach suffers from
mainly two problems. The first one is that the weights are somehow arbitrary and not derived
from a noise model of the pixel values. The second one is that the calibration of the camera
response function is a problem on its own, and is prone to errors that are directly transferred to
the irradiance estimator. The work of Mann and Picard represents an important contribution,
since it inspired several approaches based on exposure bracketing, whose main difference relies
on the way photographs are combined, that is, on the choice of the weights wp

i . See [11, 6] for
an interesting review and comparison of these methods.

Irradiance estimation methods can be classified according to different criteria. One of
them is whether the method assumes a linear [19, 11, 6] or a non-linear camera response
function f [13, 3, 16, 21, 17]. The former are meant to be used with the camera raw data,
i.e. the pixel values before any camera post-processing (demosaicking, white balance, etc).
For raw data, the camera response function is linear since, ignoring noise sources, each pixel
value is proportional to the number of photons reaching the corresponding sensor cell. The
latter need to define a method to estimate the camera response function and its inverse. In
this work we will assume a linear camera response. With the currently available technology
and storage capacity of cameras, it is entirely reasonable to assume that we have access to the

1The notation used throughout the article is summarized in the List of notations at the end of the document.
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raw data or that the processing can be done directly on the raw data inside the camera. For
those methods like Mann and Picard’s, which consider non-linear response functions, we will
therefore consider the linear response counterpart based on raw data.

Another meaningful classification of irradiance estimation methods is based on the ob-
jective function that is optimized. Three main groups can be distinguished, whether the
objective function is based on the camera response function [13, 3], the snr [16, 17] or the
variance [21, 19, 11, 6, 8]. The methods in the first group [13, 3] propose to compute the
weights based on the uncertainty of the sample values given by the camera response function.
It is claimed that extreme pixel values are less accurate. Therefore lower weights are assigned
to those values and mid-range values are prioritized. The snr based methods [16, 17] weigh
samples according to their snr, which is computed from the input samples.

Variance based approaches are among the most recent ones. An idea common to all of
them is the use of a statistical model of the camera acquisition process. This model takes
into account several noise sources allowing to improve the irradiance estimation. Tsin et
al. [21] were the first ones to propose this kind of approach. They characterize each pixel as
a random variable whose distribution parameters depend on the unknown irradiance. Then
they estimate the irradiance as an average weighted by the standard deviation of the samples.
Robertson et al. [19] propose a statistical model where the mean pixel value depends on the
unknown irradiance. Then they compute the irradiance with a maximum likelihood estimator
(mle). The mle is the average of the input samples weighted by the inverse of their variances.
However, since they do not manage to estimate these variances they fix their values by an
ad-hoc procedure.

More recently, a new variance-based approach was introduced by Kirk and Andersen [11].
The main difference with the previous ones relies on the camera acquisition model. In this
model, both the mean and the variance of the pixels depend on the unknown irradiance
(because of the Poisson nature of the photon shot noise). They propose to estimate the
irradiance also using a mle. However, under this model a closed-form does not exist for the
mle. To overcome this limitation they ignore the variance dependence on the irradiance and
find a closed-form for the mle which depends on the variance. Then, they use the known
dependence of the variance on the irradiance to compute the variance from the input samples.
The same line of work is followed by Granados et al. [6] who propose a still more accurate model
and solve the variance irradiance-dependence problem with an iterative method. Basically, at
each iteration the weights are computed from the current irradiance value and the irradiance
is updated according to the mle (the one obtained ignoring the variance dependence on the
irradiance).

In the imaging industry, a classical choice is the one obtained by setting wp
i = τi in Equa-

tion (1.1). The estimator thus obtained is the minimum variance unbiased estimator when the
input samples are assumed to follow a Poisson distribution with mean and variance depend-
ing on the irradiance parameter. As will be presented in Section 2, the Poisson distribution
correctly models one of the main noise sources of digital images acquisition: the photon shot
noise.

Contributions. In this work we conduct a thorough analysis of the hdr image estimation
problem, in order to establish its performance limits and to determine if current estimation
techniques are close to these limits. Part of this study also consists in quantifying how these
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limits are affected when samples saturate, and when uncertainties are introduced in the camera
parameters calibration process. The analysis presented in this work is conducted under the
following hypotheses:

1. The considered estimators are unbiased or nearly unbiased and the computed bounds
set the performance limits for unbiased estimators. This hypothesis is motivated by
the fact that most of the existing estimators, among them the best performing [6] and
most well known ones [11, 13, 3, 16, 17], are nearly unbiased. Biased estimators are
sometimes preferred since they may achieve a lower mean squared error (mse) than
unbiased ones. Nevertheless, we do not study the performance bound for biased esti-
mators since it depends on the bias (through the first derivative of the bias) and must
therefore be stated for each bias type. Notwithstanding, notice that the methodology
here conducted can be easily extended to a given type of biased estimators by adapt-
ing the computation of the bound including the corresponding correction term (first
derivative of the bias) and repeating the experimental stage.

2. A linear camera response function is assumed. The estimation is done from raw
samples for which, ignoring noise sources, the camera response function is linear.

3. The ISO setting is assumed to be fixed for all images, thus the gain factor is constant.
4. The photographs are perfectly co-registered and possible radiometric changes have

been compensated.

Assuming that these hypotheses are satisfied, we propose in this paper two interrelated con-
tributions:

1. We present a study of the theoretical performance bounds of the hdr estimation prob-
lem. More precisely, given a small number of samples per pixel (say 6), we determine
the lowest mse that can be attained by combining these samples. One question we
address is why the mle outperforms the other estimators proposed in the literature,
and how far it is from the optimal mse. The optimality of the mle is far from obvious
in such a non asymptotic case. We show, however, that there is not much room for
improvement.

2. Surprisingly, all the methods proposed in the literature discard saturated samples.
Nevertheless, saturated samples certainly carry some useful information. For instance
the exposure time at which they have saturated. As a second contribution, we study
the usefulness of this information, and we present a way to incorporate it in the whole
estimation process. Not surprisingly, the information contained in saturated samples
turns out to improve the irradiance estimation.

Another aspect treated in this paper deals with a very significant problem that does not seem
to have received much attention in the literature: the sensitivity of irradiance estimation to
uncertainties in the camera parameters. This is a crucial question, since these parameters
are obtained through a calibration process, which is of course not error-free. Through an
experimental analysis, we show that irradiance can only be accurately estimated if the camera
parameters are very carefully calibrated. Moreover, a very careful calibration is also found
to be critical in order to obtain a reliable ground-truth for evaluations with real data. Even
if this part of the study is conducted with a limited number of experiments, the interesting
preliminary results open a path to explore this topic.
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The article is organized as follows. In §2 a statistical model for the camera acquisition
process is introduced. Then, in §3, based on the previous model, we derive performance bounds
for the hdr estimation problem, and we compare some state-of-the-art estimators against the
bound. The use of saturated samples in the irradiance estimation problem is analyzed in §4.
In §5 we present a sensitivity analysis of the estimation problem with respect to uncertainties
in camera parameters. The main conclusions of this work are summarized in §6.

2. Camera Model. In this section, we briefly introduce the camera model that will be used
throughout the paper. A more complete description of this model can be found in [1]. Two
technologies are used for camera sensors: charge-coupled devices (CCD) and complementary
metal-oxide-semiconductors (CMOS). A very similar acquisition model can be proposed for
both sensors, which transform incoming light photons into voltage output values. We divide
the main uncertainty sources of the acquisition process into two categories: random noise
sources, and spatial non-uniformity sources.

2.1. Random noise sources. Two physical phenomena are responsible for the random
noise generation during the camera acquisition process: the discrete nature of light, which is
responsible for photon shot noise, and the thermal generation of electrons.

Photon shot noise. The number of photons Cp
i impinging the photo-diode p during a given

exposure time τi follows a Poisson distribution, with expected value Cpτi, where Cp is the
number of photons reaching p per unit of time. The number of electrons photoelectrically
generated is also Poisson distributed and the voltage measured at the sensor output should
be V = gcvCpτi, where gcv is the equivalent capacitance of the photo-diode.

Dark current. Some of the electrons accumulated on the potential well of the photo-diode
result from thermal generation. The number of these electrons is well modeled by a Poisson
distribution with expected value Dp [20], depending on the temperature and exposure time.
In this paper, we call Dp

i this dark shot noise for the exposure time τi.

Readout noise. Some thermal noise affects the output values of the readout circuitry. This
reset noise Nreset is accurately modeled as Gaussian distributed [12]. Another thermal noise
Nout, also modeled as Gaussian, appears during the amplification of the voltage values.

2.2. Spatial non-uniformity sources. Besides random noise sources, several uncertainty
factors, all related to the spatial non-uniformity of the sensor, should be taken into account
in the acquisition model.

Photo-response non-uniformity (PRNU). Different pixels do not produce the same number
of electrons from the same number of impacting photons. The fact that a photon can be
absorbed or not in the photo-diode is a binomial selection of the Poisson process of impinging
photons. Hence the prnu can be modeled as a spatially variable multiplicative factor ap
applied to the parameter of the Poisson variable C

p
i .

Dark-current non-uniformity (DCNU). The dcnu represents the variations in dark current
generation rates from pixel to pixel. The dcnu can also be modeled as a spatially variable
multiplicative factor dp applied to the parameter of the Poisson variable D

p
i .

2.3. Acquisition model. Equation (2.1) proposes a simplified model including the pre-
vious noise sources. Pixels are modeled as independent and following the same model (the
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Figure 2.1: Camera response function for the linear + saturation model (raw data).

dependence on position p is avoided to simplify the notation):

Zi = f
(

gout [gcv(Ci +Di) +Nreset] +Nout +Q
)

, (2.1)

where Zi is the pixel value, f is the camera response function, gout is the camera gain, and Q

is the uniformly distributed quantization error, which takes place during the conversion of the
analog voltage measures into digital quantized values. The term gout [gcv(Ci +Di) +Nreset]+
Nout can be rewritten as the addition of a Poisson distributed random variable with expected
value λi = aτiC + dDi, multiplied by the gain factor g = gcvgout, and a Gaussian distributed
noise component NR = goutNreset +Nout with mean µR and variance σ2

R.
Regarding the relative importance of each noise source, various articles agree in concluding

that under low illumination conditions, the primary noise source is the reset noise, while for
high illumination the major noise source is the photon shot noise [2, 9]. For the values
normally taken by λi = aτiC + dDi, the Poisson distribution can be correctly approximated
by a Gaussian distribution with mean and variance equal to λi. Moreover, the dark current
can be neglected for exposure times below 1s [14] and the quantization noise is negligible
compared to the readout noise [2, 9]. Notice that the structured nature of the quantization
noise (it is not white) may make it noticeable after non linear post-processing. However, given
that the noise model and the irradiance estimation problem are here considered for raw data
only, i.e., before non linear post-processing, the hypothesis of negligible quantization noise
remains valid. As a consequence, we can assume that the variable f−1(Zi) follows a Gaussian
distribution N (gaτiC+µR, g

2aτiC+σ2
R). In the case of raw data, f is a linear function before

attaining its saturation threshold (see Figure 2.1). Thus for non saturated samples the model
becomes

Zi ∼ N (gaτiC + µR, g
2aτiC + σ2

R). (2.2)

Since the camera parameters are assumed to be known, we consider the −µR translated
versions of these variables, and assume that their means are linear in C.

3. Performance Bounds. This section is devoted to the irradiance estimation problem and
to the computation of the corresponding performance bounds under the previous simplified
acquisition model (2.2). Let us recall the basics of the problem. For each pixel of the sensor,
we observe the vectorial variable z = z1, . . . , zT corresponding to different exposure times
τ1, . . . , τT (each zi is a realization of a random variable Zi following the Model (2.2)) and we
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wish to estimate the irradiance C at this pixel, i.e the average number of photons reaching
the pixel per unit time. This estimation will be done on a per-pixel basis, assuming that
images are perfectly registered. Throughout this section, we assume that saturated samples
have been discarded, as is done in all existent irradiance estimation methods. The inclusion of
saturated samples and its impact on the estimators performances will be studied in Section 4.

After an introduction on the irradiance estimation as a statistical problem, the section
addresses the computation of the Cramér-Rao lower bound (crlb) for this model and the
question of its attainability. We then proceed with the study of the comparative performance
of existent estimators against the crlb. We focus in particular on the mle since it was found
to outperform experimentally other methods in [11, 6].

3.1. Irradiance estimation: a statistical problem. Finding the optimal estimator Ĉ of C
from the observations zi is not obvious in practice. By “optimal”, we mean that the estimator
Ĉ should minimize the quadratic risk (or mean square error) E[|Ĉ−C|2]. The main difficulties
in this estimation come from the small sample size (between 2 and 6 samples in practice), and
from the low snr of the samples when C is low.

Biased or not biased?. The mse of Ĉ can be decomposed as the sum of its squared bias and
its variance. One question that should be raised is thus the one of the right balance between
these two terms. As underlined in the introduction, most of the irradiance estimators proposed
in the literature consist of linear combinations of the values zi

gaτi
, with weights wi summing to

1. In most cases, the weights depend on the input samples, thus the estimators are a priori

biased. However, since E
[

Zi

gaτi

]

= C, they are unbiased to a first order approximation 2.

Only two methods differ from the others in this regard: the approach by Debevec et al. [3],
which is also unbiased to a first order approximation, but only as an estimator of logC, and
the mle-based approach by Granados et al. [6], which is unbiased only asymptotically. In

practice, we checked that for all the tested estimators, the ratio (E[|Ĉ−C|])2

C2 remains very close
to 0 whatever the value of C (see Section 3.4). This suggests that for all these estimators,
the mse is strongly dominated by the variance. As a consequence, in the following we mainly
focus on unbiased (or with negligible biases) estimators.

Is mle a good estimator of C?. The second question coming naturally to mind concerning
Ĉ is the one of the optimality of the mle. Indeed, the mle is known to be asymptotically
efficient. However, in the hdr imaging problem the sample size is too small (normally in the
order of 2 to 6) to consider the asymptotic approximation. Yet, even with a finite number of
samples (less than 6 in our case), it can be shown that the mle would be an optimal solution in
terms of mse if the variance g2aCτi+σ2

R in Model (2.2) were a constant or were proportional
to C. The constant variance approximation is valid in very low irradiance conditions, resulting
in a linear mle, more precisely, it is the weighted average of the irradiance estimations for each
exposure. In high irradiance conditions, the variance can be approximated as proportional to
C. The mle for that case is not linear but has a closed-form. However, under Model (2.2),
the mle does not have a closed-form. The solutions proposed in the literature to compute it
numerically consist in simplifying the model [11] and making use of an iterative approach [6].

2The delta method can be used to compute a first order approximation of the expected value of the
estimators.
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Nevertheless, the quality of the estimation in this general case cannot a priori be easily stated.
One of the goals of this section is to answer this question.

3.2. Cramér-Rao lower bound for irradiance estimation. The previous paragraphs mo-
tivate the study of the performance bounds of the estimation problem. Once the expected
performance limits are known, we may determine whether they can be reached, and compare
the results obtained by existing estimation methods against them. This comparison states
how close existing methods are to the limits, and allows to quantify how much room is left
for improvement.

The performance bound of the problem is given by the Cramér-Rao lower bound theorem.
The Cramér-Rao lower bound states the minimum variance that we can expect to achieve (for
a given bias). Knowing that the samples distribution is given by (2.2), the Cramér-Rao lower
bound for unbiased estimators can be computed as (c.f. appendix A)

crlb =

[
T∑

i=1

(gaτi)
2

g2aτiC + σ2
R

+
(g2aτi)

2

2(g2aτiC + σ2
R)

2

]−1

, (3.1)

where τ1, . . . , τT are the considered exposure times. The mse of any unbiased estimator is
bounded by this expression. Notice that for high irradiance values, where σ2

R can be neglected,
the crlb does not depend on the specific exposure times but on the total acquired time, i.e.,
the sum of the exposure times. The immediate question to be raised is whether an efficient
estimator exists (i.e. an unbiased estimator that attains the crlb). The Cramér-Rao lower
bound theorem states that an unbiased estimator may be found that attains the bound for
all C if and only if the first derivative of the log-likelihood function can be factorized as

∂ ln p(z, c)

∂c
= I(c)(h(z)− c), (3.2)

for some functions h and I. In that case, the efficient estimator is Ĉ = h(z), and its variance
is 1/I(C) [10]. Equation (3.2) must be valid for any c and any z. Now, let us consider z fixed
and take the limit of the two terms of (3.2) when c tends to infinity

lim
c→∞

∂ ln p(z, c)

∂c
= −

1

2

T∑

i=1

aτi, (3.3)

lim
c→∞

I(c)(h(z)− c) = −
T∑

i=1

aτi. (3.4)

The results in (3.3) and (3.4) are different, which proves that an efficient estimator does not
exist for the problem. See Appendix B for the formulae derivations.
Once the performance bounds of the problem have been determined, we are interested in the
comparative performance of existing irradiance estimation methods against the crlb. As
previously stated, we focus on the mle since it was found to outperform experimentally other
methods in [11, 6]. The mle for the irradiance under Model (2.2) does not have a closed-
form. As a consequence, it is not obvious to directly compute its variance to evaluate its
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performance against the crlb. Instead, we propose in §3.4 a detailed experimental study
of its performance, together with that of other widely known irradiance estimation methods,
relatively to this bound. Before the experimental study we present in §3.3 some theoretical
hints of the optimality of the mle. This result is verified experimentally afterwards in §3.4.

It is interesting to remark that the previous bound can be directly extended to the case
of variable gain g. In this work we focus on the approach of hdr image generation by
the combination of images acquired with different exposure times, while keeping the gain
parameter fixed among images (fixed ISO setting). However, another possible approach for
the generation of hdr images is the fusion of images acquired with different exposure times
and gain settings [8]. The performance bound in that case is

crlb =

[
T∑

i=1

(giaτi)
2

g2i aτiC + σ2
Ri

+
(g2i aτi)

2

2(g2i aτiC + σ2
Ri
)2

]−1

, (3.5)

where the i-th image is acquired with exposure time τi and gain value gi. The readout noise
σ2
Ri

changes with the ISO setting since part of this noise is amplified by the gain.

Regarding biased estimators, the performance bound for a given bias b(C) can be obtained

multiplying (3.1) by (1 + ∂b(C)
∂C

)2, where ∂b(C)
∂C

is the first derivative of the bias.

3.3. How close is the MLE from the CRLB: Some theoretical hints. The lack of closed-
form for the mle under Model (2.2) motivates Granados et al. [6] to propose an iterative
algorithm that converges to the mle solution. At iteration (j + 1) the irradiance Ĉ(j+1) is
estimated according to3

Ĉ(j+1) =

∑T
i=1wi(Ĉ

(j))xi
∑T

i=1wi(Ĉ(j))
with xi =

zi
gaτi

wi =
(gaτi)

2

g2aτiĈ(j) + σ2
R

. (3.6)

It can be verified that in practice, if the weights are correctly initialized, the estimator remains
almost unchanged after the first iteration. A correct initialization is Ĉ(0) = zi

gaτi
, i.e. the

weights are computed directly from the input samples.
A first order approximation of the variance of the estimator after the first iteration can be
computed as (c.f. Appendix E)

var(Ĉ(1)) =

[
T∑

i=1

(gaτi)
2

g2aτiC + σ2
R

]−1

+ E(o((z)2)). (3.7)

On the other hand, recall the crlb formula introduced in (3.1)

crlb =

[
T∑

i=1

(gaτi)
2

g2aτiC + σ2
R

+
(g2aτi)

2

2(g2aτiC + σ2
R)

2

]−1

. (3.8)

3Unlike Granados et al. we neglect the dark currents since their contribution to global noise is minimal for
the exposures normally used in hdr image generation methods.
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Figure 3.1: hdr image taken as ground-truth for the synthetic tests. Dynamic range 12.7
stops. From [7].

Hence the variance of Ĉ(1) approaches the crlb if

g2a2τ2i
g2aτiC + σ2

R

≫
g4a2τ2i

2(g2aτiC + σ2
R)

2
∀i = 1, . . . , T, (3.9)

which can be rewritten as

aτiC ≫
1

2
−

σ2
R

g2
∀i = 1, . . . , T. (3.10)

This inequality is verified in practice, even for small aτiC values, because the term σ2
R/g

2 is
much larger than 1/2 for most cameras (e.g. for the Canon 400D camera the σ2

R/g
2 ratio takes

values 103 (ISO 200), 55 (ISO 400), 35 (ISO 800)). This suggests that the iterative algorithm
proposed by Granados et al. almost achieves the crlb after the first iteration.

3.4. How close are existing estimators from the CRLB: An experimental study. In §3.2
we showed that an efficient estimator for the irradiance does not exist under Model (2.2). Yet
it is of interest to study how close to the crlb existing methods perform.

In the present section an experimental study is presented analyzing the performance of var-
ious methods widely known for the irradiance map estimation: mle (Granados et al. [6]), Kirk
and Andersen [11], Robertson et al. [19], Debevec and Malik [3], Mitsunaga and Nayar [16],
Reinhard et al. [17] and a quite simple weighting scheme, classically used in the imaging indus-
try, which we refer hereafter to as Poisson approach. The estimator by Kirk and Andersen [11]

is computed according to expression (1.1), with the weights given by wp
i =

τ2i
gzpi +σ2

R

. Given

that it does not take into account the prnu factors, the estimator thus obtained is biased. A
trivial modification of these weights allows us to have a non-biased version of the estimator,

with wp
i =

a2τ2i
gzpi +σ2

R

, which we will refer hereafter to as Modified Kirk and Andersen’s method.

With this modification, we think the comparison with Kirk and Andersen’s method becomes
more fair. Thus, in the following, we will evaluate the modified version of Kirk and Andersen’s
method.

The experimental study is performed with synthetic data only since the knowledge of the
exact ground-truth is imperative for the computation of the crlb.
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(b) Medium exposure times
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(c) Long exposure times

Figure 3.2: Comparison of the mse curves and the crlb for Camera A with 4 exposure times
(results are similar for the other configurations). In all cases the mse of the mle is very close
to the crlb.

Synthetic data generation. Synthetic samples are generated from a hdr image taken as
ground-truth assuming the pixel values follow Model (2.2). Figure 3.1 shows a tone mapped
version of the ground-truth. Notice that a hdr image is taken as ground-truth in order
to consider a realistic dynamic range, and to easily visualize the results. However, given
that the estimation is done on a per-pixel basis, it only depends on each individual pixel
irradiance, independently of the pixels’ ordering or location in the image. In order to evaluate
the dependence on the shutter speeds, 6 sets of exposure times are tested:

- Two sets of relatively long exposure times with 4 and 6 elements:
- τ4L = (1, 1/2, 1/4, 1/8)s,
- τ6L = (1, 1/2, 1/4, 1/8, 1/16, 1/32)s;

- Two sets of relatively short exposure times with 4 and 6 elements:
- τ4S = (1/50, 1/100, 1/200, 1/400)s,
- τ6S = (1/50, 1/100, 1/200, 1/400, 1/600, 1/800)s;

- Two sets of medium exposure times of 4 and 6 elements:
- τ4M = (1/12.4, 1/25, 1/50, 1/100)s,
- τ6M = (1/6.2, 1/12.4, 1/25, 1/50, 1/100, 1/200)s.

Two cameras are simulated4:

- Camera A, a Canon 7D set to ISO 200 (g = 0.87;σ2
R = 31.6;µR = 2046; zsat = 14042),

- Camera B, a Canon 400D set to ISO 400 (g = 0.33;σ2
R = 6.2;µR = 256; zsat = 4056).

The prnu factors at each pixel are simulated following a Gaussian distribution with mean
1 and standard deviation 0.01 [6]. The dynamic range of the scene is 12.7 stops. The mle

estimation is computed using the implementation provided by Granados et al. [6]. The esti-
mations are repeated 1000 times for each irradiance level. The mse and the variance of the
estimators are computed from these 1000 repetitions.

Evaluation Procedure. First, we verify the validity of the hypothesis made in § 3.1, stating
that the bias is negligible for all the evaluated methods. Table 3.1 shows the expected ratio of

4The camera parameters were obtained using the calibration procedure by Granados et al. [6].
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Camera A

Granados Kirk Robertson Poisson Devebec Mitsunaga Reinhard

avg std avg std avg std avg std avg std avg std

τ4S 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.002 0.004 0.011 0.009 0.025 0.007 0.021
τ6S 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.002 0.020 0.059 0.061 0.181 0.036 0.125
τ4M 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.002 0.003 0.011 0.008 0.024 0.006 0.020
τ6M 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.002 0.019 0.069 0.084 0.311 0.044 0.204
τ4L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
τ6L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.000 0.000

Camera B

Granados Kirk Robertson Poisson Devebec Mitsunaga Reinhard

avg std avg std avg std avg std avg std avg std

τ4S 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.003 0.009 0.007 0.019 0.005 0.016
τ6S 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.017 0.054 0.055 0.174 0.031 0.120
τ4M 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.003 0.010 0.007 0.022 0.005 0.018
τ6M 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.011 0.038 0.053 0.192 0.024 0.103
τ4L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
τ6L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.003 0.000 0.001

Table 3.1: Average and standard deviation of the ratio bias2/C2. The estimators’ bias is
negligible with respect to the corresponding irradiance values.

the squared bias and the squared irradiance for all the tested configurations. In all cases, the
ratio is very close to zero implying that the bias is negligible with respect to the irradiance
values. Hence, the mse of these methods can be fairly compared against the Cramér-Rao
lower bound for unbiased estimators.

The ratios obtained for Debevec and Malik, Mitsunaga and Nayar and Reinhard et al.
are slightly above zero for the shorter exposure times sets. These estimators assume that
both, the pixel values and the inverse of the camera response function, take positive values
only. However, this is not the case for some digital cameras, and in particular for the raw
data following Model (2.2). Under this model, the inverse of the camera response function
may take negative values after subtracting the mean µR for very low irradiance values. In
consequence, the less realistic model proposed by these methods introduces some bias in very
low light conditions.

Table 3.2 shows the average and standard deviation of the ratio between the mse of each
estimator and the crlb for all the tested configurations. The crlb is computed for each
pixel according to (3.1). In the crlb computation we only take into account the exposure
times producing non saturated samples, since in practice the samples corresponding to the
other exposures would be saturated and therefore discarded (all methods discard the saturated
samples). In the following, the crlb computed from the non-saturated exposures only will be
referred to as crlbsat, while crlb refers to the bound computed considering all the exposures
(ideal case without saturation).
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Camera A

Granados Kirk Robertson Poisson Devebec Mitsunaga Reinhard

avg std avg std avg std avg std avg std avg std avg std

τ4S 0.996 0.056 1.009 0.049 1.124 0.087 1.034 0.067 1.178 0.280 1.416 0.764 1.307 0.591
τ6S 0.995 0.065 1.013 0.056 1.157 0.114 1.051 0.079 1.609 1.059 3.013 3.960 2.164 2.907
τ4M 0.991 0.081 1.008 0.050 1.120 0.089 1.028 0.066 1.193 0.304 1.347 0.714 1.257 0.543
τ6M 0.988 0.090 1.011 0.055 1.153 0.104 1.047 0.080 1.655 1.251 4.141 7.742 2.660 5.592
τ4L 0.985 0.102 1.007 0.049 1.141 0.079 1.011 0.054 1.126 0.296 1.039 0.100 1.056 0.091
τ6L 0.980 0.111 1.007 0.051 1.170 0.094 1.025 0.068 1.192 0.297 1.206 0.470 1.071 0.115

Camera B

Granados Kirk Robertson Poisson Devebec Mitsunaga Reinhard

avg std avg std avg std avg std avg std avg std avg std

τ4S 1.000 0.051 1.005 0.051 1.116 0.091 1.033 0.071 1.191 0.278 1.380 0.671 1.254 0.489
τ6S 0.997 0.053 1.005 0.054 1.144 0.113 1.045 0.080 1.600 1.004 3.013 3.894 2.086 2.823
τ4M 0.998 0.051 1.003 0.051 1.111 0.092 1.025 0.069 1.210 0.322 1.328 0.663 1.227 0.497
τ6M 1.000 0.055 1.007 0.056 1.145 0.103 1.047 0.083 1.569 0.946 3.651 6.508 2.205 4.104
τ4L 1.004 0.046 1.009 0.047 1.131 0.081 1.019 0.055 1.124 0.259 1.058 0.127 1.052 0.086
τ6L 1.001 0.050 1.006 0.052 1.160 0.093 1.031 0.073 1.207 0.286 1.281 0.656 1.070 0.130

Table 3.2: Average and standard deviation of the ratio mse/crlbsat for all tested configu-
rations. For the mle the ratio is very close to 1, meaning that the mse of the mle is very
close to the crlbsat. Note that average values for the ratio have an uncertainty given by the
reported standard deviation, which justifies average ratio values below 1.

3.4.1. Results.

Maximum Likelihood Estimation. For the mle (Granados et al. implementation, see Equa-
tion (3.6)), in all cases the average ratio is very close to 1, with a standard deviation in the
order of 5%, meaning that the mse of the mle is very close to the crlbsat. Figure 3.2 shows
the comparison of the mse curves against the crlb and the crlbsat as a function of the irra-
diance C for some of the tested configurations (similar results are found for all configurations).
In agreement with the results presented in Table 3.2, the mse of the mle is very close to the
crlbsat (almost indistinguishable in these figures).

Modified Kirk and Andersen. The Modified Kirk and Andersen estimator is computed

according to expression (1.1), with the weights given by wp
i =

a2τ2i
gzpi+σ2

R

. Recall that for all

methods, we assume a linear camera response function f . The results presented on Table 3.2
show that this estimator, like the mle, performs very close to the crlbsat. This is expected
since this modified version of the Kirk and Andersen’s estimator equals the first iteration of
the estimator proposed by Granados et al., given by (3.6).

Robertson et al.. The results for the method by Robertson et al. are in the order of
15% above the crlbsat. Its performance decreases for the longer exposure time sets. The
irradiance is computed according to Equation (1.1) with the weights set to wp

i = τ2i (and
again a linear camera response function). Hence, for the longer exposure time sets it gives low
importance to exposures long enough to better contribute to the estimation. It is interesting
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Camera A

Granados Kirk Robertson Poisson Devebec Mitsunaga Reinhard

avg std avg std avg std avg std avg std avg std

τ4S 0.997 0.057 1.008 0.045 1.170 0.062 1.008 0.046 1.063 0.175 1.020 0.054 1.053 0.074
τ6S 0.997 0.064 1.013 0.047 1.222 0.076 1.022 0.055 1.077 0.140 1.076 0.128 1.075 0.076
τ4M 0.992 0.085 1.010 0.048 1.142 0.078 1.016 0.053 1.111 0.242 1.058 0.127 1.063 0.091
τ6M 0.987 0.096 1.009 0.047 1.193 0.078 1.022 0.058 1.159 0.232 1.125 0.285 1.057 0.078
τ4L 0.974 0.123 0.999 0.048 1.152 0.087 0.997 0.049 1.175 0.361 0.999 0.049 1.023 0.091
τ6L 0.971 0.128 1.001 0.048 1.186 0.098 1.000 0.048 1.187 0.335 1.004 0.050 1.032 0.105

Camera B

Granados Kirk Robertson Poisson Devebec Mitsunaga Reinhard

avg std avg std avg std avg std avg std avg std

τ4S 1.003 0.047 1.009 0.047 1.160 0.067 1.015 0.050 1.097 0.227 1.030 0.063 1.046 0.068
τ6S 1.001 0.045 1.009 0.045 1.205 0.077 1.030 0.060 1.104 0.178 1.107 0.183 1.064 0.073
τ4M 1.001 0.047 1.007 0.048 1.131 0.082 1.021 0.057 1.141 0.281 1.081 0.175 1.063 0.100
τ6M 1.002 0.050 1.007 0.051 1.180 0.083 1.029 0.070 1.204 0.286 1.159 0.339 1.056 0.095
τ4L 1.002 0.047 1.004 0.048 1.145 0.087 1.003 0.048 1.161 0.315 1.004 0.048 1.019 0.080
τ6L 0.997 0.047 1.000 0.048 1.179 0.096 1.000 0.048 1.187 0.310 1.004 0.050 1.022 0.086

Table 3.3: Average and standard deviation of the ratio mse/crlbsat for high irradiance only.
The results for all methods are quite close to the crlbsat. Note that average values for the
ratio have an uncertainty given by the reported standard deviation, which justifies average
ratio values below 1.

to recall that this estimator is the mle when assuming a noise model of constant variance.

Poisson. The estimator here named Poisson is the minimum variance unbiased estima-
tor, which also matches the mle, when the input samples are assumed to follow a Poisson
distribution with mean and variance depending on the irradiance parameter. Hence, this is
the optimal estimator when neglecting all the other noise sources except the shot noise. This
estimator is obtained by setting wp

i = τi. For high irradiance values, where the main noise
source is the shot noise, the results obtained are quite close to those obtained by the mle and
thus quite close to the crlbsat. However, its performance is degraded in low irradiance where
the readout noise is not negligible.

Debevec and Malik, Mitsunaga and Nayar, Reinhard et al.. The results obtained for Debevec
and Malik, Mitsunaga and Nayar and Reinhard et al. are considerably far from the crlbsat.
This is mainly due to their poor performance at low irrradiances, as shown in Figure 3.2.
Indeed, these weighting schemes are highly sensitive to noise in the input samples (e.g. for the
linear camera case, Mitsunaga and Nayar’s weights are the pixel values) and therefore their
performance is severely degraded for low irradiances where the snr of the samples is lower.

As can be verified in Figure 3.2, their performance highly improves for the high irradiance
range. Thus it is interesting to make a more local analysis of performance and compute the
mean ratio without considering the low irradiance range. These results are presented in Table
3.3. The results are considerably better in high irradiance.
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Figure 3.3: Logarithm of the ground-truth images with selected areas for the synthetic and
real data tests.

Debevec and Malik use a hat function to weigh the samples from equation (1.1)

wp
i =

{
zpi − zmin if zpi ≤ zmed,
zmax − zpi if zpi > zmed.

(3.11)

with zmed = (zmax + zmin)/2 and zmin and zmax the minimum and maximum pixel values re-
spectively. For short exposures its weighting scheme is linearly increasing with the exposure.
The decreasing part of the hat function is applied for longer exposures. Thus its performance
decreases for the longer exposure times sets since a smaller weight is assigned to longer ex-
posures which yet have the higher snr. The opposite behavior is found for Mitsunaga and
Nayar and Reinhard et al., since their weighting schemes are snr based. For Mitsunaga and
Nayar weights are given by wp

i = zpi , while Reinhard et al. use wp
i = zpi (1 − (zpi /zmed − 1)12).

Their performance increases for longer exposure time sets.

3.4.2. Summary of results. The experimental analysis carried out in this section shows
that the mle performs quite close to the crlbsat for all irradiance values and for small sample
sized datasets. It is important to remark that these results are for the small sample size case,
since we have at most (none of the samples saturated) 4 or 6 samples for the estimation on
each pixel. The performance of the mle close to the crlbsat was predicted in §3.3, where it
was shown that the variance of the irradiance estimator almost attaint the bound after the
first iteration.

Moreover, even if the Ĉmle is not unbiased, its bias is negligible and its performance is very
close to the best we can do among unbiased estimators. It would be interesting to evaluate
the performance of other biased estimators. However, there are no a priori hints on the
parametric form that such a bias could take. This analysis also confirms the fact that the
mle outperforms other estimation methods, as observed in [11, 6].

Finally, it is important to remark that as expected, the crlb using all samples is below
the crlbsat (c.f. Figure 3.2). This shows that discarding the saturated samples has a high
impact on the bounds of estimation performance.
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Figure 3.4: Synthetic data. Estimation in low-level irradiance range. Patch size
141 × 193. Top row: Ground-truth, mle, Modified Kirk and Andersen, Robertson et al.
Bottom row: Poisson, Debevec and Malik, Mitsunaga and Nayar, Reinhard et al. The
results for mle, Modified Kirk and Andersen, Robertson et al. and Poisson are quite similar
and less noisy than those of Debevec and Malik, Mitsunaga and Nayar and Reinhard et al.

3.5. Visual quality of the estimators. In §3.4 we verified two facts: first the mle performs
quite close to the crlb and second it outperforms other irradiance estimation methods. In
this section we compare the visual quality of the results obtained by these methods. Is
the performance difference among them noticeable in practice? To answer this question we
compare their estimations in subregions of a test image using both synthetic and real data.

Synthetic Data. Figure 3.3a shows a subregion of the logarithm of the ground-truth im-
age used for the synthetic experiments. The ground-truth image and the presented results
correspond to the green channel of the image in Figure 3.1, yet the results are also valid for
the red and blue channels. The results obtained for Camera A and τ4M for the two marked
subregions are displayed in Figures 3.4 and 3.5.

The results presented in Figure 3.4 correspond to a region of low irradiance. In agree-
ment with the results presented in §3.4, the estimates produced by mle, Modified Kirk and
Andersen, Robertson et al. and Poisson are quite close and less noisy than those obtained
by Debevec and Malik, Mitsunaga and Nayar and Reinhard et al. (see Figure 3.2b). Fig-
ure 3.5 presents the results observed in high irradiance. The difference between all estimators
is hardly noticeable.

Real Data. Tests using real data are carried out using the images provided by Granados et
al. [5]. The set of images was acquired with a Canon PowerShot S5 camera, using exposures
τ = (1/1.5, 1/6, 1/25, 1/100, 1/400, 1/1600)s. The camera configuration is provided in [6]. The
ground-truth image, shown in Figure 3.3b, is generated using Granados et al. estimator on a
set of almost noise-free images, obtained as the average of 36 frames. For more details see [6].
The presented results correspond to the red channel, but similar results and considerations
hold for the green and blue channels.
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Figure 3.5: Synthetic data. Estimation in high irradiance range. Patch size 301×259.
Top row: Ground-truth, mle, Modified Kirk and Andersen, Robertson et al. Bottom row:

Poisson, Debevec and Malik, Mitsunaga and Nayar, Reinhard et al. The difference between
all estimators is hardly noticeable.

Figure 3.6 shows examples for irradiance values in the low - mid-level range ranges. As
expected, the results for mle, Modified Kirk and Andersen, Robertson et al. and Poisson are
quite similar while the results for Debevec and Malik and Reinhard et al. are better than
those of Mitsunaga and Nayar (see Figure 3.2b).

The examples in Figures 3.7 and 3.8 correspond to regions of mid-level and high irradiance.
In both cases, as expected, all methods perform quite similarly (see Figure 3.2b).

4. Including saturation information. To the best of our knowledge, all approaches to
irradiance estimation discard saturated samples. However, the experiments presented in §3.4
show a great lost in performance when comparing the crlb obtained from only non-saturated
samples, with the one obtained from all the samples. We therefore propose a method to
include information provided by the saturated samples in the irradiance estimation process.

4.1. Methodology. Although we do not know the exact value leading to a saturated
sample, there is some useful information given by the fact that this value exceeds a given
threshold zsat. In this section, we develop a variation of the classical mle that includes extra
information provided by the saturated samples.

Let Z1, . . . ,ZT be T independent but not identically distributed random variables, cor-
responding to the raw values observed at a given pixel p for the different exposure times



18 C. AGUERREBERE, J. DELON, Y. GOUSSEAU, AND P. MUSÉ

(b) Patch size 39×54. Top row: Ground-truth, mle, Modified Kirk and Andersen, Robertson et al. Bottom
row: Poisson, Debevec and Malik, Mitsunaga and Nayar, Reinhard et al.

(d) Patch size 111× 78. Top row: Ground-truth, mle, Modified Kirk and Andersen, Robertson et al. Bottom
row: Poisson, Debevec and Malik, Mitsunaga and Nayar, Reinhard et al.

M

Figure 3.6: Real data. Estimation in low and mid-level irradiance range. The results
for mle, Modified Kirk and Andersen and Robertson et al. are quite similar while the results
for Debevec and Malik and Reinhard et al. are better than those of Mitsunaga and Nayar.
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Figure 3.7: Real data. Estimation in mid-level irradiance range. Patch size 107× 85.
Top row: Ground-truth, mle, Modified Kirk and Andersen, Robertson et al. Bottom row:

Poisson, Debevec and Malik, Mitsunaga and Nayar, Reinhard et al. As expected, results are
hardly distinguishable.

τ1, . . . , τT . Because of saturation, each Zj can be written as Zj = min(Xj, zsat), where Xj

is a random variable following the law N (µj(C), σ2
j (C)), with µj(C) = gaτjC and σ2

j (C) =

g2aτjC + σ2
R. Now, let us denote pj(zj ;φ) the density of the law N(µj(φ), σ

2
j (φ)). In the

previous sections, saturated samples were discarded and an estimator of the irradiance C was
obtained by maximizing the likelihood

∏

zj<zsat
pj(zj ;φ) as a function of φ. In order to take

into account saturated samples, we propose to use instead the full likelihood of the complete
set of samples z = (z1, . . . , zT ), which writes

g(z|φ) =
T∏

j=1

pj(zj ;φ)
kjPj(φ)

1−kj , (4.1)

where kj = 1 for non-saturated samples, and 0 otherwise. Pj(φ) is the probability of the j-th
sample being saturated, given by

Pj(φ) =

∫ ∞

zsat

pj(z;φ)dz. (4.2)
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Figure 3.8: Real data. Estimation in high irradiance range. Patch size 147 × 76.
Top row: Ground-truth, mle, Modified Kirk and Andersen, Robertson et al. Bottom row:

Poisson, Debevec and Malik, Mitsunaga and Nayar, Reinhard et al. As expected, results are
hardly distinguishable.

Observe that if none of the pixels saturate, g(z|φ) (the function defined by Equation (4.1)) is
exactly the likelihood maximized by the mle approach presented in the previous sections. An
efficient way to maximize the likelihood g(z|φ) is to use the em algorithm [4]. In this setting,
saturated samples are seen as censored data. Following Dempster et al. [4], we denote by
x = (x1, . . . , xT ) the data that would have been observed if the camera could record beyond
the saturation threshold. Each xj is a realization of the random variable Xj defined above.
We define the complete data likelihood of the problem as

h(x|φ) =
T∏

j=1

pj(xj ;φ). (4.3)
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Figure 4.1: In blue the classical log-likelihood curve; in green function (4.5); in red the addition
of the two curves: function ln g(y|φ).

Now, observe that h(x|φ) cannot be maximized in practice because it relies on some censored
data. The idea of the em algorithm is to maximize instead the average value of log h(x|φ)
knowing the observations z, i.e. Ex[log h(x|φ)|z, φ]. It can be shown that the value φ maxi-
mizing this expectation is exactly the same as the one maximizing g(z|φ) (this is a classical
result of the em algorithm). The steps of the algorithm can finally be written

1. At iteration p+ 1 compute Q(φ|φ(p)) := Ex[log h(x|φ)|z, φ
(p)];

2. Find φ(p+1) = maxφQ(φ|φ(p)).

The computation of the function Q(φ|φ(p)) is provided in Appendix C.

4.2. The modified log-likelihood. The logarithm of the likelihood function g(z|φ) is given
by the sum of two terms,

ln g(z|φ) =
∑

j:kj=1

ln pj(zj ;φ)

︸ ︷︷ ︸

term 1

+
∑

j:kj=0

lnPj(φ)

︸ ︷︷ ︸

term 2

. (4.4)

The first term is the sum of the log-likelihood function evaluated at the non-saturated samples,
i.e. the log-likelihood function of the mle approach discarding the saturated samples (classical
mle approach). The second term is the sum of the logarithm of the probabilities of the
saturated samples to be saturated. It can be written as

∑

j:kj=0

lnPj(φ) =
∑

j:kj=0

ln





∫ ∞

zsat

1
√

2πσ2
j (φ)

exp

{

−
1

2σ2
j (φ)

(z− µj(φ))
2

}

dz



 , (4.5)

where µj(φ) = gaτjφ and σ2
j (φ) = g2aτjφ + σ2

R. Equation 4.5 is an increasing function that
converges to zero for large φ, since large irradiance values have high probability to saturate.
When we add the term (4.5) to the classical log-likelihood, its maximum will either: a) be
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Figure 4.2: Comparison of the snr obtained with the classical and the modified log-likelihoods.
Both curves match except for the irradiance values in the transition between two saturation
levels.

almost unchanged, if it was reached on a value where (4.5) is quasi-zero; b) otherwise, be
reached at a larger value.

Figure 4.1 shows an example of this modified log-likelihood ln g(z|φ) (red), the classical
log-likelihood (blue), and the addition function (4.5) (green). In this example, the classical
mle is reached at a value φ where (4.5) is clearly negative. Therefore, when adding (4.5) and
the classical log-likelihood, the maximum of the sum is reached for a larger φ. This example
can be interpreted in the following way: if we use only the non-saturated samples we obtain
the classical estimator Ĉmle. However, knowing that we have saturated samples we increase
Ĉmle, since according to (4.5), the value Ĉmle is not sufficiently likely to saturate for the
saturated exposure times. A higher value is representative of both, the non-saturated samples
through Ĉmle and the saturated samples through the bias introduced by (4.5). Hence, the
term (4.5) is adding a positive bias to Ĉmle when needed.

Irradiance values close to the minimum value that saturates for a given exposure may sat-
urate due to noise. In those cases, incrementing the estimation with the saturation bias may
degrade the result if the classical mle was already accurate. Nevertheless, it is seen in practice
that these cases rarely occur and in average adding the bias factor always improves the results.

4.3. Modified Cramér-Rao Lower Bound. As performed in §3.2, the Cramér-Rao lower
bound can be computed assuming the samples follow the modified log-likelihood function
(4.4). The crlb for the modified log-likelihood crlbmod is given by

crlbmod =
−1

∑

j:kj=1 E
[
∂2 ln p(zj ;C)

∂C2

]

+
∑

j:kj=0 E
[
∂2 lnPj(C)

∂C2

] . (4.6)

The first term in the denominator is the Fisher information for the classical log-likelihood (c.f.
Appendix A). The second term can be computed as

∑

j:kj=0

E

[
∂2 lnPj(C)

∂C2

]

=
∑

j:kj=0

∫∞
vsat

∂2Aj(C)
∂C2 dz

∫∞
vsat

Aj(C)dz
−

[∫∞
vsat

∂Aj(C)
∂C

dz
∫∞
vsat

Aj(C)dz

]2

, (4.7)
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Figure 4.3: Ground-truth image. From [15] under Creative Commons License. The results
for the four marked sub-regions are shown in Figure 4.4.

with

Aj(C) =
1

√

2πσ2
j (C)

exp

{

−
1

2σ2
j (C)

(z− µj(C))2

}

. (4.8)

Both derivations can be found in Appendix D.
Both curves, crlbsat and crlbmod, match everywhere except in the transition zones

between two saturation levels. We name saturation level n the irradiance range for which the
longest n exposures produce saturated samples. This was expected since the contribution of
the modified log-likelihood to the crlbsat can be thought of as a measure of the information
carried by the saturated samples. The higher information is in the region of higher uncertainty
on whether pixels saturate or not. If we take the middle of the irradiance range between
transition zones n and n + 1, the corresponding pixels are highly likely to saturate for the
longest n exposures and very unlikely to saturate for exposure n + 1. Thus the information
provided by the fact that the pixel saturates for the longest n exposures is not significant.
The same behavior is found for the snr curves and is illustrated in Figure 4.2. The curves
differ in the transition zones only. Yet we observe that the estimation performance can be
considerably increased for the concerned irradiance ranges.

4.4. Experiments.

Synthetic data generation. Synthetic samples are generated from a hdr image taken as
ground-truth assuming the Model (2.2) for pixel values. The simulated camera is Camera A
(c.f. §3.4). The exposure times are τ = (1/4.2, 1/16.8, 1/67.2, 1/268.8)s.

Results. Figure 4.4 shows the results for four sub-regions of the ground-truth image, indi-
cated on Figure 4.3. The pixels in these sub-regions have 2 or 3 saturated samples. In all cases,
the information provided by the saturated samples improves the result. The improvement can
also be verified in Table 5.1 where the values of psnr for each sub-region are presented.

5. Model parameters uncertainties and performance bounds. The results presented in
§3.4 show that if the data follows Model (2.2), the mle performs extremely well in estimating
the irradiance. The estimation bias is negligible, and its variance gets very close to the
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(m) Ground-truth (n) Classical log-likelihood (o) Modified log-likelihood

Figure 4.4: Results for four sub-regions of the ground-truth image in Figure 4.4. The pixels
in these sub-regions have 2 or 3 saturated samples. Patch sizes from top to bottom 61 × 96,
84× 81, 56× 101, 107× 69. First column: ground-truth. Second column: result obtained
with the classical log-likelihood. Third column: result obtained with the modified log-
likelihood. In all cases, the results are improved by the information provided by the saturated
samples.
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PSNR (dB)

region 1 region 2 region 3 region 4

modified log-likelihood 37.7 38.7 39.3 38.1
classical log-likelihood 36.9 37.6 38.3 37.0

Table 5.1: psnr for the classical and modified likelihood for the four sub-regions marked in
Figure 4.3.

crlbsat. However, up to now we have assumed that the parameters that govern Model (2.2)
are perfectly known. For practical purposes, this is of course not a realistic assumption: the
gain factor, the readout noise mean and variance and the prnu factors are unknown and
have to be determined by means of a calibration procedure. Hence the model parameters are
subject to uncertainties, whose impact in the irradiance estimation has to be quantified. The
first part of this section is devoted to present an experimental study to assess how sensitive
the mle estimation is to variations in the model parameters.

In the second part of this section we concentrate on the consequences of ignoring the model
parameter uncertainties when evaluating the performance of hdr generation techniques. Sur-
prisingly, up to our knowledge, no previous work on hdr generation takes these uncertainties
into account. Uncertainties in model parameters play a fundamental role in the creation of a
ground-truth image from real, regular digital camera images. Hence, depending on how the
ground-truth is generated, the impact of not considering model parameters uncertainties on
the reported performance may vary. In any case, as we will see, ignoring these uncertainties
may generally lead to overrated performances.

5.1. Sensitivity of the MLE to variations in the model parameters. The sensitivity
analysis can only be performed with simulated images, since knowledge of the real parameter
values is required. Synthetic data was generated according to Model (2.2), taking as ground-
truth the hdr image shown in Figure 3.1 and the set of exposure times τM6. The two sets of
camera parameters presented in §3.4 (Cameras A and B) were tested. These parameters are
considered the real model parameters and used to simulate the data. Then they are varied
and the maximum likelihood estimation is performed using the wrong parameters. The ratio
between the mse and the crlbsat is computed in order to compare the results with those
obtained using the exact model parameters.

The first step in this study is to establish realistic ranges for the uncertainties in the model
parameters, which is given by the variance of the estimators used to find each parameter.
The model parameters are estimated at the camera calibration stage and the variance of the
estimators clearly depends on the calibration procedure. To do so, we consider the calibration
procedure proposed by Granados et al. [6]. They propose to compute the spatial mean and
variance of a bias frame (a frame acquired with the cap on and with the shortest exposure) to
find the mean and variance of the readout noise respectively. The gain and prnu factors are
computed using flat frames (frames acquired with uniform illumination). Using this calibration
method we compute the variance of each model parameter.

Table 5.2 shows the standard deviation for the gain, the readout noise variance, the offset
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Image size g σ2

R µR a (n = 1) a (n = 10) a (n = 100)

100× 100 0.013 0.447 0.056 0.013 0.004 0.001
200× 200 0.006 0.224 0.028 0.013 0.004 0.001
500× 500 0.003 0.089 0.011 0.013 0.004 0.001

1000 × 1000 0.001 0.045 0.006 0.013 0.004 0.001

Table 5.2: Standard deviation of the camera parameters estimated according to the procedure
presented by Granados et al.[6]. Real values are those of Camera A (g = 0.87, σ2

R = 31.6, µR =
2046).

and the prnu factors. The leftmost column represents the image size used to estimate the
parameters. Several images are needed to estimate the prnu factors, variable n represents the
number images considered in each case. The real values of the parameters are those of camera
A (g = 0.87, σ2

R = 31.6, µR = 2046). The prnu factors take Gaussian distributed values of
mean 1 and variance 0.01. Similar results were obtained for Camera B.

The worst case standard deviations in Table 5.2 are used to define the variation range
of the model parameters, namely: for g 1.5% of its value; 1.4% for σ2

R; 2.7e-3% for µR and
1.3% for the prnu factors. Because the variance of the estimator of the µR parameter is so
small, the influence of the uncertainty on this parameter is not analyzed. Thus, the following
variation ranges are considered for g, σ2

R and prnu factors, respectively: [0.985g, 1.015g] in
steps of 0.001g; [0.99σ2

R, 1.01σ
2
R], in steps of 0.001σ2

R; [0.985a, 1.015a] in steps of 0.001a

The influence of parameters uncertainties is analyzed individually: one of them is varied
in its corresponding range, while the rest are kept fixed at their real values. For each tested
(wrong) value, the estimation is repeated 1000 times for each irradiance level in order to
compute the mse.

Figure 5.1 shows the results for Camera A (the results for Camera B are equivalent). For
each model parameter, the mean ratio of the mse and the crlbsat (blue) and the band of ±
one standard deviation (dotted line) are shown as functions of the parameter deviation. The
unity level is shown for reference.

As expected the curves of mean ratio reach 1 when using the real parameter value (zero
variation). A strong impact on the mle is observed for both g and prnu factor (this similar
behavior is reasonable since they play a very similar role in the model). In both cases, for
small deviations (1.5% of the real value) the mse of the mle almost doubles the crlbsat.
Regarding the readout noise variance σ2

R, the result of the mle is not affected by variations
in the considered range.

5.2. Model parameters uncertainties and performance evaluation. In order to evaluate
the performance of a hdr image generation technique with real images, it is necessary to
define a procedure to generate the ground-truth image. If the ground-truth is to be made
from images taken with a regular digital camera (not cameras able to capture directly hdr

images), a hdr image generation technique has to be chosen to generate the ground-truth
image. It turns out that the precision of the model parameters estimates plays a key role in
this ground-truth image generation process.
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Figure 5.1: Dependence of the performance of the mle estimator on the uncertainty in model
parameters for Camera A (the results for Camera B are equivalent). A great dependence is
found on both g and a. On the contrary, the variation for σ2

R is negligible.

A simple way to generate the ground-truth is to define a set of exposure times, take several
images for each exposure and take for each pixel the average value corresponding to the best
non saturated exposure. This ground-truth is clearly unbiased and for a large enough number
of images per exposure time, the noise should be considerably reduced. Instead of taking the
best exposure only, Granados et al. [6] propose to combine the averaged images using the mle
with the weights computed from the variance of the images.

If the model parameters are correctly estimated, both ground-truths are quite accurate.
Nonetheless, if the parameters are not accurate these ground-truths will be strongly biased.
Moreover, it is not difficult to show that if the irradiance estimation is carried out using the
same parameters as the ground-truth generation, the bias present in both computations will
partially compensate and the result will seem better than it really is.

A synthetic experiment is performed to show this effect. Synthetic samples are generated
as in the previous experiment, using Camera A configuration as real parameters and τ6L. The
gain spans the range [0.985g, 1.015g] and the mle is computed with the wrong parameters.
Five different ground-truths are considered to compute the mse: the real ground-truth (the
image used to synthesize the samples), Granados’s ground-truth obtained with the real pa-
rameters and with wrong parameters, the best exposure only ground-truth obtained with the
real parameters and with wrong parameters. Figure 5.2 shows the ratio between the mse of
the mle and the crlbsat as a function of the variation in the gain. Each curve shows the
results for a different ground-truth. For small variations of g the result given for the computed
ground-truths is quite accurate. The ratio for the real ground-truth is below the other ratios,
meaning that the result is actually better than claimed by the computed ground-truths. On
the contrary, for deviations of g above 0.2%, the performance announced by both ground-
truths computed with the wrong parameters is highly superior than the real performance.

6. Conclusions. In this paper we have presented a study of the performance bounds of
the hdr estimation problem, and we have analyzed the performance of current state-of-the-
art estimation methods. This study shows that, to a first order approximation, the mle is
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Figure 5.2: Dependence of the ground-truth computation with the uncertainty in model pa-
rameters. For small variations of the parameter the results of all computed ground-truths are
almost equivalent. Yet for variations above 0.2% the performance announced by both ground-
truths computed with the wrong parameters is highly superior than the real performance.

efficient even when using a very reduced number of samples. While its value can be computed
numerically by iterative procedures, an approximation of the mle cannot be directly derived
since no closed-form exists. However, we observe that replacing the variance of each sample
by its empirical value, yields to a closed-form which is extremely close to the mle. Then
we show that the first order Taylor expansion of the variance of this closed-form estimator,
exhibits a negligible difference with the Cramér-Rao bound, for all irradiance values and for
any number of samples. This result explains why, as previously claimed based on experimental
evidence [6], the mle outperforms other estimation methods. An interesting problem would
be to extend this performance analysis to the choice of optimal exposure times.

As a second contribution, we have proposed a method that differs from all methods in the
literature, in the sense that it integrates the information provided by saturated samples in the
estimation process. The proposed approach follows closely the em algorithm, in the version
that considers censored data. Results confirm that saturated samples carry useful information
for irradiance estimation, that allows to improve the irradiance estimation near the saturation
values, without degrading the estimation in other irradiance ranges. Improvements in the
order of 1 dB are found in experimental examples.

Finally, we have raised a delicate point that had not been addressed in previous studies on
hdr estimation. We have shown that small errors in the calibration of camera parameters may
severely degrade the estimation. In particular, when working with real data, a very accurate
camera calibration is needed in order to obtain a reliable ground-truth. Otherwise, results
may appear much better than they are in reality. A natural continuation of this work is to
derive irradiance estimators that are more robust to uncertainties on the camera parameters.

Acknowledgments. The authors would like to thank Miguel Granados for kindly providing
them with the code and for helpful contributions.

A. CRLB computation. In this section we compute the Cramér-Rao lower bound (crlb)
for the estimation of the irradiance parameter C from T independent observations z1, . . . , zT
corresponding to pixel values for exposure times τ1, . . . , τT . We assume that the zi observations
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are realizations of a normally distributed random variable with µi = gaτiC and σ2
i = g2aτiC+

σ2
R (Model (2.2)). The log-likelihood function is

ln p(z, C) = −
1

2

T∑

i=1

ln(g2aτiC + σ2
R) +

(zi − gaτiC)2

g2aτiC + σ2
R

. (A.1)

The second derivative is given by

∂2 ln p(z, C)

∂C2
=

1

2

T∑

i=1

(gaτi)
2(g4aτiC − 2g2z2i − 4gσ2

Rzi + g2σ2
R − 2)σ4

R)

(g2aτiC + σ2
R)

3
. (A.2)

The crlb is defined as

crlb =
1

I(C)
=

−1

E
[
∂2 ln p(z,C)

∂C2

] (A.3)

Using the linearity of the expectation, and that E(zi) = gaτiC, var(zi) = g2aτiC + σ2
R, it

follows that

E

[
∂2 ln p(z, C)

∂C2

]

= −

(

g2

2

T∑

i=1

2a2τ2i
g2aτiC + σ2

R

+
(gaτi)

2

(g2aτiC + σ2
R)

2

)

. (A.4)

Then,

crlb =

[
T∑

i=1

(gaτi)
2

g2aτiC + σ2
R

+
(g2aτi)

2

2(g2aτiC + σ2
R)

2

]−1

(A.5)

B. Limits computation. Let us consider the observations z = z1, . . . , zT corresponding to
exposures τ1, . . . , τT . Each zi is a realization of a random variable Zi following Model (2.2).
The log-likelihood function is given by Formula (A.1) and its first derivative is given by

∂ ln p(z, c)

∂c
= −

1

2

T∑

i=1

g4a3τ3i c
2 + (g4a2τ2i + 2g2a2τ2i σ

2
R)c− g2aτiz

2
i − 2gaτiσ

2
Rzi + g2aτiσ

2
R

(g2caτi + σ2
R)

2
.

(B.1)
Thus

lim
c→∞

∂ ln p(z, c)

∂c
= −

1

2

T∑

i=1

aτi. (B.2)

The previous limit is to be compared with

lim
c→∞

I(c)(h(z)− c) = lim
c→∞

(
T∑

i=1

(gaτi)
2

g2aτic+ σ2
R

+
(g2aτi)

2

2(g2aτic+ σ2
R)

2

)

(h(z)− c). (B.3)

Now5

lim
c→∞

I(c)h(z) = lim
c→∞

(
T∑

i=1

(gaτi)
2

g2aτic+ σ2
R

+
(g2aτi)

2

2(g2aτic+ σ2
R)

2

)

h(z) (B.4)

= 0 (B.5)

5(a) Since the function h(z) does not depend on c.
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and

lim
c→∞

I(c)c = lim
c→∞

T∑

i=1

(gaτi)
2c

g2aτic+ σ2
R

+
(g2aτi)

2c

2(g2aτic+ σ2
R)

2
(B.6)

=
T∑

i=1

aτi. (B.7)

Then

lim
c→∞

I(c)(h(z)− c) = −
T∑

i=1

aτi. (B.8)

Thus expressions (B.2) and (B.3) differ.

C. Q(φ|φ(p)) computation. To compute Q(φ|φ(p)) we separate the product (4.3) onto two
terms, one including the known samples (NS) and the other considering the saturated samples
(S).

Q(φ|φ(p)) = Ex[log h(x|φ)|z, φ
(p)]

(a)
=
∑

j∈NS

log p(zj |φj) +
∑

j∈S

Ezj

[

log p(zj |φj)|z, φ
(p)
]

, (C.1)

(C.2)

(a) Since zj is known for j ∈ NS, the value log p(zj |φj) is no longer a random variable but a
deterministic value.
For j ∈ S we do not know zj exact value but know its distribution

Ezj

[

log p(zj |φj)|z, φ
(p)
]

=

∫ ∞

zsat

log p(zj |φj)

(

p(zj |φ
(p)
j )

Pj

)

dzj (C.3)

= −
1

2

[

ln(2πσ2
j ) +

µ2
j

σ2
j

+
1

σ2
j

∫ ∞

zsat

z2j

(

p(zj |φ
(p)
j )

Pj

)

dzj . . .

−
2µj

σ2
j

∫ ∞

zsat

zj

(

p(zj |φ
(p)
j )

Pj

)

dzj

]

. (C.4)

We now compute

∫ ∞

zsat

z2j

(

p(zj |φ
(p)
j )

Pj

)

dzj
(a)
= E[z2j ] (C.5)

= σ
2(p)
j [1− δ(α)] + [µ

(p)
j + σ

(p)
j λ(α)]2, (C.6)

(C.7)



BEST ALGORITHMS FOR HDR IMAGE GENERATION 31

(a) z following the truncated normal distributionN(µ
(p)
j , σ

2(p)
j ) in the interval [zsat,∞). Hence,

with

α =
zsat − µ

(p)
j

σ
(p)
j

λ(α) =
φ(α)

1− Φ(α)
δ(α) = λ(α)(λ(α) − α), (C.8)

φ(·) is the probability density function of the standard normal distribution and Φ(·) is its
cumulative distribution function .
We continue with

∫ ∞

zsat

zj

(

p(zj |φ
(p)
j )

Pj

)

dzj
(b)
= E[zj ] (C.9)

= µ
(p)
j + σ

(p)
j λ(α), (C.10)

(b) zj following the truncated normal distribution N(µ
(p)
j , σ

2(p)
j ) in the interval [zsat,∞).

Hence,

Ezj

[

log p(zj |φj)|z, φ
(p)
]

= −
1

2

[

ln(2πσ2
j ) +

1

σ2
j

{

µ2
j − 2(µ

(p)
j + σ

(p)
j λ(α))µj + . . .

+σ
2(p)
j (1− δ(α)) + (µ

(p)
j + σ

(p)
j λ(α))2

}]

. (C.11)

Thus, from (C.2) and (C.11)

Q(φ|φ(p)) =
∑

j∈NS

log p(zj |φj)−
1

2

∑

j∈S

[

ln(2πσ2
j ) +

1

σ2
j

{

µ2
j − 2(µ

(p)
j + σ

(p)
j λ(α))µj + ...

(C.12)

+σ
2(p)
j (1− δ(α)) + (µ

(p)
j + σ

(p)
j λ(α))2

}]

. (C.13)

D. Modified CRLB. Let us consider the observations z = z1, . . . , zT corresponding to
exposures τ1, . . . , τT . Each zi is a realization of a random variable Zi following Model (2.2).
The modified log-likelihood function of z can be expressed as

ln g(z|φ) =
∑

j:kj=1

ln pj(zj ;φ) +
∑

j:kj=0

lnPj(φ). (D.1)

The crlb for the estimation of the parameter φ is computed as

crlb =
−1

E
[
∂2 ln g(z,φ)

∂φ2

] (D.2)

=
−1

E

[
∂2(

∑
j:kj=1

ln pj(zj ;φ)+
∑

j:kj=0
lnPj(φ))

∂φ2

] (D.3)

=
−1

∑

j:kj=1 E
[
∂2 ln pj(zj ;φ)

∂φ2

]

+
∑

j:kj=0E
[
∂2 lnPj(φ)

∂φ2

] . (D.4)
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Let us define

Aj(φ, z) :=
1

√

2πσ2
j (φ)

exp

{

−
1

2σ2
j (φ)

(z− µj(φ))
2

}

, (D.5)

then we have

Pj(φ) =

∫ ∞

vsat

Aj(φ, z)dz. (D.6)

The first derivative of lnPj(φ) is given by

∂ lnPj(φ)

∂φ
=

1
∫∞
vsat

Aj(φ, z)dz

∂(
∫∞
vsat

Aj(φ, z)dz)

∂φ
(D.7)

=

∫∞
vsat

∂Aj

∂φ
dz

∫∞
vsat

Aj(φ, z)dz
, (D.8)

since A(φ, z) meets the conditions of the Leibnitz rule. Thus the second derivative is given by

∂2 lnPj(φ)

∂φ2
=

∫∞
vsat

∂2Aj(φ,z)
∂φ2 dz

∫∞
vsat

Aj(φ, z)dz
−





∫∞
vsat

∂Aj(φ,z)
∂φ

dz
∫∞
vsat

Aj(φ, z)dz





2

. (D.9)

Since
∂2 lnPj(φ)

∂φ2 does not depend on z, we have E
[
∂2 lnPj(φ)

∂φ2

]

=
∂2 lnPj(φ)

∂φ2 , thus

∑

j:kj=0

E

[
∂2 lnPj(φ)

∂φ2

]

=
∑

j:kj=0

∫∞
vsat

∂2Aj(φ)
∂φ2 dz

∫∞
vsat

Aj(φ)dz
−





∫∞
vsat

∂Aj(φ)
∂φ

dz
∫∞
vsat

Aj(φ)dz





2

. (D.10)

E. MLE variance computation. Let y = (y1, . . . , yT ) be a random vector, with yi = zi.
Thus y ∼ N(µ,Σ) with

µ = (µ1, . . . , µT ), µi = gτiaC ∀ i = 1, . . . , T, (E.1)

Σ = diag(σ2
1 , . . . , σ

2
T ), σ2

i = g2τiaC + σ2
R ∀ i = 1, . . . , T. (E.2)

Consider the function

h(y) =

∑T
i=1

gτiayi
gyi+σ2

R
∑T

i=1
(gτia)2

gyi+σ2

R

. (E.3)

Being y Gaussian distributed, and noting that h is continuously differentiable and that

T∑

j=1

T∑

k=1

σjk
∂h(µ)

∂yj

∂h(µ)

∂yk
> 0, (E.4)
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it follows from the Delta method theorem [18] that the variance of h(y) can be computed to
a first order approximation as

var(h(y)) =

T∑

i=1

[

∂h(y)

∂yi

∣
∣
∣
∣
y=µy

]2

σ2
yi
+ E(o((y − µ)2)) (E.5)

=

T∑

i=1

[
gτia

g2τiaC + σ2
R

]2 [ (gτia)
2

g2τiaC + σ2
R

]−2

(g2τiaC + σ2
R) + E(o((y − µ)2)) (E.6)

≈

[
(gτia)

2

g2τiaC + σ2
R

]−1

. (E.7)

List of Notations.

g Camera gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Cp,C Irradiance at pixel p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
crlbmod Cramér-Rao lower bound for the modified log-likelihood. . . . . . . . . . . . . . . . . . . . . . . . 22
crlbsat Cramér-Rao lower bound computed from the non-saturated exposures only. . . . . . 12
crlb Cramér-Rao lower bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
ap,a Photo-response non-uniformity factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Ĉ Estimator of C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
µR Readout noise mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
σ2
R Readout noise variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

τi i-th exposure time.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Zi Raw pixel value for the i-th exposure (random variable). . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
zi Observed raw pixel value for i-th exposure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
z Vector of observed raw pixel values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
f Camera response function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
T Number of exposure times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
wp
i ,wi Weight of the i-th exposure of pixel p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
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